1
|
Al-Zamil M, Kulikova NG, Minenko IA, Shurygina IP, Petrova MM, Mansur N, Kuliev RR, Blinova VV, Khripunova OV, Shnayder NA. Comparative Analysis of High-Frequency and Low-Frequency Transcutaneous Electrical Stimulation of the Right Median Nerve in the Regression of Clinical and Neurophysiological Manifestations of Generalized Anxiety Disorder. J Clin Med 2024; 13:3026. [PMID: 38892737 PMCID: PMC11172620 DOI: 10.3390/jcm13113026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/15/2024] [Accepted: 05/19/2024] [Indexed: 06/21/2024] Open
Abstract
Background/Objectives: The anxiolytic effect of transcutaneous electrical nerve stimulation (TENS) is associated with the activation of endogenous inhibitory mechanisms in the central nervous system. Both low-frequency, high-amplitude TENS (LF-TENS) and high-frequency, low-amplitude TENS (HF-TENS) are capable of activating opioid, GABA, serotonin, muscarinic, and cannabinoid receptors. However, there has been no comparative analysis of the effectiveness of HF-TENS and LF-TENS in the treatment of GAD. The purpose of our research was to study the effectiveness of direct HF-TENS and LF-TENS of the right median nerve in the treatment of patients with GAD compared with sham TENS. Methods: The effectiveness of direct HF-TENS and LF-TENS of the right median nerve in the treatment of GAD was studied using Generalized Anxiety Disorder 7-item scale (GAD-7) and the Hamilton Anxiety Rating Scale (HAM-A). 40 patients underwent sham TENS, 40 patients passed HF-TENS (50 Hz-50 μs-sensory response) and 41 patients completed LF -TENS (1 Hz-200 μs-motor response) for 30 days daily. After completion of treatment, half of the patients received weekly maintenance therapy for 6 months. Electroencephalography was performed before and after treatment. Results: Our study showed that a significant reduction in the clinical symptoms of GAD as assessed by GAD-7 and HAM-A was observed after HF-TENS and LF-TENS by an average of 42.4%, and after sham stimulation only by 13.5% for at least 2 months after the end of treatment. However, LF-TENS turned out to be superior in effectiveness to HF-TENS by 51% and only on electroencephalography leads to an increase in PSD for the alpha rhythm in the occipital regions by 24% and a decrease in PSD for the beta I rhythm in the temporal and frontal regions by 28%. The prolonged effect of HF-TENS and LF-TENS was maintained without negative dynamics when TENS treatment was continued weekly throughout the entire six-month observation period. Conclusions: A prolonged anxiolytic effect of direct TENS of the right median nerve has been proven with greater regression of clinical and neurophysiological manifestations of GAD after LF-TENS compared to HF-TENS. Minimal side effects, low cost, safety, and simplicity of TENS procedures are appropriate as a home treatment modality.
Collapse
Affiliation(s)
- Mustafa Al-Zamil
- Department of Physiotherapy, Faculty of Continuing Medical Education, Peoples’ Friendship University of Russia, 117198 Moscow, Russia; (N.G.K.); (N.M.); (V.V.B.)
| | - Natalia G. Kulikova
- Department of Physiotherapy, Faculty of Continuing Medical Education, Peoples’ Friendship University of Russia, 117198 Moscow, Russia; (N.G.K.); (N.M.); (V.V.B.)
- Department of Sports Medicine and Medical Rehabilitation, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (I.A.M.); (O.V.K.)
| | - Inessa A. Minenko
- Department of Sports Medicine and Medical Rehabilitation, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (I.A.M.); (O.V.K.)
