1
|
Bistriceanu CE, Vulpoi GA, Stoleriu I, Cuciureanu DI. Effect of Antiseizure Medication on the Salience Network in Patients with Epilepsy with Generalized Tonic-Clonic Seizures Alone. Biomedicines 2024; 12:1521. [PMID: 39062094 PMCID: PMC11275025 DOI: 10.3390/biomedicines12071521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/28/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
This study aimed to investigate the effects of antiepileptic drugs on salience network regions in patients with epilepsy with generalized tonic-clonic seizures alone (EGTCSa). A retrospective observational case-control study was performed on 40 patients diagnosed with epilepsy with EGTCSa and 40 healthy age-matched controls. In LORETA, a voxel-by-voxel analysis between regions from the salience network was performed for both hemispheres, specifically between the anterior cingulate (BA 32 and BA 24) and the sublobar insula (BA 13). Subsequently, a Wilcoxon rank-sum test (the Mann-Whitney U test) was conducted for the equality of medians in the transformation matrix. A comparison was then made between each region of interest as defined by the salience network and the controls. Marked differences were found in the brain regions assessed in patients with EGTCSa treated with valproic acid and carbamazepine compared to the control group; few differences in patients treated with levetiracetam; and no difference was found in the group without treatment compared with those in the control group. These results suggest that ASMs can influence cognitive processes, which provide novel insights toward understanding the neural mechanisms underlying the effects of ASMs administration.
Collapse
Affiliation(s)
- Cătălina Elena Bistriceanu
- Neurology Department, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 16 Universitatii Street, 700115 Iasi, Romania; (G.-A.V.); (D.I.C.)
- Elytis Hospital Hope, 43A Gheorghe Saulescu Street, 700010 Iasi, Romania
| | - Georgiana-Anca Vulpoi
- Neurology Department, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 16 Universitatii Street, 700115 Iasi, Romania; (G.-A.V.); (D.I.C.)
- Dorna Medical, 700022 Iasi, Romania
| | - Iulian Stoleriu
- Faculty of Mathematics, “Alexandru Ioan Cuza” University, 11 Bd. Carol I, 700506 Iasi, Romania;
| | - Dan Iulian Cuciureanu
- Neurology Department, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 16 Universitatii Street, 700115 Iasi, Romania; (G.-A.V.); (D.I.C.)
- Neurology Department I, “Prof. Dr. N. Oblu” Emergency Clinical Hospital, 2 Ateneului Street, 700309 Iasi, Romania
| |
Collapse
|
2
|
Khateb M, Grinfeld A, Weiler-Sagie M, Herskovitz M. Withdrawal seizures vs on-medication seizures: an intracranial EEG recording case report. ACTA EPILEPTOLOGICA 2022. [DOI: 10.1186/s42494-022-00084-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
It has long been an interesting question of whether withdrawal seizures in epileptic patients differ from habitual seizures in terms of semiology and electrophysiology.
Case presentation
Here, we addressed this issue in a 40 year-old woman with drug-resistant focal epilepsy monitored by presurgical intracranial EEG. As a part of this routine pre-operative investigation, anti-seizure medications (ASMs) were halted; as a result, multiple withdrawal seizures were recorded before ASM readministration. During 4 days of invasive monitoring, we noticed three different phases in seizure organization: Acute withdrawal seizure (AWS): The first recorded seizure 10h after the implantation; the stabilized withdrawal seizures (SWS): seven habitual seizures recorded from 24h post implantation to readministration of ASMs; and the Non-withdrawal seizures (NWS): ten seizures recorded 24h after readministration of ASMs. AWS and SWS had the same semiology and same epileptic network, but the propagation time from the temporal pole to the para-hippocampal gyrus (PHG) and hippocampus ranged from no latency in AWS to up to 50 s in SWS. NWS were electrographic seizures, without any apparent clinical manifestation. Seizure onset in this type of seizure, as in the first two types, was in the temporal pole. However, NWS could last up to 3 min without involving the PHG or hippocampus.
Conclusions
We concluded that in acute withdrawal seizures the propagation time of epileptic activity is significantly reduced without affecting ictal organization network or semiology. Furthermore, ASM in this case had a remarkable influence on propagation rather than initiation of epileptic activity.
Collapse
|
3
|
Kim MK, Suh SI, Kim JH. Cerebello-thalamofrontal dysconnectivity in paroxysmal kinesigenic dyskinesia: A resting-state fMRI study. Parkinsonism Relat Disord 2022; 99:1-7. [PMID: 35537274 DOI: 10.1016/j.parkreldis.2022.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/06/2022] [Accepted: 04/29/2022] [Indexed: 11/18/2022]
Abstract
INTRODUCTION The pathophysiology of paroxysmal kinesigenic dyskinesia (PKD) remains elusive to date; however, several lines of evidence from neuroimaging studies suggest involvement of the basal ganglia-thalamocortical network in PKD. We combined fractional amplitude of low-frequency fluctuation (fALFF) and seed-based functional connectivity (FC) analyses in order to comprehensively investigate intrinsic brain activity alterations and their relationships with disease severity in patients with idiopathic PKD. METHODS Resting-state functional MRI data were obtained and processed in 34 PKD patients and 34 matched controls. fALFF and seed-based FC maps were computed and compared between patients and controls. Linear regression analysis was further performed between regional fALFF values or FC strengths and clinical parameters in patients. RESULTS PKD patients had a significant increase in fALFF in bilateral thalamus and cerebellum compared with controls. FC analysis seeding at the thalamic clusters revealed significant FC increases in motor cortex and supplementary motor area in PKD patients relative to controls. Longer disease duration was associated with increasing FC strength between the thalamus and motor cortex. CONCLUSION We have provided evidence for abnormal intrinsic activity in the cerebello-thalamic circuit and increased thalamofrontal FC in PKD patients, implicating interictal cerebello-thalamofrontal dysconnectivity in the pathophysiology of PKD. Given the increasing FC strength in proportion to disease duration, the thalamofrontal hyperconnectivity might reflect either a consequence of recurrent dyskinesias on the brain or an innate pathology causing dyskinesias in PKD.
