1
|
Turner M. Neurobiological and psychological factors to depression. Int J Psychiatry Clin Pract 2024:1-14. [PMID: 39101692 DOI: 10.1080/13651501.2024.2382091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 08/06/2024]
Abstract
Major Depressive Disorder (MDD) is a common condition with complex psychological and biological background. While its aetiology is still unclear, chronic stress stands amongst major risk factors to MDD pathogenesis. When researching on MDD, it is necessary to be familiar with the neurobiological effects of several prominent contributors to the chronic stress factor experienced across hypothalamic-pituitary-adrenal (HPA) axis, neurotransmission, immune system reflexivity, and genetic alterations. Bi-directional flow of MDD pathogenesis suggests that psychological factors produce biological effects. Here, a summary of how the MDD expresses its mechanisms of action across an overactive HPA axis, the negative impacts of reduced neurotransmitter functions, the inflammatory responses and their gene x environment interactions. This paper builds on these conceptual factors and their input towards the MDD symptomatology with a purpose of synthesising the current findings and create an integrated view of the MDD pathogenesis. Finally, relevant treatment implications will be summarised, along with recommendations to a multimodal clinical practice.
Collapse
Affiliation(s)
- Malini Turner
- School of Health, University of New England, Armidale, Australia
- Biomedical Sciences, Endeavour College of Natural Health, Brisbane, Australia
| |
Collapse
|
2
|
Angelopoulou E, Koros C, Hatzimanolis A, Stefanis L, Scarmeas N, Papageorgiou SG. Exploring the Genetic Landscape of Mild Behavioral Impairment as an Early Marker of Cognitive Decline: An Updated Review Focusing on Alzheimer's Disease. Int J Mol Sci 2024; 25:2645. [PMID: 38473892 PMCID: PMC10931648 DOI: 10.3390/ijms25052645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
The clinical features and pathophysiology of neuropsychiatric symptoms (NPSs) in dementia have been extensively studied. However, the genetic architecture and underlying neurobiological mechanisms of NPSs at preclinical stages of cognitive decline and Alzheimer's disease (AD) remain largely unknown. Mild behavioral impairment (MBI) represents an at-risk state for incident cognitive impairment and is defined by the emergence of persistent NPSs among non-demented individuals in later life. These NPSs include affective dysregulation, decreased motivation, impulse dyscontrol, abnormal perception and thought content, and social inappropriateness. Accumulating evidence has recently begun to shed more light on the genetic background of MBI, focusing on its potential association with genetic factors related to AD. The Apolipoprotein E (APOE) genotype and the MS4A locus have been associated with affective dysregulation, ZCWPW1 with social inappropriateness and psychosis, BIN1 and EPHA1 with psychosis, and NME8 with apathy. The association between MBI and polygenic risk scores (PRSs) in terms of AD dementia has been also explored. Potential implicated mechanisms include neuroinflammation, synaptic dysfunction, epigenetic modifications, oxidative stress responses, proteosomal impairment, and abnormal immune responses. In this review, we summarize and critically discuss the available evidence on the genetic background of MBI with an emphasis on AD, aiming to gain insights into the potential underlying neurobiological mechanisms, which till now remain largely unexplored. In addition, we propose future areas of research in this emerging field, with the aim to better understand the molecular pathophysiology of MBI and its genetic links with cognitive decline.
Collapse
Affiliation(s)
- Efthalia Angelopoulou
- 1st Department of Neurology, Aiginition University Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.A.); (L.S.); (N.S.); (S.G.P.)
| | - Christos Koros
- 1st Department of Neurology, Aiginition University Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.A.); (L.S.); (N.S.); (S.G.P.)
| | - Alexandros Hatzimanolis
- 1st Department of Psychiatry, Aiginition University Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - Leonidas Stefanis
- 1st Department of Neurology, Aiginition University Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.A.); (L.S.); (N.S.); (S.G.P.)
| | - Nikolaos Scarmeas
- 1st Department of Neurology, Aiginition University Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.A.); (L.S.); (N.S.); (S.G.P.)