- Department of Restorative Medicine and Neurorehabilitation, Medical Dental Institute, 127253 Moscow, Russia;
| | - Irina P. Shurygina
- Department of Ophthalmology, Rostov State Medical University, 344022 Rostov, Russia;
| | - Marina M. Petrova
- Shared Core Facilities “Molecular and Cell Technologies”, Professor V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia;
| | - Numman Mansur
- Department of Physiotherapy, Faculty of Continuing Medical Education, Peoples’ Friendship University of Russia, 117198 Moscow, Russia; (N.G.K.); (N.M.); (V.V.B.)
- Department of Restorative Medicine and Neurorehabilitation, Medical Dental Institute, 127253 Moscow, Russia;
- City Clinical Hospital Named after V. V. Vinogradov, 117292 Moscow, Russia
| | - Rufat R. Kuliev
- Department of Restorative Medicine and Neurorehabilitation, Medical Dental Institute, 127253 Moscow, Russia;
| | - Vasilissa V. Blinova
- Department of Physiotherapy, Faculty of Continuing Medical Education, Peoples’ Friendship University of Russia, 117198 Moscow, Russia; (N.G.K.); (N.M.); (V.V.B.)
- Department of Restorative Medicine and Neurorehabilitation, Medical Dental Institute, 127253 Moscow, Russia;
| | - Olga V. Khripunova
- Department of Sports Medicine and Medical Rehabilitation, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (I.A.M.); (O.V.K.)
| | - Natalia A. Shnayder
- Shared Core Facilities “Molecular and Cell Technologies”, Professor V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia;
- Institute of Personalized Psychiatry and Neurology, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
| |
Collapse
|
2
|
Fadli RA, Yamanouchi Y, Jovanovic LI, Popovic MR, Marquez-Chin C, Nomura T, Milosevic M. Effectiveness of motor and prefrontal cortical areas for brain-controlled functional electrical stimulation neuromodulation. J Neural Eng 2023; 20:056022. [PMID: 37714143 DOI: 10.1088/1741-2552/acfa22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 09/15/2023] [Indexed: 09/17/2023]
Abstract
Objective. Brain-computer interface (BCI)-controlled functional electrical stimulation (FES) could excite the central nervous system to enhance upper limb motor recovery. Our current study assessed the effectiveness of motor and prefrontal cortical activity-based BCI-FES to help elucidate the underlying neuromodulation mechanisms of this neurorehabilitation approach.Approach. The primary motor cortex (M1) and prefrontal cortex (PFC) BCI-FES interventions were performed for 25 min on separate days with twelve non-disabled participants. During the interventions, a single electrode from the contralateral M1 or PFC was used to detect event-related desynchronization (ERD) in the calibrated frequency range. If the BCI system detected ERD within 15 s of motor imagery, FES activated wrist extensor muscles. Otherwise, if the BCI system did not detect ERD within 15 s, a subsequent trial was initiated without FES. To evaluate neuromodulation effects, corticospinal excitability was assessed using single-pulse transcranial magnetic stimulation, and cortical excitability was assessed by motor imagery ERD and resting-state functional connectivity before, immediately, 30 min, and 60 min after each intervention.Main results. M1 and PFC BCI-FES interventions had similar success rates of approximately 80%, while the M1 intervention was faster in detecting ERD activity. Consequently, only the M1 intervention effectively elicited corticospinal excitability changes for at least 60 min around the targeted cortical area in the M1, suggesting a degree of spatial localization. However, cortical excitability measures did not indicate changes after either M1 or PFC BCI-FES.Significance. Neural mechanisms underlying the effectiveness of BCI-FES neuromodulation may be attributed to the M1 direct corticospinal projections and/or the closer timing between ERD detection and FES, which likely enhanced Hebbian-like plasticity by synchronizing cortical activation detected by the BCI system with the sensory nerve activation and movement related reafference elicited by FES.