Collapse
Affiliation(s)
- Min Kyung Kim
- Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, South Korea
| | - Sang-Il Suh
- Department of Radiology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, South Korea
| | - Ji Hyun Kim
- Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, South Korea.
| |
Collapse
|
4
|
Paulo DL, Wills KE, Johnson GW, Gonzalez HFJ, Rolston JD, Naftel RP, Reddy SB, Morgan VL, Kang H, Williams Roberson S, Narasimhan S, Englot DJ. SEEG Functional Connectivity Measures to Identify Epileptogenic Zones: Stability, Medication Influence, and Recording Condition. Neurology 2022; 98:e2060-e2072. [PMID: 35338075 PMCID: PMC9162047 DOI: 10.1212/wnl.0000000000200386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 02/01/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Functional connectivity (FC) measures can be used to differentiate epileptogenic zones (EZs) from non-EZs in patients with medically refractory epilepsy. Little work has been done to evaluate the stability of stereo-EEG (SEEG) FC measures over time and their relationship with antiseizure medication (ASM) use, a critical confounder in epilepsy FC studies. We aimed to answer the following questions: Are SEEG FC measures stable over time? Are they influenced by ASMs? Are they affected by patient data collection state? METHODS In 32 patients with medically refractory focal epilepsy, we collected a single 2-minute prospective SEEG resting-state (awake, eyes closed) data set and consecutive 2-minute retrospective pseudo-rest (awake, eyes open) data sets for days 1-7 postimplantation. ASM dosages were recorded for days 1-7 postimplantation and drug load score (DLS) per day was calculated to standardize and compare across patients. FC was evaluated using directed and nondirected measures. Standard clinical interpretation of ictal SEEG was used to classify brain regions as EZs and non-EZs. RESULTS Over 7 days, presumed EZs consistently had higher FC than non-EZs when using between imaginary coherence (ImCoh) and partial directed coherence (PDC) inward strength, without accounting for DLS. These measures were demonstrated to be stable over a short-term period of 3 consecutive days with the same DLS. Between ImCoh FC differences between EZs and non-EZs were reduced with DLS decreases, whereas other measures were not affected by DLS. FC differences between EZs and non-EZs were seen during both resting-state and pseudo-rest conditions; ImCoh values were strongly correlated between the 2 conditions, whereas PDC values were not. DISCUSSION Inward and nondirected SEEG FC is higher in presumed EZs vs non-EZs and measures are stable over time. However, certain measures may be affected by ASM dose, as between ImCoh differences between EZs and non-EZs are less pronounced with lower doses, and other measures such as PDC are poorly correlated across recording conditions. These findings allow novel insight into how SEEG FC measures may aid surgical localization and how they are influenced by ASMs and other factors.
Collapse
Affiliation(s)
- Danika L Paulo
- From the Departments of Neurological Surgery (D.L.P., K.E.W., R.P.N., V.L.M., S.N., D.J.E.), Radiology and Radiological Sciences (V.L.M., D.J.E.), Biostatistics (V.L.M., S.W.R., D.J.E.), and Neurology (H.K.), Vanderbilt University Medical Center; Vanderbilt University Institute of Imaging Science (K.E.W., G.W.J., H.F.J.G., V.L.M., S.N., D.J.E.); Vanderbilt Institute for Surgery and Engineering (K.E.W., G.W.J., H.F.J.G., V.L.M., S.N., D.J.E.); Department of Biomedical Engineering (G.W.J., H.F.J.G., V.L.M., S.W.R., S.N., D.J.E.), Vanderbilt University, Nashville, TN; Departments of Neurosurgery and Biomedical Engineering (J.D.R.), University of Utah, Salt Lake City; and Department of Pediatrics (S.B.R.), Vanderbilt Children's Hospital, Nashville, TN
| | - Kristin E Wills
- From the Departments of Neurological Surgery (D.L.P., K.E.W., R.P.N., V.L.M., S.N., D.J.E.), Radiology and Radiological Sciences (V.L.M., D.J.E.), Biostatistics (V.L.M., S.W.R., D.J.E.), and Neurology (H.K.), Vanderbilt University Medical Center; Vanderbilt University Institute of Imaging Science (K.E.W., G.W.J., H.F.J.G., V.L.M., S.N., D.J.E.); Vanderbilt Institute for Surgery and Engineering (K.E.W., G.W.J., H.F.J.G., V.L.M., S.N., D.J.E.); Department of Biomedical Engineering (G.W.J., H.F.J.G., V.L.M., S.W.R., S.N., D.J.E.), Vanderbilt University, Nashville, TN; Departments of Neurosurgery and Biomedical Engineering (J.D.R.), University of Utah, Salt Lake City; and Department of Pediatrics (S.B.R.), Vanderbilt Children's Hospital, Nashville, TN
| | - Graham W Johnson
- From the Departments of Neurological Surgery (D.L.P., K.E.W., R.P.N., V.L.M., S.N., D.J.E.), Radiology and Radiological Sciences (V.L.M., D.J.E.), Biostatistics (V.L.M., S.W.R., D.J.E.), and Neurology (H.K.), Vanderbilt University Medical Center; Vanderbilt University Institute of Imaging Science (K.E.W., G.W.J., H.F.J.G., V.L.M., S.N., D.J.E.); Vanderbilt Institute for Surgery and Engineering (K.E.W., G.W.J., H.F.J.G., V.L.M., S.N., D.J.E.); Department of Biomedical Engineering (G.W.J., H.F.J.G., V.L.M., S.W.R., S.N., D.J.E.), Vanderbilt University, Nashville, TN; Departments of Neurosurgery and Biomedical Engineering (J.D.R.), University of Utah, Salt Lake City; and Department of Pediatrics (S.B.R.), Vanderbilt Children's Hospital, Nashville, TN
| | - Hernan F J Gonzalez
- From the Departments of Neurological Surgery (D.L.P., K.E.W., R.P.N., V.L.M., S.N., D.J.E.), Radiology and Radiological Sciences (V.L.M., D.J.E.), Biostatistics (V.L.M., S.W.R., D.J.E.), and Neurology (H.K.), Vanderbilt University Medical Center; Vanderbilt University Institute of Imaging Science (K.E.W., G.W.J., H.F.J.G., V.L.M., S.N., D.J.E.); Vanderbilt Institute for Surgery and Engineering (K.E.W., G.W.J., H.F.J.G., V.L.M., S.N., D.J.E.); Department of Biomedical Engineering (G.W.J., H.F.J.G., V.L.M., S.W.R., S.N., D.J.E.), Vanderbilt University, Nashville, TN; Departments of Neurosurgery and Biomedical Engineering (J.D.R.), University of Utah, Salt Lake City; and Department of Pediatrics (S.B.R.), Vanderbilt Children's Hospital, Nashville, TN
| | - John D Rolston
- From the Departments of Neurological Surgery (D.L.P., K.E.W., R.P.N., V.L.M., S.N., D.J.E.), Radiology and Radiological Sciences (V.L.M., D.J.E.), Biostatistics (V.L.M., S.W.R., D.J.E.), and Neurology (H.K.), Vanderbilt University Medical Center; Vanderbilt University Institute of Imaging Science (K.E.W., G.W.J., H.F.J.G., V.L.M., S.N., D.J.E.); Vanderbilt Institute for Surgery and Engineering (K.E.W., G.W.J., H.F.J.G., V.L.M., S.N., D.J.E.); Department of Biomedical Engineering (G.W.J., H.F.J.G., V.L.M., S.W.R., S.N., D.J.E.), Vanderbilt University, Nashville, TN; Departments of Neurosurgery and Biomedical Engineering (J.D.R.), University of Utah, Salt Lake City; and Department of Pediatrics (S.B.R.), Vanderbilt Children's Hospital, Nashville, TN
| | - Robert P Naftel
- From the Departments of Neurological Surgery (D.L.P., K.E.W., R.P.N., V.L.M., S.N., D.J.E.), Radiology and Radiological Sciences (V.L.M., D.J.E.), Biostatistics (V.L.M., S.W.R., D.J.E.), and Neurology (H.K.), Vanderbilt University Medical Center; Vanderbilt University Institute of Imaging Science (K.E.W., G.W.J., H.F.J.G., V.L.M., S.N., D.J.E.); Vanderbilt Institute for Surgery and Engineering (K.E.W., G.W.J., H.F.J.G., V.L.M., S.N., D.J.E.); Department of Biomedical Engineering (G.W.J., H.F.J.G., V.L.M., S.W.R., S.N., D.J.E.), Vanderbilt University, Nashville, TN; Departments of Neurosurgery and Biomedical Engineering (J.D.R.), University of Utah, Salt Lake City; and Department of Pediatrics (S.B.R.), Vanderbilt Children's Hospital, Nashville, TN
