1
|
Hsieh H, Xu Q, Zhang Q, Yang F, Xu Y, Liu G, Liu R, Yu Q, Zhang Z, Lu G, Gu X, Zhang Z. Mapping progressive damage epicenters in epilepsy with generalized tonic-clonic seizures by causal structural covariance network density (CaSCNd). Brain Res 2024; 1828:148766. [PMID: 38242522 DOI: 10.1016/j.brainres.2024.148766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/28/2023] [Accepted: 01/12/2024] [Indexed: 01/21/2024]
Abstract
AIMS Mapping progressive patterns of structural damage in epilepsies with idiopathic and secondarily generalized tonic-clonic seizures with causal structural covariance networks and multiple analysis strategies. METHODS Patients with idiopathic generalized tonic-clonic seizures (IGTCS) (n = 114) and secondarily generalized tonic-clonic seizures (SGTCS) (n = 125) were recruited. Morphometric parameter of gray matter volume was analyzed on structural MRI. Structural covariance network based on granger causality analysis (CaSCN) was performed on the cross-sectional morphometric data sorted by disease durations of patients. Seed-based CaSCN analysis was firstly carried out to map the progressive and influential patterns of damage to thalamus-related structures. A novel technique for voxel-based CaSCN density (CaSCNd) analysis was further proposed, enabling for identifying the epicenter of structural brain damage during the disease process. RESULTS The thalamus-associated CaSCNs demonstrated different patterns of progressive damage in two types of generalized tonic-clonic seizures. In IGTCS, the structural damage was predominantly driven from the thalamus, and expanded to the cortex, while in SGTCS, the damage was predominantly driven from the cortex, and expanded to the thalamus through the basal ganglia. CaSCNd analysis revealed that the IGTCS had an out-effect epicenter in the thalamus, whereas the SGTCS had equipotent in- and out-effects in the thalamus, cortex, and basal ganglia. CONCLUSION CaSCN revealed distinct damage patterns in the two types of GTCS, featuring with measurement of structural brain damage from the accumulating effect over a relatively long time period. Our work provided evidence for understanding network impairment mechanism underlying different GTCSs.
Collapse
Affiliation(s)
- Hsinyu Hsieh
- Department of Diagnostic Radiology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Qiang Xu
- Department of Diagnostic Radiology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Qirui Zhang
- Department of Diagnostic Radiology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Fang Yang
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Yin Xu
- Institute of Neurology Anhui, University of Chinese Medicine, Hefei 230061, China
| | - Gaoping Liu
- Department of Diagnostic Radiology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Ruoting Liu
- Department of Diagnostic Radiology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Qianqian Yu
- Department of Diagnostic Radiology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Zixuan Zhang
- Department of Diagnostic Radiology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Guangming Lu
- Department of Diagnostic Radiology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Xing Gu
- Department of Ultrasound, YanCheng 1(st) People Hospital, China
| | - Zhiqiang Zhang
- Department of Diagnostic Radiology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China; State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
2
|
Lin Q, Li W, Li Y, Liu P, Zhang Y, Gong Q, Zhou D, An D. Aberrant structural rich club organization in temporal lobe epilepsy with focal to bilateral tonic-clonic seizures. Neuroimage Clin 2023; 40:103536. [PMID: 37944396 PMCID: PMC10663961 DOI: 10.1016/j.nicl.2023.103536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/19/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
OBJECTIVE The purpose of this study was to assess the differences of topological characteristic and rich club organization between temporal lobe epilepsy (TLE) patients with focal seizure (FS) only and those with focal to bilateral tonic-clonic seizures (FBTCS). METHODS We recruited 130 unilateral TLE patients, of which 57 patients with FS only and 73 patients with both FS and FBTCS, and 68 age- and gender-matched healthy controls (HC). Whole-brain networks were constructed based on diffusion weighted imaging data. Graph theory was applied to quantify the topological network metrics and rich club organization. Network-based statistic (NBS) analysis was administered to investigate the difference in edge-wise connectivity strength. The non-parametric permutation test was applied to evaluate the differences between groups. Benjamini-Hochberg FDR at the alpha of 5% was carried out for multiple comparations. RESULTS In comparison with HC, both the FS and FBTCS group displayed a significant reduction in whole-brain connectivity strength and global efficiency. The FBTCS group showed lower connectivity strength both in the rich club and feeder connections compared to HC. The FS group had lower connectivity strength in the feeder and local connections compared to HC. NBS analysis revealed a wider range of decreased connectivity strength in the FBTCS group, involving 90% of the rich club regions, mainly affecting temporal-subcortical, frontal-parietal, and frontal-temporal lobe, the majority decreasing connections were between temporal lobe and stratum. While the decreased connectivity strength in the FS group were relatively local, involving 50% of rich club regions, mainly concentrated on the temporal-subcortical lobe. CONCLUSIONS Network integration was reduced in TLE. TLE with FBTCS selectively disrupted the rich club regions, while TLE with FS only were more likely to affect the non-rich club regions, emphasizing the contribution of rich club organization to seizure generalization.