Collapse
Affiliation(s)
- Rizaldi A Fadli
- Graduate School of Engineering Science, Department of Mechanical Science and Bioengineering, Osaka University, 1-3 Machikaneyama, Toyonaka 560-8531, Japan
- Department of Biomedical Engineering, University of Miami College of Engineering, 1251 Memorial Drive, Coral Gables, FL 33146, United States of America
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, United States of America
| | - Yuki Yamanouchi
- Graduate School of Engineering Science, Department of Mechanical Science and Bioengineering, Osaka University, 1-3 Machikaneyama, Toyonaka 560-8531, Japan
| | - Lazar I Jovanovic
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
- KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, 520 Sutherland Drive, Toronto, Ontario M4G 3V9, Canada
| | - Milos R Popovic
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
- KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, 520 Sutherland Drive, Toronto, Ontario M4G 3V9, Canada
- CRANIA, University Health Network & University of Toronto. 550 University Avenue, Toronto, Ontario M5G 2A2, Canada
| | - Cesar Marquez-Chin
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
- KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, 520 Sutherland Drive, Toronto, Ontario M4G 3V9, Canada
- CRANIA, University Health Network & University of Toronto. 550 University Avenue, Toronto, Ontario M5G 2A2, Canada
| | - Taishin Nomura
- Graduate School of Engineering Science, Department of Mechanical Science and Bioengineering, Osaka University, 1-3 Machikaneyama, Toyonaka 560-8531, Japan
| | - Matija Milosevic
- Graduate School of Engineering Science, Department of Mechanical Science and Bioengineering, Osaka University, 1-3 Machikaneyama, Toyonaka 560-8531, Japan
- Department of Biomedical Engineering, University of Miami College of Engineering, 1251 Memorial Drive, Coral Gables, FL 33146, United States of America
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, United States of America
| |
Collapse
|
3
|
Jadidi AF, Jensen W, Zarei AA, Lontis ER, Atashzar SF. From pulse width modulated TENS to cortical modulation: based on EEG functional connectivity analysis. Front Neurosci 2023; 17:1239068. [PMID: 37600002 PMCID: PMC10433172 DOI: 10.3389/fnins.2023.1239068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023] Open
Abstract
Modulation in the temporal pattern of transcutaneous electrical nerve stimulation (TENS), such as Pulse width modulated (PWM), has been considered a new dimension in pain and neurorehabilitation therapy. Recently, the potentials of PWM TENS have been studied on sensory profiles and corticospinal activity. However, the underlying mechanism of PWM TENS on cortical network which might lead to pain alleviation is not yet investigated. Therefore, we recorded cortical activity using electroencephalography (EEG) from 12 healthy subjects and assessed the alternation of the functional connectivity at the cortex level up to an hour following the PWM TENS and compared that with the effect of conventional TENS. The connectivity between eight brain regions involved in sensory and pain processing was calculated based on phase lag index and spearman correlation. The alteration in segregation and integration of information in the network were investigated using graph theory. The proposed analysis discovered several statistically significant network changes between PWM TENS and conventional TENS, such as increased local strength and efficiency of the network in high gamma-band in primary and secondary somatosensory sources one hour following stimulation. Our findings regarding the long-lasting desired effects of PWM TENS support its potential as a therapeutic intervention in clinical research.