| | - Shilpa B Reddy
- From the Departments of Neurological Surgery (D.L.P., K.E.W., R.P.N., V.L.M., S.N., D.J.E.), Radiology and Radiological Sciences (V.L.M., D.J.E.), Biostatistics (V.L.M., S.W.R., D.J.E.), and Neurology (H.K.), Vanderbilt University Medical Center; Vanderbilt University Institute of Imaging Science (K.E.W., G.W.J., H.F.J.G., V.L.M., S.N., D.J.E.); Vanderbilt Institute for Surgery and Engineering (K.E.W., G.W.J., H.F.J.G., V.L.M., S.N., D.J.E.); Department of Biomedical Engineering (G.W.J., H.F.J.G., V.L.M., S.W.R., S.N., D.J.E.), Vanderbilt University, Nashville, TN; Departments of Neurosurgery and Biomedical Engineering (J.D.R.), University of Utah, Salt Lake City; and Department of Pediatrics (S.B.R.), Vanderbilt Children's Hospital, Nashville, TN
| | - Victoria L Morgan
- From the Departments of Neurological Surgery (D.L.P., K.E.W., R.P.N., V.L.M., S.N., D.J.E.), Radiology and Radiological Sciences (V.L.M., D.J.E.), Biostatistics (V.L.M., S.W.R., D.J.E.), and Neurology (H.K.), Vanderbilt University Medical Center; Vanderbilt University Institute of Imaging Science (K.E.W., G.W.J., H.F.J.G., V.L.M., S.N., D.J.E.); Vanderbilt Institute for Surgery and Engineering (K.E.W., G.W.J., H.F.J.G., V.L.M., S.N., D.J.E.); Department of Biomedical Engineering (G.W.J., H.F.J.G., V.L.M., S.W.R., S.N., D.J.E.), Vanderbilt University, Nashville, TN; Departments of Neurosurgery and Biomedical Engineering (J.D.R.), University of Utah, Salt Lake City; and Department of Pediatrics (S.B.R.), Vanderbilt Children's Hospital, Nashville, TN
| | - Hakmook Kang
- From the Departments of Neurological Surgery (D.L.P., K.E.W., R.P.N., V.L.M., S.N., D.J.E.), Radiology and Radiological Sciences (V.L.M., D.J.E.), Biostatistics (V.L.M., S.W.R., D.J.E.), and Neurology (H.K.), Vanderbilt University Medical Center; Vanderbilt University Institute of Imaging Science (K.E.W., G.W.J., H.F.J.G., V.L.M., S.N., D.J.E.); Vanderbilt Institute for Surgery and Engineering (K.E.W., G.W.J., H.F.J.G., V.L.M., S.N., D.J.E.); Department of Biomedical Engineering (G.W.J., H.F.J.G., V.L.M., S.W.R., S.N., D.J.E.), Vanderbilt University, Nashville, TN; Departments of Neurosurgery and Biomedical Engineering (J.D.R.), University of Utah, Salt Lake City; and Department of Pediatrics (S.B.R.), Vanderbilt Children's Hospital, Nashville, TN
| | - Shawniqua Williams Roberson
- From the Departments of Neurological Surgery (D.L.P., K.E.W., R.P.N., V.L.M., S.N., D.J.E.), Radiology and Radiological Sciences (V.L.M., D.J.E.), Biostatistics (V.L.M., S.W.R., D.J.E.), and Neurology (H.K.), Vanderbilt University Medical Center; Vanderbilt University Institute of Imaging Science (K.E.W., G.W.J., H.F.J.G., V.L.M., S.N., D.J.E.); Vanderbilt Institute for Surgery and Engineering (K.E.W., G.W.J., H.F.J.G., V.L.M., S.N., D.J.E.); Department of Biomedical Engineering (G.W.J., H.F.J.G., V.L.M., S.W.R., S.N., D.J.E.), Vanderbilt University, Nashville, TN; Departments of Neurosurgery and Biomedical Engineering (J.D.R.), University of Utah, Salt Lake City; and Department of Pediatrics (S.B.R.), Vanderbilt Children's Hospital, Nashville, TN
| | - Saramati Narasimhan
- From the Departments of Neurological Surgery (D.L.P., K.E.W., R.P.N., V.L.M., S.N., D.J.E.), Radiology and Radiological Sciences (V.L.M., D.J.E.), Biostatistics (V.L.M., S.W.R., D.J.E.), and Neurology (H.K.), Vanderbilt University Medical Center; Vanderbilt University Institute of Imaging Science (K.E.W., G.W.J., H.F.J.G., V.L.M., S.N., D.J.E.); Vanderbilt Institute for Surgery and Engineering (K.E.W., G.W.J., H.F.J.G., V.L.M., S.N., D.J.E.); Department of Biomedical Engineering (G.W.J., H.F.J.G., V.L.M., S.W.R., S.N., D.J.E.), Vanderbilt University, Nashville, TN; Departments of Neurosurgery and Biomedical Engineering (J.D.R.), University of Utah, Salt Lake City; and Department of Pediatrics (S.B.R.), Vanderbilt Children's Hospital, Nashville, TN
| | - Dario J Englot
- From the Departments of Neurological Surgery (D.L.P., K.E.W., R.P.N., V.L.M., S.N., D.J.E.), Radiology and Radiological Sciences (V.L.M., D.J.E.), Biostatistics (V.L.M., S.W.R., D.J.E.), and Neurology (H.K.), Vanderbilt University Medical Center; Vanderbilt University Institute of Imaging Science (K.E.W., G.W.J., H.F.J.G., V.L.M., S.N., D.J.E.); Vanderbilt Institute for Surgery and Engineering (K.E.W., G.W.J., H.F.J.G., V.L.M., S.N., D.J.E.); Department of Biomedical Engineering (G.W.J., H.F.J.G., V.L.M., S.W.R., S.N., D.J.E.), Vanderbilt University, Nashville, TN; Departments of Neurosurgery and Biomedical Engineering (J.D.R.), University of Utah, Salt Lake City; and Department of Pediatrics (S.B.R.), Vanderbilt Children's Hospital, Nashville, TN
| |
Collapse
|
5
|
Li Y, Zhang T, Feng J, Qian S, Wu S, Zhou R, Wang J, Sa G, Wang X, Li L, Chen F, Yang H, Zhang H, Tian M. Processing speed dysfunction is associated with functional corticostriatal circuit alterations in childhood epilepsy with centrotemporal spikes: a PET and fMRI study. Eur J Nucl Med Mol Imaging 2022; 49:3186-3196. [PMID: 35199226 PMCID: PMC9250469 DOI: 10.1007/s00259-022-05740-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 02/17/2022] [Indexed: 11/19/2022]
Abstract
Purpose Epilepsy with centrotemporal spikes (ECTS) is the most common epilepsy syndrome in children and usually presents with cognitive dysfunctions. However, little is known about the processing speed dysfunction and the associated neuroimaging mechanism in ECTS. This study aims to investigate the brain functional abnormality of processing speed dysfunction in ECTS patients by using the 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) and resting-state functional magnetic resonance imaging (rs-fMRI). Methods This prospective study recruited twenty-eight ECTS patients who underwent the 18F-FDG PET, rs-fMRI, and neuropsychological examinations. Twenty children with extracranial tumors were included as PET controls, and 20 healthy children were recruited as MRI controls. The PET image analysis investigated glucose metabolism by determining standardized uptake value ratio (SUVR). The MRI image analysis explored abnormal functional connectivity (FC) within the cortical–striatal circuit through network-based statistical (NBS) analysis. Correlation analysis was performed to explore the relationship between SUVR, FC, and processing speed index (PSI). Results Compared with healthy controls, ECTS patients showed normal intelligence quotient but significantly decreased PSI (P = 0.04). PET analysis showed significantly decreased SUVRs within bilateral caudate, putamen, pallidum, left NAc, right rostral middle frontal gyrus, and frontal pole of ECTS patients (P < 0.05). Rs-fMRI analysis showed absolute values of 20 FCs were significantly decreased in ECTS patients compared with MRI controls, which connected 16 distinct ROIs. The average SUVR of right caudate and the average of 20 FCs were positively correlated with PSI in ECTS patients (P = 0.034 and P = 0.005, respectively). Conclusion This study indicated that ECTS patients presented significantly reduced PSI, which is closely associated with decreased SUVR and FC of cortical–striatal circuit. Caudate played an important role in processing speed dysfunction. Clinical trial registration NCT04954729; registered on July 8, 2021, public site, https://clinicaltrials.gov/ct2/show/NCT04954729 Supplementary Information The online version contains supplementary material available at 10.1007/s00259-022-05740-w.
