1
|
Wang H, Zhu Z, Bi H, Jiang Z, Cao Y, Wang S, Zou L. Changes in Community Structure of Brain Dynamic Functional Connectivity States in Mild Cognitive Impairment. Neuroscience 2024; 544:1-11. [PMID: 38423166 DOI: 10.1016/j.neuroscience.2024.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/22/2024] [Accepted: 02/24/2024] [Indexed: 03/02/2024]
Abstract
Recent researches have noted many changes of short-term dynamic modalities in mild cognitive impairment (MCI) patients' brain functional networks. In this study, the dynamic functional brain networks of 82 MCI patients and 85 individuals in the normal control (NC) group were constructed using the sliding window method and Pearson correlation. The window size was determined using single-scale time-dependent (SSTD) method. Subsequently, k-means was applied to cluster all window samples, identifying three dynamic functional connectivity (DFC) states. Collective sparse symmetric non-negative matrix factorization (cssNMF) was then used to perform community detection on these states and quantify differences in brain regions. Finally, metrics such as within-community connectivity strength, community strength, and node diversity were calculated for further analysis. The results indicated high similarity between the two groups in state 2, with no significant differences in optimal community quantity and functional segregation (p < 0.05). However, for state 1 and state 3, the optimal community quantity was smaller in MCI patients compared to the NC group. In state 1, MCI patients had lower within-community connectivity strength and overall strength than the NC group, whereas state 3 showed results opposite to state 1. Brain regions with statistical difference included MFG.L, ORBinf.R, STG.R, IFGtriang.L, CUN.L, CUN.R, LING.R, SOG.L, and PCUN.R. This study on DFC states explores changes in the brain functional networks of patients with MCI from the perspective of alterations in the community structures of DFC states. The findings could provide new insights into the pathological changes in the brains of MCI patients.
Collapse
Affiliation(s)
- Hongwei Wang
- School of Computer Science and Artificial Intelligence, Aliyun School of Big Data, School of Software, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Zhihao Zhu
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Hui Bi
- School of Computer Science and Artificial Intelligence, Aliyun School of Big Data, School of Software, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Zhongyi Jiang
- School of Computer Science and Artificial Intelligence, Aliyun School of Big Data, School of Software, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Yin Cao
- The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213164, China
| | - Suhong Wang
- Clinical Psychology, The Third Affiliated Hospital of Soochow University, Juqian Road No. 185, Changzhou, Jiangsu 213164, China
| | - Ling Zou
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou, Jiangsu 213164, China; The Key Laboratory of Brain Machine Collaborative Intelligence Foundation of Zhejiang Province, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
2
|
Han H, Jiang J, Gu L, Gan JQ, Wang H. Brain connectivity patterns derived from aging-related alterations in dynamic brain functional networks and their potential as features for brain age classification. J Neural Eng 2024; 21:026015. [PMID: 38479020 DOI: 10.1088/1741-2552/ad33b1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 03/13/2024] [Indexed: 03/26/2024]
Abstract
Objective.Recent studies have demonstrated that the analysis of brain functional networks (BFNs) is a powerful tool for exploring brain aging and age-related neurodegenerative diseases. However, investigating the mechanism of brain aging associated with dynamic BFN is still limited. The purpose of this study is to develop a novel scheme to explore brain aging patterns by constructing dynamic BFN using resting-state functional magnetic resonance imaging data.Approach.A dynamic sliding-windowed non-negative block-diagonal representation (dNBDR) method is proposed for constructing dynamic BFN, based on which a collection of dynamic BFN measures are suggested for examining age-related differences at the group level and used as features for brain age classification at the individual level.Results.The experimental results reveal that the dNBDR method is superior to the sliding time window with Pearson correlation method in terms of dynamic network structure quality. Additionally, significant alterations in dynamic BFN structures exist across the human lifespan. Specifically, average node flexibility and integration coefficient increase with age, while the recruitment coefficient shows a decreased trend. The proposed feature extraction scheme based on dynamic BFN achieved the highest accuracy of 78.7% in classifying three brain age groups.Significance. These findings suggest that dynamic BFN measures, dynamic community structure metrics in particular, play an important role in quantitatively assessing brain aging.