Collapse
Affiliation(s)
- Qiuxing Lin
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wei Li
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuming Li
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Peiwen Liu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yingying Zhang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiyong Gong
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dong Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dongmei An
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
3
|
Maher C, Tang Z, D’Souza A, Cabezas M, Cai W, Barnett M, Kavehei O, Wang C, Nikpour A. Deep learning distinguishes connectomes from focal epilepsy patients and controls: feasibility and clinical implications. Brain Commun 2023; 5:fcad294. [PMID: 38025275 PMCID: PMC10644981 DOI: 10.1093/braincomms/fcad294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 08/10/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
The application of deep learning models to evaluate connectome data is gaining interest in epilepsy research. Deep learning may be a useful initial tool to partition connectome data into network subsets for further analysis. Few prior works have used deep learning to examine structural connectomes from patients with focal epilepsy. We evaluated whether a deep learning model applied to whole-brain connectomes could classify 28 participants with focal epilepsy from 20 controls and identify nodal importance for each group. Participants with epilepsy were further grouped based on whether they had focal seizures that evolved into bilateral tonic-clonic seizures (17 with, 11 without). The trained neural network classified patients from controls with an accuracy of 72.92%, while the seizure subtype groups achieved a classification accuracy of 67.86%. In the patient subgroups, the nodes and edges deemed important for accurate classification were also clinically relevant, indicating the model's interpretability. The current work expands the evidence for the potential of deep learning to extract relevant markers from clinical datasets. Our findings offer a rationale for further research interrogating structural connectomes to obtain features that can be biomarkers and aid the diagnosis of seizure subtypes.
Collapse
Affiliation(s)
- Christina Maher
- Faculty of Engineering, School of Biomedical Engineering, The University of Sydney, Sydney, NSW 2050, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
| | - Zihao Tang
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- Faculty of Engineering, School of Computer Science, The University of Sydney, Sydney, NSW 2050, Australia
| | - Arkiev D’Souza
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
| | - Mariano Cabezas
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
| | - Weidong Cai
- Faculty of Engineering, School of Computer Science, The University of Sydney, Sydney, NSW 2050, Australia
| | - Michael Barnett
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- Sydney Neuroimaging Analysis Centre, Sydney, NSW 2050, Australia
| | - Omid Kavehei
- Faculty of Engineering, School of Biomedical Engineering, The University of Sydney, Sydney, NSW 2050, Australia
| | - Chenyu Wang
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
- Sydney Neuroimaging Analysis Centre, Sydney, NSW 2050, Australia
| | - Armin Nikpour
- Faculty of Medicine and Health, Central Clinical School, Sydney, NSW 2050, Australia
- Comprehensive Epilepsy Service and Department of Neurology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| |
Collapse
|
4
|
Guo Z, Mo J, Zhang J, Hu W, Zhang C, Wang X, Zhao B, Zhang K. Altered Metabolic Networks in Mesial Temporal Lobe Epilepsy with Focal to Bilateral Seizures. Brain Sci 2023; 13:1239. [PMID: 37759840 PMCID: PMC10526398 DOI: 10.3390/brainsci13091239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
This study was designed to identify whether the metabolic network changes in mesial temporal lobe epilepsy (MTLE) patients with focal to bilateral tonic-clonic seizures (FBTCS) differ from changes in patients without FBTCS. This retrospective analysis enrolled 30 healthy controls and 54 total MTLE patients, of whom 27 had FBTCS. Fluorodeoxyglucose positron emission tomography (FDG-PET) data and graph theoretical analyses were used to examine metabolic connectivity. The differences in metabolic networks between the three groups were compared. Significant changes in both local and global network topology were evident in FBTCS+ patients as compared to healthy controls, with a lower assortative coefficient and altered betweenness centrality in 15 brain regions. While global network measures did not differ significantly when comparing FBTCS- patients to healthy controls, alterations in betweenness centrality were evident in 13 brain regions. Significantly altered betweenness centrality was also observed in four brain regions when comparing patients with and without FBTCS. The study revealed greater metabolic network abnormalities in MTLE patients with FBTCS as compared to FBTCS- patients, indicating the existence of distinct epileptogenic networks. These findings can provide insight into the pathophysiological basis of FBTCS.
Collapse
Affiliation(s)
- Zhihao Guo
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (Z.G.); (J.M.); (J.Z.); (W.H.); (C.Z.); (X.W.); (B.Z.)
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Jiajie Mo
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (Z.G.); (J.M.); (J.Z.); (W.H.); (C.Z.); (X.W.); (B.Z.)
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (Z.G.); (J.M.); (J.Z.); (W.H.); (C.Z.); (X.W.); (B.Z.)
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Wenhan Hu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (Z.G.); (J.M.); (J.Z.); (W.H.); (C.Z.); (X.W.); (B.Z.)
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Chao Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (Z.G.); (J.M.); (J.Z.); (W.H.); (C.Z.); (X.W.); (B.Z.)
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Xiu Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (Z.G.); (J.M.); (J.Z.); (W.H.); (C.Z.); (X.W.); (B.Z.)
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Baotian Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (Z.G.); (J.M.); (J.Z.); (W.H.); (C.Z.); (X.W.); (B.Z.)
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Kai Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; (Z.G.); (J.M.); (J.Z.); (W.H.); (C.Z.); (X.W.); (B.Z.)