Collapse
Affiliation(s)
- Yuting Li
- Department of Nuclear Medicine and Medical PET Center, The Second Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China.,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Teng Zhang
- Department of Nuclear Medicine and Medical PET Center, The Second Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China.,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Jianhua Feng
- Department of Pediatrics, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Shufang Qian
- Department of Nuclear Medicine and Medical PET Center, The Second Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China.,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Shuang Wu
- Department of Nuclear Medicine and Medical PET Center, The Second Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China.,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Rui Zhou
- Department of Nuclear Medicine and Medical PET Center, The Second Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China.,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Jing Wang
- Department of Nuclear Medicine and Medical PET Center, The Second Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China.,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Guo Sa
- Department of Radiology, The First Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiawan Wang
- Department of Nuclear Medicine and Medical PET Center, The Second Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China.,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China.,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Lina Li
- College of Medical Imaging, Shanxi Medical University, Taiyuan, China
| | - Feng Chen
- Department of Radiology, The First Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Hong Yang
- Department of Radiology, The First Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Hong Zhang
- Department of Nuclear Medicine and Medical PET Center, The Second Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China. .,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China. .,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China. .,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China. .,The College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China.
| | - Mei Tian
- Department of Nuclear Medicine and Medical PET Center, The Second Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China. .,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China. .,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
6
|
A systematic review of resting-state and task-based fmri in juvenile myoclonic epilepsy. Brain Imaging Behav 2021; 16:1465-1494. [PMID: 34786666 DOI: 10.1007/s11682-021-00595-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2021] [Indexed: 10/19/2022]
Abstract
Functional neuroimaging modalities have enhanced our understanding of juvenile myoclonic epilepsy (JME) underlying neural mechanisms. Due to its non-invasive, sensitive and analytical nature, functional magnetic resonance imaging (fMRI) provides valuable insights into relevant functional brain networks and their segregation and integration properties. We systematically reviewed the contribution of resting-state and task-based fMRI to the current understanding of the pathophysiology and the patterns of seizure propagation in JME Altogether, despite some discrepancies, functional findings suggest that corticothalamo-striato-cerebellar network along with default-mode network and salience network are the most affected networks in patients with JME. However, further studies are required to investigate the association between JME's main deficiencies, e.g., motor and cognitive deficiencies and fMRI findings. Moreover, simultaneous electroencephalography-fMRI (EEG-fMRI) studies indicate that alterations of these networks play a role in seizure modulation but fall short of identifying a causal relationship between altered functional properties and seizure propagation. This review highlights the complex pathophysiology of JME, which necessitates the design of more personalized diagnostic and therapeutic strategies in this group.
Collapse
|
7
|
Wang L, Cai XT, Zu MD, Zhang J, Deng ZR, Wang Y. Decreased Resting-State Functional Connectivity of Periaqueductal Gray in Temporal Lobe Epilepsy Comorbid With Migraine. Front Neurol 2021; 12:636202. [PMID: 34122295 PMCID: PMC8189422 DOI: 10.3389/fneur.2021.636202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/15/2021] [Indexed: 11/29/2022] Open
Abstract
Objective: Patients with temporal lobe epilepsy (TLE) are at high risk for having a comorbid condition of migraine, and these two common diseases are proposed to have some shared pathophysiological mechanisms. Our recent study indicated the dysfunction of periaqueductal gray (PAG), a key pain-modulating structure, contributes to the development of pain hypersensitivity and epileptogenesis in epilepsy. This study is to investigate the functional connectivity of PAG network in epilepsy comorbid with migraine. Methods: Thirty-two patients with TLE, including 16 epilepsy patients without migraine (EwoM) and 16 epilepsy patients with comorbid migraine (EwM), and 14 matched healthy controls (HCs) were recruited and underwent resting functional magnetic resonance imaging (fMRI) scans to measure the resting-state functional connectivity (RsFC) of PAG network. The frequency and severity of migraine attacks were assessed using the Migraine Disability Assessment Questionnaire (MIDAS) and Visual Analog Scale/Score (VAS). In animal experiments, FluoroGold (FG), a retrograde tracing agent, was injected into PPN and its fluorescence detected in vlPAG to trace the neuronal projection from vlPAG to PPN. FG traced neuron number was used to evaluate the neural transmission activity of vlPAG-PPN pathway. The data were processed and analyzed using DPARSF and SPSS17.0 software. Based on the RsFC finding, the excitatory transmission of PAG and the associated brain structure was studied via retrograde tracing in combination with immunohistochemical labeling of excitatory neurons. Results: Compared to HCs group, the RsFC between PAG and the left pedunculopontine nucleus (PPN), between PAG and the corpus callosum (CC), was decreased both in EwoM and EwM group, while the RsFC between PAG and the right PPN was increased only in EwoM group but not in EwM group. Compared to EwoM group, the RsFC between PAG and the right PPN was decreased in EwM group. Furthermore, the RsFC between PAG and PPN was negatively correlated with the frequency and severity of migraine attacks. In animal study, a seizure stimulation induced excitatory transmission from PAG to PPN was decreased in rats with chronic epilepsy as compared to that in normal control rats. Conclusion: The comorbidity of epilepsy and migraine is associated with the decreased RsFC between PAG and PPN.