Collapse
Affiliation(s)
- Armita Faghani Jadidi
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg East, Denmark
| | - Winnie Jensen
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg East, Denmark
| | - Ali Asghar Zarei
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg East, Denmark
| | - Eugen Romulus Lontis
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg East, Denmark
| | - S. Farokh Atashzar
- Department of Electrical and Computer Engineering, New York University, New York, NY, United States
- Department of Mechanical and Aerospace Engineering, New York University, New York, NY, United States
- Department of Biomedical Engineering, New York University, New York, NY, United States
- NYU WIRELESS, New York University (NYU), New York, NY, United States
- NYU Center for Urban Science and Progress (CUSP), New York University (NYU), New York, NY, United States
| |
Collapse
|
4
|
Stefanovic F, Martinez JA, Saleem GT, Sisto SA, Miller MT, Achampong YA, Titus AH. A blended neurostimulation protocol to delineate cortico-muscular and spino-muscular dynamics following neuroplastic adaptation. Front Neurol 2023; 14:1114860. [PMID: 37396760 PMCID: PMC10311503 DOI: 10.3389/fneur.2023.1114860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 06/02/2023] [Indexed: 07/04/2023] Open
Abstract
In this paper we propose a novel neurostimulation protocol that provides an intervention-based assessment to distinguish the contributions of different motor control networks in the cortico-spinal system. Specifically, we use a combination of non-invasive brain stimulation and neuromuscular stimulation to probe neuromuscular system behavior with targeted impulse-response system identification. In this protocol, we use an in-house developed human-machine interface (HMI) for an isotonic wrist movement task, where the user controls a cursor on-screen. During the task, we generate unique motor evoked potentials based on triggered cortical or spinal level perturbations. Externally applied brain-level perturbations are triggered through TMS to cause wrist flexion/extension during the volitional task. The resultant contraction output and related reflex responses are measured by the HMI. These movements also include neuromodulation in the excitability of the brain-muscle pathway via transcranial direct current stimulation. Colloquially, spinal-level perturbations are triggered through skin-surface neuromuscular stimulation of the wrist muscles. The resultant brain-muscle and spinal-muscle pathways perturbed by the TMS and NMES, respectively, demonstrate temporal and spatial differences as manifested through the human-machine interface. This then provides a template to measure the specific neural outcomes of the movement tasks, and in decoding differences in the contribution of cortical- (long-latency) and spinal-level (short-latency) motor control. This protocol is part of the development of a diagnostic tool that can be used to better understand how interaction between cortical and spinal motor centers changes with learning, or injury such as that experienced following stroke.
Collapse
Affiliation(s)
- Filip Stefanovic
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States
| | - Julian A. Martinez
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States
| | - Ghazala T. Saleem
- Department of Rehabilitation Science, State University of New York at Buffalo, Buffalo, NY, United States
| | - Sue Ann Sisto
- Department of Rehabilitation Science, State University of New York at Buffalo, Buffalo, NY, United States
| | - Michael T. Miller
- UB Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States
| | - Yaa A. Achampong
- UB Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States
| | - Albert H. Titus
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States
| |
Collapse
|
5
|
Zhou L, Xu Y, Song F, Li W, Gao F, Zhu Q, Qian Z. The effect of TENS on sleep: A pilot study. Sleep Med 2023; 107:126-136. [PMID: 37167876 DOI: 10.1016/j.sleep.2023.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND Insomnia is the second most common neuropsychiatric disorder, but the current treatments are not very effective. There is therefore an urgent need to develop better treatments. Transcutaneous electrical nerve stimulation (TENS) may be a promising means of treating insomnia. OBJECTIVE This work aims to explore whether and how TENS modulate sleep and the effect of stimulation waveforms on sleep. METHODS Forty-five healthy subjects participated in this study. Electroencephalography (EEG) data were recorded before and after four mode low-frequency (1 Hz) TENS with different waveforms, which were formed by superimposing sine waves of different high frequencies (60-210 Hz) and low frequencies (1-6 Hz). The four waveform modes are formed by combining sine waves of varying frequencies. Mode 1 (M1) consists of a combination of high frequencies (60-110 Hz) and low frequencies (1-6 Hz). Mode 2 (M2) is made up of high frequencies (60-210 Hz) and low frequencies (1-6 Hz). Mode 3 (M3) consists of high frequencies (110-160 Hz) and low frequencies (1-6 Hz), while mode 4 (M4) is composed of high frequencies (160-210 Hz) and low frequencies (1-6 Hz). For M1, M3 and M4, the high frequency portions of the stimulus waveforms account for 50%, while for M2, the high frequency portion of the waveform accounts for 65%. For each mode, the current intensities ranged from 4 mA to 7 mA, with values for each participant adjusted according to individual tolerance. During stimulation, the subjects were stimulated at the greater occipital nerve by the four mode TENS. RESULTS M1, M3, and M4 slowed down the frequency of neural activity, broadened the distribution of theta waves, and caused a decrease in activity in wakefulness-related regions and an increase in activity in sleep-related regions. However, M2 has the opposite modulation effect. CONCLUSION These results indicated that low-frequency TENS (1 Hz) may facilitate sleep in a waveform-specific manner. Our findings provide new insights into the mechanisms of sleep modulation by TENS and the design of effective insomnia treatments.
