1
|
Boby K, Veerasingam S. Depression diagnosis: EEG-based cognitive biomarkers and machine learning. Behav Brain Res 2025; 478:115325. [PMID: 39515528 DOI: 10.1016/j.bbr.2024.115325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/06/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Depression is a complex mental illness that has significant effects on people as well as society. The traditional techniques for the diagnosis of depression, along with the potential of nascent biomarkers especially EEG-based biomarkers, are studied. This review explores the significance of cognitive biomarkers, offering a comprehensive understanding of their role in the overall assessment of depression. It also investigates the effects of depression on various brain regions, outlines promising areas for future research, and emphasizes the importance of understanding the neurophysiological roots of depression. Furthermore, it elucidates how machine learning and deep learning models are integrated into EEG-based depression diagnosis, emphasizing their importance in optimizing personalized therapeutic protocols and improving diagnostic accuracy with EEG data analysis.
Collapse
Affiliation(s)
- Kiran Boby
- Department of Instrumentation and Control Engineering, NIT Tiruchirappalli, Thuvakudi, Tiruchirappalli, Tamil Nadu 620015, India.
| | - Sridevi Veerasingam
- Department of Instrumentation and Control Engineering, NIT Tiruchirappalli, Thuvakudi, Tiruchirappalli, Tamil Nadu 620015, India.
| |
Collapse
|
2
|
Yang J, Li B, Dong W, Gao X, Lin Y. Time-varying EEG networks of major depressive disorder during facial emotion tasks. Cogn Neurodyn 2024; 18:2605-2619. [PMID: 39555301 PMCID: PMC11564606 DOI: 10.1007/s11571-024-10111-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/29/2024] [Accepted: 03/25/2024] [Indexed: 11/19/2024] Open
Abstract
Depression is a mental disease involved in emotional and cognitive impairments. Neuroimaging studies have found abnormalities in the structure and functional network of brain for major depressive disorder (MDD).However, neural mechanism of the dynamic connectivity for emotional attention of MDD is currently insufficient. In this study, event-related potentials (ERP) and time-varying network were analyzed to investigate attention bias and corresponding neural mechanisms induced by emotional facial stimuli. In the ERP results, N100 components in MDD had shorter latencies and smaller amplitudes than those in healthy controls (HC) for sad and fear faces. The P200 amplitudes induced by sad faces in MDD were significantly higher than those induced by happy and fear faces in MDD, and those induced by sad faces in HC. It was indicated that MDD patients had attention bias towards sad faces. For the time-varying network analysis, adaptive directed transfer function was explored to construct dynamic network connectivity. MDD patients had stronger information outflow from the right frontal region and weaker information outflow from parieto-occipital regions for sad faces. In addition, the network properties of sad faces were significantly correlated with PHQ-9 scores for MDD group. These findings may provide further explanation for understanding the MDD's neural mechanism of attention bias during facial emotional tasks.
Collapse
Affiliation(s)
- Jingru Yang
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, 100081 People’s Republic of China
| | - Bowen Li
- School of Medicine, Tsinghua University, Beijing, 100084 People’s Republic of China
| | - Wanqing Dong
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, 100081 People’s Republic of China
| | - Xiaorong Gao
- School of Medicine, Tsinghua University, Beijing, 100084 People’s Republic of China
| | - Yanfei Lin
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, 100081 People’s Republic of China
| |
Collapse
|
3
|
Mohd Rashid MH, Ab Rani NS, Kannan M, Abdullah MW, Ab Ghani MA, Kamel N, Mustapha M. Emotion brain network topology in healthy subjects following passive listening to different auditory stimuli. PeerJ 2024; 12:e17721. [PMID: 39040935 PMCID: PMC11262303 DOI: 10.7717/peerj.17721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 06/19/2024] [Indexed: 07/24/2024] Open
Abstract
A large body of research establishes the efficacy of musical intervention in many aspects of physical, cognitive, communication, social, and emotional rehabilitation. However, the underlying neural mechanisms for musical therapy remain elusive. This study aimed to investigate the potential neural correlates of musical therapy, focusing on the changes in the topology of emotion brain network. To this end, a Bayesian statistical approach and a cross-over experimental design were employed together with two resting-state magnetoencephalography (MEG) as controls. MEG recordings of 30 healthy subjects were acquired while listening to five auditory stimuli in random order. Two resting-state MEG recordings of each subject were obtained, one prior to the first stimulus (pre) and one after the final stimulus (post). Time series at the level of brain regions were estimated using depth-weighted minimum norm estimation (wMNE) source reconstruction method and the functional connectivity between these regions were computed. The resultant connectivity matrices were used to derive two topological network measures: transitivity and global efficiency which are important in gauging the functional segregation and integration of brain network respectively. The differences in these measures between pre- and post-stimuli resting MEG were set as the equivalence regions. We found that the network measures under all auditory stimuli were equivalent to the resting state network measures in all frequency bands, indicating that the topology of the functional brain network associated with emotional regulation in healthy subjects remains unchanged following these auditory stimuli. This suggests that changes in the emotion network topology may not be the underlying neural mechanism of musical therapy. Nonetheless, further studies are required to explore the neural mechanisms of musical interventions especially in the populations with neuropsychiatric disorders.