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| |
Collapse
|
5
|
Middlebrooks EH, He X, Grewal SS, Keller SS. Neuroimaging and thalamic connectomics in epilepsy neuromodulation. Epilepsy Res 2022; 182:106916. [PMID: 35367691 DOI: 10.1016/j.eplepsyres.2022.106916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/05/2022] [Accepted: 03/27/2022] [Indexed: 11/03/2022]
Abstract
Neuromodulation is an increasingly utilized therapy for the treatment of people with drug-resistant epilepsy. To date, the most common and effective target has been the thalamus, which is known to play a key role in multiple forms of epilepsy. Neuroimaging has facilitated rapid developments in the understanding of functional targets, surgical and programming techniques, and the effects of thalamic stimulation. In this review, the role of neuroimaging in neuromodulation is explored. First, the structural and functional changes of the thalamus in common epilepsy syndromes are discussed as the rationale for neuromodulation of the thalamus. Next, methods for imaging different thalamic nuclei are presented, as well as rationale for the need of direct surgical targeting rather than reliance on traditional stereotactic coordinates. Lastly, we discuss the potential role of neuroimaging in assessing the effects of thalamic stimulation and as a potential biomarker for neuromodulation outcomes.
Collapse
Affiliation(s)
- Erik H Middlebrooks
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA; Department of Neurosurgery, Mayo Clinic, Jacksonville, FL, USA.
| | - Xiaosong He
- Department of Psychology, University of Science and Technology of China, Hefei, Anhui, China
| | | | - Simon S Keller
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, UK
| |
Collapse
|
6
|
Drug-resistant focal epilepsy in children is associated with increased modal controllability of the whole brain and epileptogenic regions. Commun Biol 2022; 5:394. [PMID: 35484213 PMCID: PMC9050895 DOI: 10.1038/s42003-022-03342-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 04/06/2022] [Indexed: 02/06/2023] Open
Abstract
Network control theory provides a framework by which neurophysiological dynamics of the brain can be modelled as a function of the structural connectome constructed from diffusion MRI. Average controllability describes the ability of a region to drive the brain to easy-to-reach neurophysiological states whilst modal controllability describes the ability of a region to drive the brain to difficult-to-reach states. In this study, we identify increases in mean average and modal controllability in children with drug-resistant epilepsy compared to healthy controls. Using simulations, we purport that these changes may be a result of increased thalamocortical connectivity. At the node level, we demonstrate decreased modal controllability in the thalamus and posterior cingulate regions. In those undergoing resective surgery, we also demonstrate increased modal controllability of the resected parcels, a finding specific to patients who were rendered seizure free following surgery. Changes in controllability are a manifestation of brain network dysfunction in epilepsy and may be a useful construct to understand the pathophysiology of this archetypical network disease. Understanding the mechanisms underlying these controllability changes may also facilitate the design of network-focussed interventions that seek to normalise network structure and function.
Collapse
|
7
|
Tung H, Pan SY, Lan TH, Lin YY, Peng SJ. Characterization of Hippocampal-Thalamic-Cortical Morphometric Reorganization in Temporal Lobe Epilepsy. Front Neurol 2022; 12:810186. [PMID: 35222230 PMCID: PMC8866816 DOI: 10.3389/fneur.2021.810186] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 12/31/2021] [Indexed: 11/13/2022] Open
Abstract
IntroductionBrain cortico-subcortical connectivity has been investigated in epilepsy using the functional MRI (MRI). Although structural images cannot demonstrate dynamic changes, they provide higher spatial resolution, which allows exploration of the organization of brain in greater detail.MethodsWe used high-resolution brain MRI to study the hippocampal-thalamic-cortical networks in temporal lobe epilepsy (TLE) using a volume-based morphometric method. We enrolled 22 right-TLE, 33 left-TLE, and 28 age/gender-matched controls retrospectively. FreeSurfer software was used for the thalamus segmentation.ResultsAmong the 50 subfields, ipsilateral anterior, lateral, and parts of the intralaminar and medial nuclei, as well as the contralateral parts of lateral nuclei had significant volume loss in both TLE. The anteroventral nucleus was most vulnerable. Most thalamic subfields were susceptible to seizure burden, especially the left-TLE. SPM12 was used to conduct an analysis of the gray matter density (GMD) maps. Decreased extratemporal GMD occurred bilaterally. Both TLE demonstrated significant GMD loss over the ipsilateral inferior frontal gyrus, precentral gyrus, and medial orbital cortices.SignificanceThalamic subfield atrophy was related to the ipsilateral inferior frontal GMD changes, which presented positively in left-TLE and negatively in right-TLE. These findings suggest prefrontal-thalamo-hippocampal network disruption in TLE.
Collapse
Affiliation(s)
- Hsin Tung
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Center of Faculty Development, Taichung Veterans General Hospital, Taichung, Taiwan
- Division of Epilepsy, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Szu-Yen Pan
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Tsuo-Hung Lan
- Tsaotun Psychiatric Center, Ministry of Health and Welfare, Nantou, Taiwan
- Department of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yung-Yang Lin
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Critical Care Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Syu-Jyun Peng
- Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- *Correspondence: Syu-Jyun Peng
| |
Collapse
|
8
|
Kwon H, Chinappen DM, Huang JF, Berja ED, Walsh KG, Shi W, Kramer MA, Chu CJ. Transient, developmental functional and structural connectivity abnormalities in the thalamocortical motor network in Rolandic epilepsy. NEUROIMAGE: CLINICAL 2022; 35:103102. [PMID: 35777251 PMCID: PMC9251597 DOI: 10.1016/j.nicl.2022.103102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/29/2022] Open
Abstract
Children with active Rolandic epilepsy have increasing thalamocortical functional connectivity in the motor circuit with age. Children with resolved Rolandic epilepsy have increasing thalamocortical structural connectivity in the motor circuit with age. Children with Rolandic epilepsy have no differences in thalamocortical connectivity in the sensory circuit compared to controls. Rolandic thalamocortical structural connectivity does not predict functional connectivity in Rolandic epilepsy or controls.