Collapse
Affiliation(s)
- Long Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Neurology, The Second People Hospital of Hefei, Hefei, China
| | - Xin-Ting Cai
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Mei-Dan Zu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Juan Zhang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zi-Ru Deng
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yu Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
8
|
Nakai Y, Nishibayashi H, Donishi T, Terada M, Nakao N, Kaneoke Y. Regional abnormality of functional connectivity is associated with clinical manifestations in individuals with intractable focal epilepsy. Sci Rep 2021; 11:1545. [PMID: 33452388 PMCID: PMC7810833 DOI: 10.1038/s41598-021-81207-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 01/04/2021] [Indexed: 01/29/2023] Open
Abstract
We explored regional functional connectivity alterations in intractable focal epilepsy brains using resting-state functional MRI. Distributions of the network parameters (corresponding to degree and eigenvector centrality) measured at each brain region for all 25 patients were significantly different from age- and sex-matched control data that were estimated by a healthy control dataset (n = 582, 18-84 years old). The number of abnormal regions whose parameters exceeded the mean + 2 SD of age- and sex-matched data for each patient were associated with various clinical parameters such as the duration of illness and seizure severity. Furthermore, abnormal regions for each patient tended to have functional connections with each other (mean ± SD = 58.6 ± 20.2%), the magnitude of which was negatively related to the quality of life. The abnormal regions distributed within the default mode network with significantly higher probability (p < 0.05) in 7 of 25 patients. We consider that the detection of abnormal regions by functional connectivity analysis using a large number of control datasets is useful for the numerical assessment of each patient's clinical conditions, although further study is necessary to elucidate etiology-specific abnormalities.
Collapse
Affiliation(s)
- Yasuo Nakai
- Department of Neurological Surgery, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan.
| | - Hiroki Nishibayashi
- Department of Neurological Surgery, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Tomohiro Donishi
- Department of System Neurophysiology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Masaki Terada
- Wakayama-Minami Radiology Clinic, 870-2 Kimiidera, Wakayama, 641-0012, Japan
| | - Naoyuki Nakao
- Department of Neurological Surgery, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Yoshiki Kaneoke
- Department of System Neurophysiology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| |
Collapse
|
9
|
Aydin Ü, Pellegrino G, Ali OBK, Abdallah C, Dubeau F, Lina JM, Kobayashi E, Grova C. Magnetoencephalography resting state connectivity patterns as indicatives of surgical outcome in epilepsy patients. J Neural Eng 2020; 17:035007. [PMID: 32191632 DOI: 10.1088/1741-2552/ab8113] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Focal epilepsy is a disorder affecting several brain networks; however, epilepsy surgery usually targets a restricted region, the so-called epileptic focus. There is a growing interest in embedding resting state (RS) connectivity analysis into pre-surgical workup. APPROACH In this retrospective study, we analyzed Magnetoencephalography (MEG) long-range RS functional connectivity patterns in patients with drug-resistant focal epilepsy. MEG recorded prior to surgery from seven seizure-free (Engel Ia) and five non seizure-free (Engel III or IV) patients were analyzed (minimum 2-years post-surgical follow-up). MEG segments without any detectable epileptic activity were source localized using wavelet-based Maximum Entropy on the Mean method. Amplitude envelope correlation in the theta (4-8 Hz), alpha (8-13 Hz), and beta (13-26 Hz) bands were used for assessing connectivity. MAIN RESULTS For seizure-free patients, we found an isolated epileptic network characterized by weaker connections between the brain region where interictal epileptic discharges (IED) are generated and the rest of the cortex, when compared to connectivity between the corresponding contralateral homologous region and the rest of the cortex. Contrarily, non seizure-free patients exhibited a widespread RS epileptic network characterized by stronger connectivity between the IED generator and the rest of the cortex, in comparison to the contralateral region and the cortex. Differences between the two seizure outcome groups concerned mainly distant long-range connections and were found in the alpha-band. SIGNIFICANCE Importantly, these connectivity patterns suggest specific mechanisms describing the underlying organization of the epileptic network and were detectable at the individual patient level, supporting the prospect use of MEG connectivity patterns in epilepsy to predict post-surgical seizure outcome.
Collapse
Affiliation(s)
- Ümit Aydin
- Multimodal Functional Imaging Lab, Department of Physics and PERFORM Centre, Concordia University, Montreal, Québec, Canada. Authors to whom any correspondence should be addressed
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Kowalczyk MA, Omidvarnia A, Abbott DF, Tailby C, Vaughan DN, Jackson GD. Clinical benefit of presurgical EEG‐fMRI in difficult‐to‐localize focal epilepsy: A single‐institution retrospective review. Epilepsia 2019; 61:49-60. [DOI: 10.1111/epi.16399] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 01/18/2023]
Affiliation(s)
- Magdalena A. Kowalczyk
- The Florey Institute of Neuroscience and Mental Health Heidelberg Australia
- The Florey Department of Neuroscience and Mental Health Faculty of Medicine Dentistry and Health Sciences University of Melbourne Parkville Australia
| | - Amir Omidvarnia
- The Florey Institute of Neuroscience and Mental Health Heidelberg Australia
- The Florey Department of Neuroscience and Mental Health Faculty of Medicine Dentistry and Health Sciences University of Melbourne Parkville Australia
| | - David F. Abbott
- The Florey Institute of Neuroscience and Mental Health Heidelberg Australia
- The Florey Department of Neuroscience and Mental Health Faculty of Medicine Dentistry and Health Sciences University of Melbourne Parkville Australia
| | - Chris Tailby
- The Florey Institute of Neuroscience and Mental Health Heidelberg Australia
| | - David N. Vaughan
- The Florey Institute of Neuroscience and Mental Health Heidelberg Australia
- Department of Neurology Austin Health Heidelberg Australia
| | - Graeme D. Jackson
- The Florey Institute of Neuroscience and Mental Health Heidelberg Australia
- The Florey Department of Neuroscience and Mental Health Faculty of Medicine Dentistry and Health Sciences University of Melbourne Parkville Australia
- Department of Neurology Austin Health Heidelberg Australia
| |
Collapse
|
11
|
Kim JH, Kim JB, Suh S. Alteration of cerebello-thalamocortical spontaneous low-frequency oscillations in juvenile myoclonic epilepsy. Acta Neurol Scand 2019; 140:252-258. [PMID: 31177545 DOI: 10.1111/ane.13138] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 05/26/2019] [Accepted: 06/05/2019] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Altered thalamocortical network has been proposed to play a pivotal role in the principal pathophysiology underlying juvenile myoclonic epilepsy (JME). Recently, resting-state fMRI studies have provided converging evidence for thalamocortical dysconnectivity in patients with JME. Herein, we investigated the amplitude and spatial distribution of spontaneous low-frequency oscillations using analysis of fractional amplitude of low-frequency fluctuation (fALFF) in a large group of JME patients in comparison with controls. METHODS Volumetric MRI and resting-state fMRI were acquired in 75 patients with JME and 62 matched controls. After preprocessing of MRI data, fALFF was computed and then Z-transformed for standardization. fALFF was compared between controls and patients, and correlation analysis between regional fALFF and clinical parameters were performed in patients. RESULTS Compared with controls, JME patients revealed significant fALFF increases in the bilateral medial thalamus, insular cortex/inferior frontal gyrus, and cerebellum vermis (false discovery rate-corrected P < 0.05). There was no region of fALFF reduction in JME patients relative to controls. No significant correlation was observed between regional fALFF and disease duration or cumulative number of generalized tonic-clonic seizures. CONCLUSIONS We have shown alterations of low-frequency oscillations in the thalamus, insular cortex/inferior frontal gyrus, and cerebellum in patients with JME, implicating cerebello-thalamocortical network abnormality in the pathophysiology underlying JME. Our results could further support the recent concept that JME is a network epilepsy involving specific cortical and subcortical structures, especially the cerebello-thalamocortical network.