Collapse
Affiliation(s)
- Muhammad Hakimi Mohd Rashid
- Department of Basic Medical Sciences, Kulliyyah of Pharmacy, International Islamic University, Kuantan, Pahang, Malaysia
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu, Kelantan, Malaysia
| | - Nur Syairah Ab Rani
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu, Kelantan, Malaysia
| | - Mohammed Kannan
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu, Kelantan, Malaysia
- Department of Anatomy, Faculty of Medicine, Al Neelain University, Khartoum, Khartoum, Sudan
| | - Mohd Waqiyuddin Abdullah
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu, Kelantan, Malaysia
| | - Muhammad Amiri Ab Ghani
- Jabatan Al-Quran & Hadis, Kolej Islam Antarabangsa Sultan Ismail Petra, Nilam Puri, Kota Bharu, Kelantan, Malaysia
| | - Nidal Kamel
- Centre for Intelligent Signal & Imaging Research (CISIR), Electrical & Electronic Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, Perak, Malaysia
| | - Muzaimi Mustapha
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu, Kelantan, Malaysia
| |
Collapse
|
4
|
Liu X, Zhang H, Cui Y, Zhao T, Wang B, Xie X, Liang S, Sha S, Yan Y, Zhao X, Zhang L. EEG-based major depressive disorder recognition by neural oscillation and asymmetry. Front Neurosci 2024; 18:1362111. [PMID: 38419668 PMCID: PMC10899403 DOI: 10.3389/fnins.2024.1362111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 01/30/2024] [Indexed: 03/02/2024] Open
Abstract
Background Major Depressive Disorder (MDD) is a pervasive mental health issue with significant diagnostic challenges. Electroencephalography (EEG) offers a non-invasive window into the neural dynamics associated with MDD, yet the diagnostic efficacy is contingent upon the appropriate selection of EEG features and brain regions. Methods In this study, resting-state EEG signals from both eyes-closed and eyes-open conditions were analyzed. We examined band power across various brain regions, assessed the asymmetry of band power between the hemispheres, and integrated these features with clinical characteristics of MDD into a diagnostic regression model. Results Regression analysis found significant predictors of MDD to be beta2 (16-24 Hz) power in the Prefrontal Cortex (PFC) with eyes open (B = 20.092, p = 0.011), beta3 (24-40 Hz) power in the Medial Occipital Cortex (MOC) (B = -12.050, p < 0.001), and beta2 power in the Right Medial Frontal Cortex (RMFC) with eyes closed (B = 24.227, p < 0.001). Asymmetries in beta1 (12-16 Hz) power with eyes open (B = 28.047, p = 0.018), and in alpha (8-12 Hz, B = 9.004, p = 0.013) and theta (4-8 Hz, B = -13.582, p = 0.008) with eyes closed were also significant predictors. Conclusion The study confirms the potential of multi-region EEG analysis in improving the diagnostic precision for MDD. By including both neurophysiological and clinical data, we present a more robust approach to understanding and identifying this complex disorder. Limitations The research is limited by the sample size and the inherent variability in EEG signal interpretation. Future studies with larger cohorts and advanced analytical techniques are warranted to validate and refine these findings.