Rolandic epilepsy (RE) is the most common focal, idiopathic, developmental epilepsy, characterized by a transient period of sleep-potentiated seizures and epileptiform discharges in the inferior Rolandic cortex during childhood. The cause of RE remains unknown but converging evidence has identified abnormalities in the Rolandic thalamocortical circuit. To better localize this transient disease, we evaluated Rolandic thalamocortical functional and structural connectivity in the sensory and motor circuits separately during the symptomatic and asymptomatic phases of this disease. We collected high resolution structural, diffusion, and resting state functional MRI data in a prospective cohort of children with active RE (n = 17), resolved RE (n = 21), and controls (n = 33). We then computed the functional and structural connectivity between the inferior Rolandic cortex and the ventrolateral (VL) nucleus of the thalamus (efferent pathway) and the ventroposterolateral (VPL) nucleus of the thalamus (afferent pathway) across development in children with active, resolved RE and controls. We compared connectivity with age in each group using linear mixed-effects models. We found that children with active RE have increasing thalamocortical functional connectivity between the VL thalamus and inferior motor cortex with age (p = 0.022) that is not observed in controls or resolved RE. In contrast, children with resolved RE have increasing thalamocortical structural connectivity between the VL nucleus and the inferior motor cortex with age (p = 0.025) that is not observed in controls or active RE. No relationships were identified between VPL nuclei and the inferior sensory cortex with age in any group. These findings localize the functional and structural thalamocortical circuit disruption in RE to the efferent thalamocortical motor pathway. Further work is required to determine how these circuit abnormalities contribute to the emergence and resolution of symptoms in this developmental disease.
Collapse
Affiliation(s)
- Hunki Kwon
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Dhinakaran M Chinappen
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Department of Mathematics and Statistics, Boston University, Boston, MA, USA
| | - Jonathan F Huang
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Erin D Berja
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Katherine G Walsh
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Wen Shi
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Mark A Kramer
- Department of Mathematics and Statistics, Boston University, Boston, MA, USA; Center for Systems Neuroscience, Boston University, Boston, MA, USA
| | - Catherine J Chu
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
La Rocca M, Barisano G, Bennett A, Garner R, Engel J, Gilmore EJ, McArthur DL, Rosenthal E, Stanis J, Vespa P, Willyerd F, Zimmermann LL, Toga AW, Duncan D. Distribution and volume analysis of early hemorrhagic contusions by MRI after traumatic brain injury: a preliminary report of the Epilepsy Bioinformatics Study for Antiepileptogenic Therapy (EpiBioS4Rx). Brain Imaging Behav 2021; 15:2804-2812. [PMID: 34985618 PMCID: PMC9433738 DOI: 10.1007/s11682-021-00603-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2021] [Indexed: 01/07/2023]
Abstract
Traumatic brain injury (TBI) can produce heterogeneous injury patterns including a variety of hemorrhagic and non-hemorrhagic lesions. The impact of lesion size, location, and interaction between total number and location of contusions may influence the occurrence of seizures after TBI. We report our methodologic approach to this question in this preliminary report of the Epilepsy Bioinformatics Study for Antiepileptogenic Therapy (EpiBioS4Rx). We describe lesion identification and segmentation of hemorrhagic contusions by early posttraumatic magnetic resonance imaging (MRI). We describe the preliminary methods of manual lesion segmentation in an initial cohort of 32 TBI patients from the EpiBioS4Rx cohort and the preliminary association of hemorrhagic contusion and edema location and volume to seizure incidence.
Collapse
Affiliation(s)
- Marianna La Rocca
- Laboratory of Neuro Imaging, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Giuseppe Barisano
- Laboratory of Neuro Imaging, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Alexis Bennett
- Laboratory of Neuro Imaging, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Rachael Garner
- Laboratory of Neuro Imaging, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jerome Engel
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Emily J. Gilmore
- Comprehensive Epilepsy Center, Department of Neurology, Yale University, New Haven, CT, USA
| | - David L. McArthur
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Eric Rosenthal
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - James Stanis
- Laboratory of Neuro Imaging, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Paul Vespa
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | | | | | - Arthur W. Toga
- Laboratory of Neuro Imaging, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Dominique Duncan
- Laboratory of Neuro Imaging, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | |
Collapse
|
10
|
Xu H, Zhu H, Luo L, Zhang R. Altered gray matter volume in MRI-negative focal to bilateral tonic-clonic seizures. Acta Neurol Belg 2021; 121:1525-1533. [PMID: 32449136 DOI: 10.1007/s13760-020-01383-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 05/12/2020] [Indexed: 12/14/2022]
Abstract
To investigate cortical changes in MRI-negative patients with focal to bilateral tonic-clonic seizures (FBTCS). High-resolution three-dimensional T1-weighted MRI were collected with a GE 3.0-T MRI scanner from 26 patients with FBTCS and 21 healthy volunteers at Nanjing Brain Hospital. Voxel-based morphometry was performed on T1-weighted MRI of all subjects. A two-sample t test was performed to compare the GMV of two groups. Age and gender were taken as covariables, so that brain regions with significant differences, as compared by two-sample t test, between the two group were obtained. These regions were extracted as the regions of interest (ROIs) used for correlation analysis between ROIs and clinical variables. There is no significant difference in GMF between two groups. In FBTCS, regions with decreased GMV are bilateral thalamus, bilateral orbitofrontal cortex, left medical cingulate gyrus, and right supplementary motor area. GMV is increased within the bilateral para-hippocampal regions (voxel-wise FDR-corrected, P < 0.05). The GMVs are significantly negatively correlated with disease duration in the left thalamus and the left para-hippocampal region (P < 0.05). Seizures may lead to the loss of neurons and the decrease of GMV in FBTCS. The increase of GMV in some regions might be due to inflammatory responses in the early stages of epileptic seizures.