Collapse
Affiliation(s)
- Ji Hyun Kim
- Department of Neurology Korea University Guro Hospital, Korea University College of Medicine Seoul Korea
| | - Jung Bin Kim
- Department of Neurology Korea University Anam Hospital, Korea University College of Medicine Seoul Korea
| | - Sang‐il Suh
- Department of Radiology Korea University Guro Hospital, Korea University College of Medicine Seoul Korea
| |
Collapse
|
12
|
Jia X, Xie Y, Dong D, Pei H, Jiang S, Ma S, Huang Y, Zhang X, Wang Y, Zhu Q, Zhang Y, Yao D, Yu L, Luo C. Reconfiguration of dynamic large-scale brain network functional connectivity in generalized tonic-clonic seizures. Hum Brain Mapp 2019; 41:67-79. [PMID: 31517428 PMCID: PMC7267969 DOI: 10.1002/hbm.24787] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 08/02/2019] [Accepted: 08/26/2019] [Indexed: 12/14/2022] Open
Abstract
An increasing number of studies in patients with generalized tonic–clonic seizures (GTCS) have reported the alteration of functional connectivity (FC) in many brain networks. However, little is known about the underlying temporal variability of FC in large‐scale brain functional networks in patients. Recently, dynamic FC could provide novel insight into the physiological mechanisms in the brain. Here, we recruited 63 GTCS and 65 age‐ and sex‐matched healthy controls. Dynamic FC approaches were used to evaluate alterations in the temporal variability of FC in patients at the region‐ and network‐levels. In addition, two kinds of brain templates (>102 and > 103 regions) and two kinds of temporal variability FC approaches were adopted to verify the stability of the results. Patients showed increased FC variability in regions of the default mode network (DMN), ventral attention network (VAN) and motor‐related areas. The DAN, VAN, and DMN illustrated enhanced FC variability at the within‐network level. In addition, increased FC variabilities between networks were found between the DMN and cognition‐related networks, including the VAN, dorsal attention network and frontal–parietal network in GTCS. Meanwhile, the alterations in FC variability were relatively consistent across different methods and templates. Therefore, the consistent alteration of FC variability would reflect a dynamic restructuring of the large‐scale brain networks in patients with GTCS. Overly frequent information communication among cognition‐related networks, especially in the DMN, might play a role in the epileptic activity and/or cognitive dysfunction in patients.
Collapse
Affiliation(s)
- Xiaoyan Jia
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yan Xie
- Neurology Department, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Debo Dong
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Haonan Pei
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Sisi Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Shuai Ma
- Neurology Department, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Yang Huang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xingxing Zhang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuhong Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Qiong Zhu
- Neurology Department, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Yanan Zhang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Liang Yu
- Neurology Department, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Cheng Luo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
13
|
Wang Y, Berglund IS, Uppman M, Li TQ. Juvenile myoclonic epilepsy has hyper dynamic functional connectivity in the dorsolateral frontal cortex. Neuroimage Clin 2018; 21:101604. [PMID: 30527355 PMCID: PMC6412974 DOI: 10.1016/j.nicl.2018.11.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 08/20/2018] [Accepted: 11/18/2018] [Indexed: 01/08/2023]
Abstract
PURPOSE Characterize the static and dynamic functional connectivity for subjects with juvenile myoclonic epilepsy (JME) using a quantitative data-driven analysis approach. METHODS Whole-brain resting-state functional MRI data were acquired on a 3 T whole-body clinical MRI scanner from 18 subjects clinically diagnosed with JME and 25 healthy control subjects. 2-min sliding-window approach was incorporated in the quantitative data-driven data analysis framework to assess both the dynamic and static functional connectivity in the resting brains. Two-sample t-tests were performed voxel-wise to detect the differences in functional connectivity metrics based on connectivity strength and density. RESULTS The static functional connectivity metrics based on quantitative data-driven analysis of the entire 10-min acquisition window of resting-state functional MRI data revealed significantly enhanced functional connectivity in JME patients in bilateral dorsolateral prefrontal cortex, dorsal striatum, precentral and middle temporal gyri. The dynamic functional connectivity metrics derived by incorporating a 2-min sliding window into quantitative data-driven analysis demonstrated significant hyper dynamic functional connectivity in the dorsolateral prefrontal cortex, middle temporal gyrus and dorsal striatum. Connectivity strength metrics (both static and dynamic) can detect more extensive functional connectivity abnormalities in the resting-state functional networks (RFNs) and depict also larger overlap between static and dynamic functional connectivity results. CONCLUSION Incorporating a 2-min sliding window into quantitative data-driven analysis of resting-state functional MRI data can reveal additional information on the temporally fluctuating RFNs of the human brain, which indicate that RFNs involving dorsolateral prefrontal cortex have temporal varying hyper dynamic characteristics in JME patients. Assessing dynamic along with static functional connectivity may provide further insights into the abnormal function connectivity underlying the pathological brain functioning in JME.
Collapse
Affiliation(s)
- Yanlu Wang
- Department of Clinical Science, Intervention, and Technology, Karolinska Institute, Stockholm, Sweden; Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Sweden.
| | - Ivanka Savic Berglund
- Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden; Department of Neurology, Karolinska University Hospital, Sweden; Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Martin Uppman
- Department of Clinical Science, Intervention, and Technology, Karolinska Institute, Stockholm, Sweden
| | - Tie-Qiang Li
- Department of Clinical Science, Intervention, and Technology, Karolinska Institute, Stockholm, Sweden; Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Sweden
| |
Collapse
|
14
|
Szaflarski JP, Allendorfer JB, Nenert R, LaFrance WC, Barkan HI, DeWolfe J, Pati S, Thomas AE, Ver Hoef L. Facial emotion processing in patients with seizure disorders. Epilepsy Behav 2018; 79:193-204. [PMID: 29309953 DOI: 10.1016/j.yebeh.2017.12.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 11/28/2022]
Abstract
Studies of emotion processing are needed to better understand the pathophysiology of psychogenic nonepileptic seizures (PNES). We examined the differences in facial emotion processing between 12 patients with PNES, 12 patients with temporal lobe epilepsy (TLE), and 24 matched healthy controls (HCs) using fMRI with emotional faces task (EFT) (happy/sad/fearful/neutral) and resting state connectivity. Compared with TLE, patients with PNES exhibited increased fMRI response to happy, neutral, and fearful faces in visual, temporal, and/or parietal regions and decreased fMRI response to sad faces in the putamen bilaterally. Regions showing significant differences between PNES and TLE were used as functional seed regions of interest (ROIs), in addition to amygdala structural seed ROIs for resting state functional connectivity analyses. Whole brain analyses showed that compared with TLE and HCs, patients with PNES exhibited increased functional connectivity of the functional seed ROIs to several brain regions, particularly to cerebellar, visual, motor, and frontotemporal regions. Connectograms showed increased functional connections between left parahippocampal gyrus/uncus ROIs and right temporal ROIs in PNES compared with both the TLE and HC groups. Resting state functional connectivity of the left and right amygdala to various brain regions including emotion regulation and motor control circuits was increased in PNES when compared with those with TLE. This study provides preliminary evidence that patients with PNES exhibit altered facial emotion processing compared with patients with TLE and HCs and increased amygdala functional connectivity compared with TLE. These findings identify potential key differences in facial emotion processing reflective of neurophysiologic markers of neural circuitry alterations that can be used to generate further hypotheses for developing studies that examine the contributions of emotion processing to the development and maintenance of PNES.