- Department of Neurology, Columbia University, New York, NY 10032, USA
| | - Sokratis G. Papageorgiou
- 1st Department of Neurology, Aiginition University Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.A.); (L.S.); (N.S.); (S.G.P.)
| |
Collapse
|
3
|
Reddy DS, Abeygunaratne HN. Experimental and Clinical Biomarkers for Progressive Evaluation of Neuropathology and Therapeutic Interventions for Acute and Chronic Neurological Disorders. Int J Mol Sci 2022; 23:11734. [PMID: 36233034 PMCID: PMC9570151 DOI: 10.3390/ijms231911734] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/27/2022] Open
Abstract
This article describes commonly used experimental and clinical biomarkers of neuronal injury and neurodegeneration for the evaluation of neuropathology and monitoring of therapeutic interventions. Biomarkers are vital for diagnostics of brain disease and therapeutic monitoring. A biomarker can be objectively measured and evaluated as a proxy indicator for the pathophysiological process or response to therapeutic interventions. There are complex hurdles in understanding the molecular pathophysiology of neurological disorders and the ability to diagnose them at initial stages. Novel biomarkers for neurological diseases may surpass these issues, especially for early identification of disease risk. Validated biomarkers can measure the severity and progression of both acute neuronal injury and chronic neurological diseases such as epilepsy, migraine, Alzheimer's disease, Parkinson's disease, Huntington's disease, traumatic brain injury, amyotrophic lateral sclerosis, multiple sclerosis, and other brain diseases. Biomarkers are deployed to study progression and response to treatment, including noninvasive imaging tools for both acute and chronic brain conditions. Neuronal biomarkers are classified into four core subtypes: blood-based, immunohistochemical-based, neuroimaging-based, and electrophysiological biomarkers. Neuronal conditions have progressive stages, such as acute injury, inflammation, neurodegeneration, and neurogenesis, which can serve as indices of pathological status. Biomarkers are critical for the targeted identification of specific molecules, cells, tissues, or proteins that dramatically alter throughout the progression of brain conditions. There has been tremendous progress with biomarkers in acute conditions and chronic diseases affecting the central nervous system.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
- Institute of Pharmacology and Neurotherapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
- Intercollegiate School of Engineering Medicine, Texas A&M University, Houston, TX 77030, USA
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Hasara Nethma Abeygunaratne
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
- Institute of Pharmacology and Neurotherapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| |
Collapse
|
4
|
Chen KH, Hua AY, Lwi SJ, Haase CM, Rosen HJ, Miller BL, Levenson RW. Smaller Volume in Left-Lateralized Brain Structures Correlates with Greater Experience of Negative Non-target Emotions in Neurodegenerative Diseases. Cereb Cortex 2021; 31:15-31. [PMID: 32820325 DOI: 10.1093/cercor/bhaa193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/27/2020] [Accepted: 06/11/2020] [Indexed: 12/11/2022] Open
Abstract
Subjective emotional experience that is congruent with a given situation (i.e., target emotions) is critical for human survival (e.g., feeling disgusted in response to contaminated food motivates withdrawal behaviors). Neurodegenerative diseases including frontotemporal dementia and Alzheimer's disease affect brain regions critical for cognitive and emotional functioning, resulting in increased experience of emotions incongruent with the situation (i.e., non-target emotions, such as feeling happy when seeing someone grieving). We examined neuroanatomical correlates of subjective experience of non-target emotions in 147 patients with neurodegenerative diseases and 26 healthy individuals. Participants watched three films intended to elicit particular target emotions and rated their experience of negative and positive target and non-target emotions after watching each film. We found that smaller volume in left hemisphere regions (e.g., caudate, putamen, and dorsal anterior insula) was associated with greater experience of negative non-target emotions. Follow-up analyses confirmed that these effects were left-lateralized. No correlates emerged for positive non-target emotions. These findings suggest that volume loss in left-hemisphere regions produces a more diffuse, incongruent experience of non-target emotions. These findings provide a potential neuroanatomical basis for understanding how subjective emotional experience is constructed in the brain and how this can be disrupted in neurodegenerative disease.