Collapse
Affiliation(s)
- Hongfang Han
- Key Laboratory of Child Development and Learning Science of Ministry of Education, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, Jiangsu, People's Republic of China
| | - Jiuchuan Jiang
- School of Information Engineering, Nanjing University of Finance and Economics, Nanjing 210003, Jiangsu, People's Republic of China
| | - Lingyun Gu
- Key Laboratory of Child Development and Learning Science of Ministry of Education, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, Jiangsu, People's Republic of China
| | - John Q Gan
- School of Computer Science and Electronic Engineering, University of Essex, Colchester CO4 3SQ, United Kingdom
| | - Haixian Wang
- Key Laboratory of Child Development and Learning Science of Ministry of Education, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, Jiangsu, People's Republic of China
| |
Collapse
|
3
|
Nguyen TTT, Lee HH, Huang LK, Hu CJ, Yeh CY, Yang WCV, Lin MC. Heterogeneity of Alzheimer's disease identified by neuropsychological test profiling. PLoS One 2023; 18:e0292527. [PMID: 37797059 PMCID: PMC10553816 DOI: 10.1371/journal.pone.0292527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 09/22/2023] [Indexed: 10/07/2023] Open
Abstract
Alzheimer's disease (AD) is a highly heterogeneous disorder. Untangling this variability could lead to personalized treatments and improve participant recruitment for clinical trials. We investigated the cognitive subgroups by using a data-driven clustering technique in an AD cohort. People with mild-moderate probable AD from Taiwan was included. Neuropsychological test results from the Cognitive Abilities Screening Instrument were clustered using nonnegative matrix factorization. We identified two clusters in 112 patients with predominant deficits in memory (62.5%) and non-memory (37.5%) cognitive domains, respectively. The memory group performed worse in short-term memory and orientation and better in attention than the non-memory group. At baseline, patients in the memory group had worse global cognitive status and dementia severity. Linear mixed effect model did not reveal difference in disease trajectory within 3 years of follow-up between the two clusters. Our results provide insights into the cognitive heterogeneity in probable AD in an Asian population.
Collapse
Affiliation(s)
- Truc Tran Thanh Nguyen
- Graduate Institute of Biomedical Informatics, Division of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Memory and Dementia Center, Hospital 30–4, Ho Chi Minh City, Vietnam
| | - Hsun-Hua Lee
- Department of Neurology, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Dizziness and Balance Disorder Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Li-Kai Huang
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Neurology, Dementia Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Chaur-Jong Hu
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Neurology, Dementia Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan
| | - Chih-Yang Yeh
- Graduate Institute of Biomedical Informatics, Division of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Wei-Chung Vivian Yang
- The PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Ming-Chin Lin
- Graduate Institute of Biomedical Informatics, Division of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Biomedical Informatics, Division of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Department of Neurosurgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| |
Collapse
|
4
|
Khan R, Akbar S, Mehmood A, Shahid F, Munir K, Ilyas N, Asif M, Zheng Z. A transfer learning approach for multiclass classification of Alzheimer's disease using MRI images. Front Neurosci 2023; 16:1050777. [PMID: 36699527 PMCID: PMC9869687 DOI: 10.3389/fnins.2022.1050777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/05/2022] [Indexed: 01/11/2023] Open
Abstract
Alzheimer's is an acute degenerative disease affecting the elderly population all over the world. The detection of disease at an early stage in the absence of a large-scale annotated dataset is crucial to the clinical treatment for the prevention and early detection of Alzheimer's disease (AD). In this study, we propose a transfer learning base approach to classify various stages of AD. The proposed model can distinguish between normal control (NC), early mild cognitive impairment (EMCI), late mild cognitive impairment (LMCI), and AD. In this regard, we apply tissue segmentation to extract the gray matter from the MRI scans obtained from the Alzheimer's Disease National Initiative (ADNI) database. We utilize this gray matter to tune the pre-trained VGG architecture while freezing the features of the ImageNet database. It is achieved through the addition of a layer with step-wise freezing of the existing blocks in the network. It not only assists transfer learning but also contributes to learning new features efficiently. Extensive experiments are conducted and results demonstrate the superiority of the proposed approach.