Collapse
Affiliation(s)
- Lu Zhou
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China; Key Laboratory of Multimodal Brain-Computer Precision Drive Ministry of Industry and Information Technology, Nanjing, 210016, China; Key Laboratory of Digital Medical Equipment and Technology of Jiangsu Province, Nanjing, 210016, China
| | - Yixuan Xu
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China; Key Laboratory of Multimodal Brain-Computer Precision Drive Ministry of Industry and Information Technology, Nanjing, 210016, China; Key Laboratory of Digital Medical Equipment and Technology of Jiangsu Province, Nanjing, 210016, China
| | - Fanlei Song
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China; Key Laboratory of Multimodal Brain-Computer Precision Drive Ministry of Industry and Information Technology, Nanjing, 210016, China; Key Laboratory of Digital Medical Equipment and Technology of Jiangsu Province, Nanjing, 210016, China
| | - Weitao Li
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China; Key Laboratory of Multimodal Brain-Computer Precision Drive Ministry of Industry and Information Technology, Nanjing, 210016, China; Key Laboratory of Digital Medical Equipment and Technology of Jiangsu Province, Nanjing, 210016, China
| | - Fan Gao
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China; Key Laboratory of Multimodal Brain-Computer Precision Drive Ministry of Industry and Information Technology, Nanjing, 210016, China; Key Laboratory of Digital Medical Equipment and Technology of Jiangsu Province, Nanjing, 210016, China
| | - Qiaoqiao Zhu
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China; Key Laboratory of Multimodal Brain-Computer Precision Drive Ministry of Industry and Information Technology, Nanjing, 210016, China; Key Laboratory of Digital Medical Equipment and Technology of Jiangsu Province, Nanjing, 210016, China.
| | - Zhiyu Qian
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China; Key Laboratory of Multimodal Brain-Computer Precision Drive Ministry of Industry and Information Technology, Nanjing, 210016, China; Key Laboratory of Digital Medical Equipment and Technology of Jiangsu Province, Nanjing, 210016, China.
| |
Collapse
|
6
|
Needle AR, Tinsley JE, Cash JJ, Koeval BK, Barton JA, Howard JS. The effects of neuromuscular electrical stimulation to the ankle pronators on neural excitability & functional status in patients with chronic ankle instability. Phys Ther Sport 2023; 60:1-8. [PMID: 36634453 DOI: 10.1016/j.ptsp.2022.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Chronic ankle instability (CAI) is associated with decreased neural excitability that negatively impacts function. This study assessed a 2-week neuromuscular electrical stimulation (NMES) or transcutaneous electrical nerve stimulation (TENS) intervention over the ankle pronators on neural excitability, performance, and patient-reported function in patients with CAI. STUDY DESIGN Randomized controlled trial. PARTICIPANTS Twenty participants with CAI completed the study. MAIN OUTCOME MEASURES Participants were assessed for reflexive and corticospinal excitability to the ankle muscles, dynamic balance, side-hop test performance and patient-reported outcomes at baseline, post-intervention (2-weeks), and retention (4-weeks). Between baseline and post-intervention, participants reported for 5 sessions where they received either sub-noxious NMES (n = 11) or sensory-level TENS (n = 9) over the ankle pronators. RESULTS Improved reflexive excitability to the ankle pronators was observed in TENS at post-intervention (p = 0.030) and retention (p = 0.029). Cortical excitability to the dorsiflexors increased in TENS at post-intervention (p = 0.017), but not at retention (p = 0.511). No significant changes were found for other neural measures, balance ability, hopping, or patient-reported function (p > 0.050). CONCLUSIONS Our results suggest TENS modified neural excitability; however, these changes were not enough to impact clinical function. While TENS may be capable of neuromodulation, it may require rehabilitative exercise to generate lasting changes. NCT04322409. LEVEL OF EVIDENCE Level 2.