Collapse
Affiliation(s)
- Honghao Xu
- Department of Functional Neurosurgery, The Brain Hospital Affiliated to Nanjing Medical University, Nanjing, 210029, China
| | - Haitao Zhu
- Department of Functional Neurosurgery, The Brain Hospital Affiliated to Nanjing Medical University, Nanjing, 210029, China
| | - Lei Luo
- Department of Functional Neurosurgery, The Brain Hospital Affiliated to Nanjing Medical University, Nanjing, 210029, China
| | - Rui Zhang
- Department of Functional Neurosurgery, The Brain Hospital Affiliated to Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
11
|
Sinha N, Peternell N, Schroeder GM, de Tisi J, Vos SB, Winston GP, Duncan JS, Wang Y, Taylor PN. Focal to bilateral tonic-clonic seizures are associated with widespread network abnormality in temporal lobe epilepsy. Epilepsia 2021; 62:729-741. [PMID: 33476430 PMCID: PMC8600951 DOI: 10.1111/epi.16819] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/28/2020] [Accepted: 12/28/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Our objective was to identify whether the whole-brain structural network alterations in patients with temporal lobe epilepsy (TLE) and focal to bilateral tonic-clonic seizures (FBTCS) differ from alterations in patients without FBTCS. METHODS We dichotomized a cohort of 83 drug-resistant patients with TLE into those with and without FBTCS and compared each group to 29 healthy controls. For each subject, we used diffusion-weighted magnetic resonance imaging to construct whole-brain structural networks. First, we measured the extent of alterations by performing FBTCS-negative (FBTCS-) versus control and FBTCS-positive (FBTCS+) versus control comparisons, thereby delineating altered subnetworks of the whole-brain structural network. Second, by standardizing each patient's networks using control networks, we measured the subject-specific abnormality at every brain region in the network, thereby quantifying the spatial localization and the amount of abnormality in every patient. RESULTS Both FBTCS+ and FBTCS- patient groups had altered subnetworks with reduced fractional anisotropy and increased mean diffusivity compared to controls. The altered subnetwork in FBTCS+ patients was more widespread than in FBTCS- patients (441 connections altered at t > 3, p < .001 in FBTCS+ compared to 21 connections altered at t > 3, p = .01 in FBTCS-). Significantly greater abnormalities-aggregated over the entire brain network as well as assessed at the resolution of individual brain areas-were present in FBTCS+ patients (p < .001, d = .82, 95% confidence interval = .32-1.3). In contrast, the fewer abnormalities present in FBTCS- patients were mainly localized to the temporal and frontal areas. SIGNIFICANCE The whole-brain structural network is altered to a greater and more widespread extent in patients with TLE and FBTCS. We suggest that these abnormal networks may serve as an underlying structural basis or consequence of the greater seizure spread observed in FBTCS.