Collapse
Affiliation(s)
- Rizwan Khan
- Department of Computer Science and Mathematics, Zhejiang Normal University, Jinhua, China,*Correspondence: Rizwan Khan ✉
| | - Saeed Akbar
- School of Computer Science, Huazhong University of Science and Technology, Wuhan, China
| | - Atif Mehmood
- Division of Biomedical Imaging, Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, Stockholm, Sweden,Department of Computer Science, National University of Modern Languages, Islamabad, Pakistan
| | - Farah Shahid
- Department of Computer Science, University of Agriculture, Sub Campus Burewala-Vehari, Faisalabad, Pakistan
| | - Khushboo Munir
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, AB, Canada
| | - Naveed Ilyas
- Department of Physics, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - M. Asif
- Department of Radiology, Emory Brain Health Center-Neurosurgery, School of Medicine, Emory University, Atlanta, GA, United States
| | - Zhonglong Zheng
- Department of Computer Science and Mathematics, Zhejiang Normal University, Jinhua, China,Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
5
|
Hu M, Yu Y, He F, Su Y, Zhang K, Liu X, Liu P, Liu Y, Peng G, Luo B. Classification and Interpretability of Mild Cognitive Impairment Based on Resting-State Functional Magnetic Resonance and Ensemble Learning. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:2535954. [PMID: 36035823 PMCID: PMC9417789 DOI: 10.1155/2022/2535954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/12/2022] [Accepted: 07/06/2022] [Indexed: 11/22/2022]
Abstract
The combination and integration of multimodal imaging and clinical markers have introduced numerous classifiers to improve diagnostic accuracy in detecting and predicting AD; however, many studies cannot ensure the homogeneity of data sets and consistency of results. In our study, the XGBoost algorithm was used to classify mild cognitive impairment (MCI) and normal control (NC) populations through five rs-fMRI analysis datasets. Shapley Additive exPlanations (SHAP) is used to analyze the interpretability of the model. The highest accuracy for diagnosing MCI was 65.14% (using the mPerAF dataset). The characteristics of the left insula, right middle frontal gyrus, and right cuneus correlated positively with the output value using DC datasets. The characteristics of left cerebellum 6, right inferior frontal gyrus, opercular part, and vermis 6 correlated positively with the output value using fALFF datasets. The characteristics of the right middle temporal gyrus, left middle temporal gyrus, left temporal pole, and middle temporal gyrus correlated positively with the output value using mPerAF datasets. The characteristics of the right middle temporal gyrus, left middle temporal gyrus, and left hippocampus correlated positively with the output value using PerAF datasets. The characteristics of left cerebellum 9, vermis 9, and right precentral gyrus, right amygdala, and left middle occipital gyrus correlated positively with the output value using Wavelet-ALFF datasets. We found that the XGBoost algorithm constructed from rs-fMRI data is effective for the diagnosis and classification of MCI. The accuracy rates obtained by different rs-fMRI data analysis methods are similar, but the important features are different and involve multiple brain regions, which suggests that MCI may have a negative impact on brain function.
Collapse
Affiliation(s)
- Mengjie Hu
- Department of Neurology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Department of General Practice, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yang Yu
- Department of Neurology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Fangping He
- Department of Neurology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yujie Su
- Department of Neurology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Kan Zhang
- Department of Neurology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xiaoyan Liu
- Department of Neurology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Ping Liu
- Department of Neurology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Ying Liu
- Department of General Practice, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Guoping Peng
- Department of Neurology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Benyan Luo
- Department of Neurology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|