Collapse
Affiliation(s)
- Alan R Needle
- Department of Public Health & Exercise Science, Appalachian State University, Boone, NC, USA; Department of Rehabilitation Sciences, Appalachian State University, Boone, NC, USA.
| | - Jennifer E Tinsley
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY, USA
| | - Jasmine J Cash
- Department of Health Sciences and Research, Medical University of South Carolina, Charleston, SC, USA
| | - Blake K Koeval
- Department of Public Health & Exercise Science, Appalachian State University, Boone, NC, USA
| | - Jacob A Barton
- Department of Public Health & Exercise Science, Appalachian State University, Boone, NC, USA
| | - Jennifer S Howard
- Department of Rehabilitation Sciences, Appalachian State University, Boone, NC, USA
| |
Collapse
|
7
|
Zarei AA, Jensen W, Faghani Jadidi A, Lontis R, Atashzar SF. Gamma-band Enhancement of Functional Brain Connectivity Following Transcutaneous Electrical Nerve Stimulation. J Neural Eng 2022; 19. [PMID: 35234662 DOI: 10.1088/1741-2552/ac59a1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/01/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Transcutaneous electrical nerve stimulation (TENS) has been suggested as a possible non-invasive pain treatment. However, the underlying mechanism of the analgesic effect of TENS and how brain network functional connectivity is affected following the use of TENS is not yet fully understood. The purpose of this study was to investigate the effect of high-frequency TENS on the alternation of functional brain network connectivity and the corresponding topographical changes, besides perceived sensations. APPROACH Forty healthy subjects participated in this study. EEG data and sensory profiles were recorded before and up to an hour following high-frequency TENS (100 Hz) in sham and intervention groups. Brain source activity from EEG data was estimated using the LORETA algorithm. In order to generate the brain connectivity network, the Phase lag index was calculated for all pair-wise connections of eight selected brain areas over six different frequency bands (i.e., δ, θ, α, β, γ, and 0.5-90 Hz). MAIN RESULTS The results suggested that the functional connectivity between the primary somatosensory cortex (SI) and the anterior cingulate cortex (ACC), in addition to functional connectivity between S1 and the medial prefrontal cortex (mPFC), were significantly increased in the gamma-band, following the TENS intervention. Additionally, using graph theory, several significant changes were observed in global and local characteristics of functional brain connectivity in gamma-band. SIGNIFICANCE Our observations in this paper open a neuropsychological window of understanding the underlying mechanism of TENS and the corresponding changes in functional brain connectivity, simultaneously with alternation in sensory perception.
Collapse
Affiliation(s)
- Ali Asghar Zarei
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg Universitet, Fredrik Bajers Vej 7 D3, Aalborg, 9220, DENMARK
| | - Winnie Jensen
- Center for Sensory-Motor Interaction Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 7, 9220 Aalborg, Aalborg, 9220, DENMARK
| | - Armita Faghani Jadidi
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg Universitet, Fredrik Bajers Vej 7 D3, Aalborg, 9220, DENMARK
| | - Romulus Lontis
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg Universitet, Fredrik Bajers Vej 7 D3, Aalborg, 9220, DENMARK
| | - S Farokh Atashzar
- Departments of Electrical and Computer Engineering, and Mechanical and Aerospace Engineering, New York University, 5 MetroTech Center #266D Brooklyn, NY 11201, New York, New York, NY 11201, UNITED STATES
| |
Collapse
|