Collapse
Affiliation(s)
- Xinyu Liu
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Haoran Zhang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yi Cui
- Gnosis Healthineer Co. Ltd., Beijing, China
| | - Tong Zhao
- Gnosis Healthineer Co. Ltd., Beijing, China
| | - Bin Wang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Xiaomeng Xie
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Sixiang Liang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Sha Sha
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | | | - Xixi Zhao
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Ling Zhang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Simmatis L, Russo EE, Geraci J, Harmsen IE, Samuel N. Technical and clinical considerations for electroencephalography-based biomarkers for major depressive disorder. NPJ MENTAL HEALTH RESEARCH 2023; 2:18. [PMID: 38609518 PMCID: PMC10955915 DOI: 10.1038/s44184-023-00038-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/21/2023] [Indexed: 04/14/2024]
Abstract
Major depressive disorder (MDD) is a prevalent and debilitating psychiatric disease that leads to substantial loss of quality of life. There has been little progress in developing new MDD therapeutics due to a poor understanding of disease heterogeneity and individuals' responses to treatments. Electroencephalography (EEG) is poised to improve this, owing to the ease of large-scale data collection and the advancement of computational methods to address artifacts. This review summarizes the viability of EEG for developing brain-based biomarkers in MDD. We examine the properties of well-established EEG preprocessing pipelines and consider factors leading to the discovery of sensitive and reliable biomarkers.
Collapse
Affiliation(s)
- Leif Simmatis
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Cove Neurosciences Inc., Toronto, ON, Canada
| | - Emma E Russo
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Cove Neurosciences Inc., Toronto, ON, Canada
| | - Joseph Geraci
- Cove Neurosciences Inc., Toronto, ON, Canada
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - Irene E Harmsen
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Cove Neurosciences Inc., Toronto, ON, Canada
| | - Nardin Samuel
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Cove Neurosciences Inc., Toronto, ON, Canada.
| |
Collapse
|
6
|
Du Y, Hua L, Tian S, Dai Z, Xia Y, Zhao S, Zou H, Wang X, Sun H, Zhou H, Huang Y, Yao Z, Lu Q. Altered beta band spatial-temporal interactions during negative emotional processing in major depressive disorder: An MEG study. J Affect Disord 2023; 338:254-261. [PMID: 37271293 DOI: 10.1016/j.jad.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND The mood-concordance bias is a key feature of major depressive disorder (MDD), but the spatiotemporal neural activity associated with emotional processing in MDD remains unclear. Understanding the dysregulated connectivity patterns during emotional processing and their relationship with clinical symptoms could provide insights into MDD neuropathology. METHODS We enrolled 108 MDD patients and 64 healthy controls (HCs) who performed an emotion recognition task during magnetoencephalography recording. Network-based statistics (NBS) was used to analyze whole-brain functional connectivity (FC) across different frequency ranges during distinct temporal periods. The relationship between the aberrant FC and affective symptoms was explored. RESULTS MDD patients exhibited decreased FC strength in the beta band (13-30 Hz) compared to HCs. During the early stage of emotional processing (0-100 ms), reduced FC was observed between the left parahippocampal gyrus and the left cuneus. In the late stage (250-400 ms), aberrant FC was primarily found in the cortex-limbic-striatum systems. Moreover, the FC strength between the right fusiform gyrus and left thalamus, and between the left calcarine fissure and left inferior temporal gyrus were negatively associated with Hamilton Depression Rating Scale (HAMD) scores. LIMITATIONS Medication information was not involved. CONCLUSION MDD patients exhibited abnormal temporal-spatial neural interactions in the beta band, ranging from early sensory to later cognitive processing stages. These aberrant interactions involve the cortex-limbic-striatum circuit. Notably, aberrant FC in may serve as a potential biomarker for assessing depression severity.
Collapse
Affiliation(s)
- Yishan Du
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Lingling Hua
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Shui Tian
- Department of Radiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - ZhongPeng Dai
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, Southeast University, Nanjing 210096, China
| | - Yi Xia
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Shuai Zhao
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - HaoWen Zou
- Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing 210093, China
| | - Xiaoqin Wang
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hao Sun
- Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing 210093, China
| | - Hongliang Zhou
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - YingHong Huang
- Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing 210093, China
| | - ZhiJian Yao
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China; School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing 210093, China.
| | - Qing Lu
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, Southeast University, Nanjing 210096, China.
| |
Collapse
|