Collapse
Affiliation(s)
- Jerzy P Szaflarski
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA; UAB Epilepsy Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Jane B Allendorfer
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA; UAB Epilepsy Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Rodolphe Nenert
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - W Curt LaFrance
- Departments of Neurology and Psychiatry, Rhode Island Hospital, Brown University, Providence, RI, USA
| | - Helen I Barkan
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA; UAB Epilepsy Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jennifer DeWolfe
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA; UAB Epilepsy Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sandipan Pati
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA; UAB Epilepsy Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ashley E Thomas
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA; UAB Epilepsy Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lawrence Ver Hoef
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA; UAB Epilepsy Center, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
15
|
Salinas FS, Szabó CÁ. Resting-state functional connectivity changes due to acute and short-term valproic acid administration in the baboon model of GGE. NEUROIMAGE-CLINICAL 2017; 16:132-141. [PMID: 28794974 PMCID: PMC5537408 DOI: 10.1016/j.nicl.2017.07.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 07/14/2017] [Accepted: 07/15/2017] [Indexed: 12/14/2022]
Abstract
Resting-state functional connectivity (FC) is altered in baboons with genetic generalized epilepsy (GGE) compared to healthy controls (CTL). We compared FC changes between GGE and CTL groups after intravenous injection of valproic acid (VPA) and following one-week of orally administered VPA. Seven epileptic (2 females) and six CTL (3 females) baboons underwent resting-state fMRI (rs-fMRI) at 1) baseline, 2) after intravenous acute VPA administration (20 mg/kg), and 3) following seven-day oral, subacute VPA therapy (20–80 mg/kg/day). FC was evaluated using a data-driven approach, while regressing out the group-wise effects of age, gender and VPA levels. Sixteen networks were identified by independent component analysis (ICA). Each network mask was thresholded (z > 4.00; p < 0.001), and used to compare group-wise FC differences between baseline, intravenous and oral VPA treatment states between GGE and CTL groups. At baseline, FC was increased in most cortical networks of the GGE group but decreased in the thalamic network. After intravenous acute VPA, FC increased in the basal ganglia network and decreased in the parietal network of epileptic baboons to presumed nodes associated with the epileptic network. After oral VPA therapy, FC was decreased in GGE baboons only the orbitofrontal networks connections to the primary somatosensory cortices, reflecting a reversal from baseline comparisons. VPA therapy affects FC in the baboon model of GGE after a single intravenous dose—possibly by facilitating subcortical modulation of the epileptic network and suppressing seizure generation—and after short-term oral VPA treatment, reversing the abnormal baseline increases in FC in the orbitofrontal network. While there is a need to correlate these FC changes with simultaneous EEG recording and seizure outcomes, this study demonstrates the feasibility of evaluating rs-fMRI effects of antiepileptic medications even after short-term exposure. This resting-state fMRI study evaluates treatment-related functional connectivity (FC) changes in the baboon model of GGE. Pre-treatment FC is mostly increased in cortical networks, but decreased for the thalamic network in epileptic baboons. Treatment-related FC changes were noted both after single intravenous dose of VPA and short-term oral VPA treatment. FC studies may provide a novel approach to evaluate antiepileptic medication effects.
Collapse
Affiliation(s)
- Felipe S Salinas
- Research Imaging Institute, UT Health, San Antonio, United States.,South Texas Veterans Health Care System, San Antonio, TX, United States
| | - Charles Ákos Szabó
- Department of Neurology, UT Health, San Antonio, United States.,South Texas Comprehensive Epilepsy Center, UT Health, San Antonio, United States
| |
Collapse
|
16
|
Bagshaw AP, Hale JR, Campos BM, Rollings DT, Wilson RS, Alvim MKM, Coan AC, Cendes F. Sleep onset uncovers thalamic abnormalities in patients with idiopathic generalised epilepsy. NEUROIMAGE-CLINICAL 2017; 16:52-57. [PMID: 28752060 PMCID: PMC5519226 DOI: 10.1016/j.nicl.2017.07.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 06/29/2017] [Accepted: 07/12/2017] [Indexed: 11/16/2022]
Abstract
The thalamus is crucial for sleep regulation and the pathophysiology of idiopathic generalised epilepsy (IGE), and may serve as the underlying basis for the links between the two. We investigated this using EEG-fMRI and a specific emphasis on the role and functional connectivity (FC) of the thalamus. We defined three types of thalamic FC: thalamocortical, inter-hemispheric thalamic, and intra-hemispheric thalamic. Patients and controls differed in all three measures, and during wakefulness and sleep, indicating disorder-dependent and state-dependent modification of thalamic FC. Inter-hemispheric thalamic FC differed between patients and controls in somatosensory regions during wakefulness, and occipital regions during sleep. Intra-hemispheric thalamic FC was significantly higher in patients than controls following sleep onset, and disorder-dependent alterations to FC were seen in several thalamic regions always involving somatomotor and occipital regions. As interactions between thalamic sub-regions are indirect and mediated by the inhibitory thalamic reticular nucleus (TRN), the results suggest abnormal TRN function in patients with IGE, with a regional distribution which could suggest a link with the thalamocortical networks involved in the generation of alpha rhythms. Intra-thalamic FC could be a more widely applicable marker beyond patients with IGE. Sleep onset modifies thalamic FC in generalised epilepsy differently to controls. Differences are regionally specific. Regions connected to somatomotor/occipital cortices are consistently affected. Intra-thalamic FC may be a surrogate marker of thalamic reticular nucleus function.