Collapse
Affiliation(s)
- Nishant Sinha
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK.,Computational Neuroscience, Neurology, and Psychiatry Lab, Interdisciplinary Computing and Complex BioSystems Research Group, School of Computing, Newcastle University, Newcastle Upon Tyne, UK
| | - Natalie Peternell
- Computational Neuroscience, Neurology, and Psychiatry Lab, Interdisciplinary Computing and Complex BioSystems Research Group, School of Computing, Newcastle University, Newcastle Upon Tyne, UK
| | - Gabrielle M Schroeder
- Computational Neuroscience, Neurology, and Psychiatry Lab, Interdisciplinary Computing and Complex BioSystems Research Group, School of Computing, Newcastle University, Newcastle Upon Tyne, UK
| | - Jane de Tisi
- National Institute for Health Research University College London Hospitals Biomedical Research Centre, University College London Queen Square Institute of Neurology, London, UK
| | - Sjoerd B Vos
- National Institute for Health Research University College London Hospitals Biomedical Research Centre, University College London Queen Square Institute of Neurology, London, UK.,Centre for Medical Image Computing, University College London, London, UK.,Neuroradiological Academic Unit, University College London Queen Square Institute of Neurology, University College London, London, UK
| | - Gavin P Winston
- National Institute for Health Research University College London Hospitals Biomedical Research Centre, University College London Queen Square Institute of Neurology, London, UK.,Epilepsy Society MRI Unit, Chalfont St Peter, UK.,Division of Neurology, Department of Medicine, Queen's University, Kingston, ON, Canada
| | - John S Duncan
- National Institute for Health Research University College London Hospitals Biomedical Research Centre, University College London Queen Square Institute of Neurology, London, UK.,Epilepsy Society MRI Unit, Chalfont St Peter, UK
| | - Yujiang Wang
- Computational Neuroscience, Neurology, and Psychiatry Lab, Interdisciplinary Computing and Complex BioSystems Research Group, School of Computing, Newcastle University, Newcastle Upon Tyne, UK.,National Institute for Health Research University College London Hospitals Biomedical Research Centre, University College London Queen Square Institute of Neurology, London, UK
| | - Peter N Taylor
- Computational Neuroscience, Neurology, and Psychiatry Lab, Interdisciplinary Computing and Complex BioSystems Research Group, School of Computing, Newcastle University, Newcastle Upon Tyne, UK.,National Institute for Health Research University College London Hospitals Biomedical Research Centre, University College London Queen Square Institute of Neurology, London, UK
| |
Collapse
|
12
|
He X, Chaitanya G, Asma B, Caciagli L, Bassett DS, Tracy JI, Sperling MR. Disrupted basal ganglia-thalamocortical loops in focal to bilateral tonic-clonic seizures. Brain 2020; 143:175-190. [PMID: 31860076 DOI: 10.1093/brain/awz361] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/16/2019] [Accepted: 09/24/2019] [Indexed: 02/07/2023] Open
Abstract
Focal to bilateral tonic-clonic seizures are associated with lower quality of life, higher risk of seizure-related injuries, increased chance of sudden unexpected death, and unfavourable treatment outcomes. Achieving greater understanding of their underlying circuitry offers better opportunity to control these seizures. Towards this goal, we provide a network science perspective of the interactive pathways among basal ganglia, thalamus and cortex, to explore the imprinting of secondary seizure generalization on the mesoscale brain network in temporal lobe epilepsy. Specifically, we parameterized the functional organization of both the thalamocortical network and the basal ganglia-thalamus network with resting state functional MRI in three groups of patients with different focal to bilateral tonic-clonic seizure histories. Using the participation coefficient to describe the pattern of thalamocortical connections among different cortical networks, we showed that, compared to patients with no previous history, those with positive histories of focal to bilateral tonic-clonic seizures, including both remote (none for >1 year) and current (within the past year) histories, presented more uniform distribution patterns of thalamocortical connections in the ipsilateral medial-dorsal thalamic nuclei. As a sign of greater thalamus-mediated cortico-cortical communication, this result comports with greater susceptibility to secondary seizure generalization from the epileptogenic temporal lobe to broader brain networks in these patients. Using interregional integration to characterize the functional interaction between basal ganglia and thalamus, we demonstrated that patients with current history presented increased interaction between putamen and globus pallidus internus, and decreased interaction between the latter and the thalamus, compared to the other two patient groups. Importantly, through a series of 'disconnection' simulations, we showed that these changes in interactive profiles of the basal ganglia-thalamus network in the current history group mainly depended upon the direct but not the indirect basal ganglia pathway. It is intuitively plausible that such disruption in the striatum-modulated tonic inhibition of the thalamus from the globus pallidus internus could lead to an under-suppressed thalamus, which in turn may account for their greater vulnerability to secondary seizure generalization. Collectively, these findings suggest that the broken balance between basal ganglia inhibition and thalamus synchronization can inform the presence and effective control of focal to bilateral tonic-clonic seizures. The mechanistic underpinnings we uncover may shed light on the development of new treatment strategies for patients with temporal lobe epilepsy.
Collapse
Affiliation(s)
- Xiaosong He
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ganne Chaitanya
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Burcu Asma
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Lorenzo Caciagli
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Danielle S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Santa Fe Institute, Santa Fe, New Mexico, USA
| | - Joseph I Tracy
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Michael R Sperling
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
13
|
Traub-Weidinger T, Muzik O, Sundar LKS, Aull-Watschinger S, Beyer T, Hacker M, Hahn A, Kasprian G, Klebermass EM, Lanzenberger R, Mitterhauser M, Pilz M, Rausch I, Rischka L, Wadsak W, Pataraia E. Utility of Absolute Quantification in Non-lesional Extratemporal Lobe Epilepsy Using FDG PET/MR Imaging. Front Neurol 2020; 11:54. [PMID: 32082251 PMCID: PMC7005011 DOI: 10.3389/fneur.2020.00054] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 01/14/2020] [Indexed: 12/04/2022] Open
Abstract
The purpose of this study was to establish a non-invasive clinical PET/MR protocol using [18F]-labeled deoxyglucose (FDG) that provides physicians with regional metabolic rate of glucose (MRGlc) values and to clarify the contribution of absolute quantification to clinical management of patients with non-lesional extratemporal lobe epilepsy (ETLE). The study included a group of 15 patients with non-lesional ETLE who underwent a dynamic FDG PET study using a fully-integrated PET/MRI system (Siemens Biograph). FDG tracer uptake images were converted to MRGlc (μmol/100 g/min) maps using an image derived input function that was extracted based on the combined analysis of PET and MRI data. In addition, the same protocol was applied to a group of healthy controls, yielding a normative database. Abnormality maps for ETLE patients were created with respect to the normative database, defining significant hypo- or hyper-metabolic regions that exceeded ±2 SD of normal regional mean MRGlc values. Abnormality maps derived from MRGlc images of ETLE patients contributed to the localization of hypo-metabolic areas against visual readings in 53% and increased the confidence in the original clinical readings in 33% of all cases. Moreover, quantification allowed identification of hyper-metabolic areas that are associated with frequently spiking cortex, rarely acknowledged in clinical readings. Overall, besides providing some confirmatory information to visual readings, quantitative PET imaging demonstrated only a moderate impact on clinical management of patients with complex pathology that leads to epileptic seizures, failing to provide new decisive information that would have changed classification of patients from being rejected to being considered for surgical intervention.