Collapse
|
5
|
Luo C, Hu N, Xiao Y, Zhang W, Gong Q, Lui S. Comparison of Gray Matter Atrophy in Behavioral Variant Frontal Temporal Dementia and Amyotrophic Lateral Sclerosis: A Coordinate-Based Meta-Analysis. Front Aging Neurosci 2020; 12:14. [PMID: 32116647 PMCID: PMC7026505 DOI: 10.3389/fnagi.2020.00014] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/16/2020] [Indexed: 02/05/2023] Open
Abstract
Background: There is growing evidence supporting behavioral variant frontotemporal dementia (bvFTD) and amyotrophic lateral sclerosis (ALS) as extreme points of a disease spectrum. The aim of this study was to delineate the common and different patterns of gray matter atrophy associated with bvFTD and with ALS by pooling together the results of previous voxel-based morphometry (VBM) studies. Methods: We retrieved VBM studies that investigated gray matter atrophy in bvFTD patients vs. controls and in ALS patients vs. controls. Stereotactic data were extracted from those studies and subsequently tested for convergence and differences using activation likelihood estimation (ALE). A behavioral analysis using the BrainMap database was performed to assess the functional roles of the regions affected by bvFTD and/or ALS. Results: Our study demonstrated a convergence of gray matter atrophy in the frontolimbic structures that involve the bilateral anterior insula and anterior cingulate cortex. Comparing the pattern of GM atrophy in bvFTD and ALS patients revealed greater atrophy in the frontomedial cortex, bilateral caudate, left anterior insula, and right thalamus in those with bvFTD and a higher degree of atrophy in the right motor cortex of those with ALS. Behavioral analysis revealed that the pattern of the affected regions contributed to the dysfunction of emotional and cognitive processing in bvFTD patients and the dysfunction of motor execution in ALS patients. Conclusion: Our results revealed a shared neural basis between bvFTD and ALS subjects, as well as a specific and distinct neural signature that underpinned the clinical manifestations of those two diseases. Those findings outlined the role of the frontomedial-caudate circuit in the development of bvFTD-like deficits in ALS patients.
Collapse
Affiliation(s)
- Chunyan Luo
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China.,Psychoradiology Research Unit of the Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, China
| | - Na Hu
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China.,Psychoradiology Research Unit of the Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, China
| | - Yuan Xiao
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China.,Psychoradiology Research Unit of the Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, China
| | - Wenjing Zhang
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China.,Psychoradiology Research Unit of the Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, China
| | - Qiyong Gong
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China.,Psychoradiology Research Unit of the Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, China
| | - Su Lui
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China.,Psychoradiology Research Unit of the Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Murley AG, Rowe JB. Neurotransmitter deficits from frontotemporal lobar degeneration. Brain 2018; 141:1263-1285. [PMID: 29373632 PMCID: PMC5917782 DOI: 10.1093/brain/awx327] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/05/2017] [Accepted: 10/03/2017] [Indexed: 12/11/2022] Open
Abstract
Frontotemporal lobar degeneration causes a spectrum of complex degenerative disorders including frontotemporal dementia, progressive supranuclear palsy and corticobasal syndrome, each of which is associated with changes in the principal neurotransmitter systems. We review the evidence for these neurochemical changes and propose that they contribute to symptomatology of frontotemporal lobar degeneration, over and above neuronal loss and atrophy. Despite the development of disease-modifying therapies, aiming to slow neuropathological progression, it remains important to advance symptomatic treatments to reduce the disease burden and improve patients' and carers' quality of life. We propose that targeting the selective deficiencies in neurotransmitter systems, including dopamine, noradrenaline, serotonin, acetylcholine, glutamate and gamma-aminobutyric acid is an important strategy towards this goal. We summarize the current evidence-base for pharmacological treatments and suggest strategies to improve the development of new, effective pharmacological treatments.
Collapse
Affiliation(s)
- Alexander G Murley
- Department of Clinical Neurosciences, University of Cambridge, Herchel Smith Building, Robinson Way, Cambridge, CB2 0SZ, UK
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, Herchel Smith Building, Robinson Way, Cambridge, CB2 0SZ, UK
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK
- Behavioural and Clinical Neurosciences Institute, University of Cambridge, Sir William Hardy Building, Downing Street, Cambridge, CB2 3EB, UK
| |
Collapse
|