Collapse
Affiliation(s)
- Andrew P Bagshaw
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK.,School of Psychology, University of Birmingham, Birmingham, UK
| | - Joanne R Hale
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK.,School of Psychology, University of Birmingham, Birmingham, UK.,Clinical Physics and Bioengineering, University Hospital Coventry and Warwickshire, Coventry, UK
| | - Brunno M Campos
- Neuroimaging Laboratory, Department of Neurology, University of Campinas, Campinas, Brazil
| | - David T Rollings
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK.,School of Psychology, University of Birmingham, Birmingham, UK.,Department of Neuroscience, Queen Elizabeth Hospital Birmingham, UK
| | - Rebecca S Wilson
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK.,School of Psychology, University of Birmingham, Birmingham, UK
| | - Marina K M Alvim
- Neuroimaging Laboratory, Department of Neurology, University of Campinas, Campinas, Brazil
| | - Ana Carolina Coan
- Neuroimaging Laboratory, Department of Neurology, University of Campinas, Campinas, Brazil
| | - Fernando Cendes
- Neuroimaging Laboratory, Department of Neurology, University of Campinas, Campinas, Brazil
| |
Collapse
|
17
|
Shamshiri EA, Tierney TM, Centeno M, St Pier K, Pressler RM, Sharp DJ, Perani S, Cross JH, Carmichael DW. Interictal activity is an important contributor to abnormal intrinsic network connectivity in paediatric focal epilepsy. Hum Brain Mapp 2016; 38:221-236. [PMID: 27543883 DOI: 10.1002/hbm.23356] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/26/2016] [Accepted: 08/11/2016] [Indexed: 01/01/2023] Open
Abstract
Patients with focal epilepsy have been shown to have reduced functional connectivity in intrinsic connectivity networks (ICNs), which has been related to neurocognitive development and outcome. However, the relationship between interictal epileptiform discharges (IEDs) and changes in ICNs remains unclear, with evidence both for and against their influence. EEG-fMRI data was obtained in 27 children with focal epilepsy (mixed localisation and aetiologies) and 17 controls. A natural stimulus task (cartoon blocks verses blocks where the subject was told "please wait") was used to enhance the connectivity within networks corresponding to ICNs while reducing potential confounds of vigilance and motion. Our primary hypothesis was that the functional connectivity within visual and attention networks would be reduced in patients with epilepsy. We further hypothesized that controlling for the effects of IEDs would increase the connectivity in the patient group. The key findings were: (1) Patients with mixed epileptic foci showed a common connectivity reduction in lateral visual and attentional networks compared with controls. (2) Having controlled for the effects of IEDs there were no connectivity differences between patients and controls. (3) A comparison within patients revealed reduced connectivity between the attentional network and basal ganglia associated with interictal epileptiform discharges. We also found that the task activations were reduced in epilepsy patients but that this was unrelated to IED occurrence. Unexpectedly, connectivity changes in ICNs were strongly associated with the transient effects of interictal epileptiform discharges. Interictal epileptiform discharges were shown to have a pervasive transient influence on the brain's functional organisation. Hum Brain Mapp 38:221-236, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Elhum A Shamshiri
- Developmental Imaging and Biophysics Section, UCL Institute of Child Health, London, United Kingdom
| | - Tim M Tierney
- Developmental Imaging and Biophysics Section, UCL Institute of Child Health, London, United Kingdom
| | - Maria Centeno
- Developmental Imaging and Biophysics Section, UCL Institute of Child Health, London, United Kingdom
| | - Kelly St Pier
- Telemetry Unit, Department of Neurophysiology, Great Ormond Street Hospital, London, United Kingdom
| | - Ronit M Pressler
- Neuroscience Medicine, Great Ormond Street Hospital, London, United Kingdom.,Clinical Neurosciences, UCL Institute of Child Health, London, United Kingdom
| | - David J Sharp
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| | - Suejen Perani
- Developmental Imaging and Biophysics Section, UCL Institute of Child Health, London, United Kingdom.,Department of Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, United Kingdom
| | - J Helen Cross
- Neuroscience Medicine, Great Ormond Street Hospital, London, United Kingdom.,Clinical Neurosciences, UCL Institute of Child Health, London, United Kingdom
| | - David W Carmichael
- Developmental Imaging and Biophysics Section, UCL Institute of Child Health, London, United Kingdom
| |
Collapse
|
18
|
Iannotti GR, Grouiller F, Centeno M, Carmichael DW, Abela E, Wiest R, Korff C, Seeck M, Michel C, Pittau F, Vulliemoz S. Epileptic networks are strongly connected with and without the effects of interictal discharges. Epilepsia 2016; 57:1086-96. [PMID: 27153929 DOI: 10.1111/epi.13400] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2016] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Epilepsy is increasingly considered as the dysfunction of a pathologic neuronal network (epileptic network) rather than a single focal source. We aimed to assess the interactions between the regions that comprise the epileptic network and to investigate their dependence on the occurrence of interictal epileptiform discharges (IEDs). METHODS We analyzed resting state simultaneous electroencephalography-functional magnetic resonance imaging (EEG-fMRI) recordings in 10 patients with drug-resistant focal epilepsy with multifocal IED-related blood oxygen level-dependent (BOLD) responses and a maximum t-value in the IED field. We computed functional connectivity (FC) maps of the epileptic network using two types of seed: (1) a 10-mm diameter sphere centered in the global maximum of IED-related BOLD map, and (2) the independent component with highest correlation to the IED-related BOLD map, named epileptic component. For both approaches, we compared FC maps before and after regressing out the effect of IEDs in terms of maximum and mean t-values and percentage of map overlap. RESULTS Maximum and mean FC maps t-values were significantly lower after regressing out IEDs at the group level (p < 0.01). Overlap extent was 85% ± 12% and 87% ± 12% when the seed was the 10-mm diameter sphere and the epileptic component, respectively. SIGNIFICANCE Regions involved in a specific epileptic network show coherent BOLD fluctuations independent of scalp EEG IEDs. FC topography and strength is largely preserved by removing the IED effect. This could represent a signature of a sustained pathologic network with contribution from epileptic activity invisible to the scalp EEG.
Collapse
Affiliation(s)
- Giannina R Iannotti
- Functional Brain Mapping Lab, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Frédéric Grouiller
- Department of Radiology and Medical Informatics, University Hospital of Geneva, Geneva, Switzerland
| | - Maria Centeno
- Developmental Imaging and Biophysics Section, UCL Institute of Child Health, London, United Kingdom
| | - David W Carmichael
- Developmental Imaging and Biophysics Section, UCL Institute of Child Health, London, United Kingdom
| | - Eugenio Abela
- Support Center of Advanced Neuroimaging (SCAN), Institute for Diagnostic and Interventional Neuroradiology, University Hospital Inselspital, Bern, Switzerland
| | - Roland Wiest
- Support Center of Advanced Neuroimaging (SCAN), Institute for Diagnostic and Interventional Neuroradiology, University Hospital Inselspital, Bern, Switzerland
| | - Christian Korff
- Pediatric Neurology, Child and Adolescent Department, University Hospitals and Faculty of Medicine of Geneva, Geneva, Switzerland
| | - Margitta Seeck
- Neurology Clinic, University Hospital and Faculty of Medicine of Geneva, Geneva, Switzerland
| | - Christoph Michel
- Functional Brain Mapping Lab, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Francesca Pittau
- Neurology Clinic, University Hospital and Faculty of Medicine of Geneva, Geneva, Switzerland
| | - Serge Vulliemoz
- Neurology Clinic, University Hospital and Faculty of Medicine of Geneva, Geneva, Switzerland
| |
Collapse
|