Collapse
Affiliation(s)
- Tatjana Traub-Weidinger
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Otto Muzik
- Department of Pediatrics, The Detroit Medical Center, Children's Hospital of Michigan, Wayne State University School of Medicine, Detroit, MI, United States
| | - Lalith Kumar Shiyam Sundar
- QIMP Team, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | | | - Thomas Beyer
- QIMP Team, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Andreas Hahn
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Gregor Kasprian
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Eva-Maria Klebermass
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Markus Mitterhauser
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.,Ludwig-Boltzmann Institute Applied Diagnostics, Vienna, Austria
| | - Magdalena Pilz
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Ivo Rausch
- QIMP Team, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Lucas Rischka
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Wadsak
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.,Center for Biomarker Research in Medicine, Graz, Austria
| | | |
Collapse
|
14
|
Dabrowska N, Joshi S, Williamson J, Lewczuk E, Lu Y, Oberoi S, Brodovskaya A, Kapur J. Parallel pathways of seizure generalization. Brain 2019; 142:2336-2351. [PMID: 31237945 PMCID: PMC6658865 DOI: 10.1093/brain/awz170] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 01/13/2023] Open
Abstract
Generalized convulsive status epilepticus is a life-threatening emergency, because recurrent convulsions can cause death or injury. A common form of generalized convulsive status epilepticus is of focal onset. The neuronal circuits activated during seizure spread from the hippocampus, a frequent site of seizure origin, to the bilateral motor cortex, which mediates convulsive seizures, have not been delineated. Status epilepticus was initiated by electrical stimulation of the hippocampus. Neurons transiently activated during seizures were labelled with tdTomato and then imaged following brain slice clearing. Hippocampus was active throughout the episode of status epilepticus. Neuronal activation was observed in hippocampus parahippocampal structures: subiculum, entorhinal cortex and perirhinal cortex, septum, and olfactory system in the initial phase status epilepticus. The tdTomato-labelled neurons occupied larger volumes of the brain as seizures progressed and at the peak of status epilepticus, motor and somatosensory cortex, retrosplenial cortex, and insular cortex also contained tdTomato-labelled neurons. In addition, motor thalamic nuclei such as anterior and ventromedial, midline, reticular, and posterior thalamic nuclei were also activated. Furthermore, circuits proposed to be crucial for systems consolidation of memory: entorhinal cortex, retrosplenial cortex, cingulate gyrus, midline thalamic nuclei and prefrontal cortex were intensely active during periods of generalized tonic-clonic seizures. As the episode of status epilepticus waned, smaller volume of brain was activated. These studies suggested that seizure spread could have occurred via canonical thalamocortical pathway and many cortical structures involved in memory consolidation. These studies may help explain retrograde amnesia following seizures.
Collapse
Affiliation(s)
- Natalia Dabrowska
- Department of Neurology, University of Virginia, Charlottesville, VA 22908, USA
| | - Suchitra Joshi
- Department of Neurology, University of Virginia, Charlottesville, VA 22908, USA
| | - John Williamson
- Department of Neurology, University of Virginia, Charlottesville, VA 22908, USA
| | - Ewa Lewczuk
- Department of Neurology, University of Virginia, Charlottesville, VA 22908, USA
| | - Yanhong Lu
- College of Arts and Sciences, University of Virginia, Charlottesville, VA 22908, USA
| | - Samrath Oberoi
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Anastasia Brodovskaya
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA 22908, USA
| | - Jaideep Kapur
- Department of Neurology, University of Virginia, Charlottesville, VA 22908, USA
- UVA Brain Institute, University of Virginia, Charlottesville, VA 22908, USA
- Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
15
|
Chen C, Li H, Ding F, Yang L, Huang P, Wang S, Jin B, Xu C, Wang Y, Ding M, Chen Z, Wang S. Alterations in the hippocampal-thalamic pathway underlying secondarily generalized tonic-clonic seizures in mesial temporal lobe epilepsy: A diffusion tensor imaging study. Epilepsia 2018; 60:121-130. [PMID: 30478929 DOI: 10.1111/epi.14614] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 11/05/2018] [Accepted: 11/05/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Cong Chen
- Department of Neurology; Epilepsy Center; Second Affiliated Hospital; School of Medicine; Zhejiang University; Hangzhou China
| | - Hong Li
- Department of Radiology; Second Affiliated Hospital; School of Medicine; Zhejiang University; Hangzhou China
| | - Fang Ding
- Department of Neurology; Epilepsy Center; Second Affiliated Hospital; School of Medicine; Zhejiang University; Hangzhou China
| | - Linglin Yang
- Department of Neurology; Epilepsy Center; Second Affiliated Hospital; School of Medicine; Zhejiang University; Hangzhou China
| | - Peiyu Huang
- Department of Radiology; Second Affiliated Hospital; School of Medicine; Zhejiang University; Hangzhou China
| | - Shan Wang
- Department of Neurology; Epilepsy Center; Second Affiliated Hospital; School of Medicine; Zhejiang University; Hangzhou China
| | - Bo Jin
- Department of Neurology; Epilepsy Center; Second Affiliated Hospital; School of Medicine; Zhejiang University; Hangzhou China
| | - Cenglin Xu
- Key Laboratory of Medical Neurobiology of the Ministry of Health of China; Zhejiang Province Key Laboratory of Neurobiology; Department of Pharmacology; College of Pharmaceutical Sciences; Zhejiang University; Hangzhou China
| | - Yi Wang
- Key Laboratory of Medical Neurobiology of the Ministry of Health of China; Zhejiang Province Key Laboratory of Neurobiology; Department of Pharmacology; College of Pharmaceutical Sciences; Zhejiang University; Hangzhou China
| | - Meiping Ding
- Department of Neurology; Epilepsy Center; Second Affiliated Hospital; School of Medicine; Zhejiang University; Hangzhou China
| | - Zhong Chen
- Department of Neurology; Epilepsy Center; Second Affiliated Hospital; School of Medicine; Zhejiang University; Hangzhou China
- Key Laboratory of Medical Neurobiology of the Ministry of Health of China; Zhejiang Province Key Laboratory of Neurobiology; Department of Pharmacology; College of Pharmaceutical Sciences; Zhejiang University; Hangzhou China
| | - Shuang Wang
- Department of Neurology; Epilepsy Center; Second Affiliated Hospital; School of Medicine; Zhejiang University; Hangzhou China
| |
Collapse
|
16
|
Wang Y, Berglund IS, Uppman M, Li TQ. Juvenile myoclonic epilepsy has hyper dynamic functional connectivity in the dorsolateral frontal cortex. Neuroimage Clin 2018; 21:101604. [PMID: 30527355 PMCID: PMC6412974 DOI: 10.1016/j.nicl.2018.11.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 08/20/2018] [Accepted: 11/18/2018] [Indexed: 01/08/2023]
Abstract
PURPOSE Characterize the static and dynamic functional connectivity for subjects with juvenile myoclonic epilepsy (JME) using a quantitative data-driven analysis approach. METHODS Whole-brain resting-state functional MRI data were acquired on a 3 T whole-body clinical MRI scanner from 18 subjects clinically diagnosed with JME and 25 healthy control subjects. 2-min sliding-window approach was incorporated in the quantitative data-driven data analysis framework to assess both the dynamic and static functional connectivity in the resting brains. Two-sample t-tests were performed voxel-wise to detect the differences in functional connectivity metrics based on connectivity strength and density. RESULTS The static functional connectivity metrics based on quantitative data-driven analysis of the entire 10-min acquisition window of resting-state functional MRI data revealed significantly enhanced functional connectivity in JME patients in bilateral dorsolateral prefrontal cortex, dorsal striatum, precentral and middle temporal gyri. The dynamic functional connectivity metrics derived by incorporating a 2-min sliding window into quantitative data-driven analysis demonstrated significant hyper dynamic functional connectivity in the dorsolateral prefrontal cortex, middle temporal gyrus and dorsal striatum. Connectivity strength metrics (both static and dynamic) can detect more extensive functional connectivity abnormalities in the resting-state functional networks (RFNs) and depict also larger overlap between static and dynamic functional connectivity results. CONCLUSION Incorporating a 2-min sliding window into quantitative data-driven analysis of resting-state functional MRI data can reveal additional information on the temporally fluctuating RFNs of the human brain, which indicate that RFNs involving dorsolateral prefrontal cortex have temporal varying hyper dynamic characteristics in JME patients. Assessing dynamic along with static functional connectivity may provide further insights into the abnormal function connectivity underlying the pathological brain functioning in JME.
Collapse
Affiliation(s)
- Yanlu Wang
- Department of Clinical Science, Intervention, and Technology, Karolinska Institute, Stockholm, Sweden; Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Sweden.
| | - Ivanka Savic Berglund
- Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden; Department of Neurology, Karolinska University Hospital, Sweden; Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Martin Uppman
- Department of Clinical Science, Intervention, and Technology, Karolinska Institute, Stockholm, Sweden
| | - Tie-Qiang Li
- Department of Clinical Science, Intervention, and Technology, Karolinska Institute, Stockholm, Sweden; Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Sweden
| |
Collapse
|
17
|
Presurgical thalamocortical connectivity is associated with response to vagus nerve stimulation in children with intractable epilepsy. NEUROIMAGE-CLINICAL 2017; 16:634-642. [PMID: 28971013 PMCID: PMC5619991 DOI: 10.1016/j.nicl.2017.09.015] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/16/2017] [Accepted: 09/21/2017] [Indexed: 11/20/2022]
Abstract
Although chronic vagus nerve stimulation (VNS) is an established treatment for medically-intractable childhood epilepsy, there is considerable heterogeneity in seizure response and little data are available to pre-operatively identify patients who may benefit from treatment. Since the therapeutic effect of VNS may be mediated by afferent projections to the thalamus, we tested the hypothesis that intrinsic thalamocortical connectivity is associated with seizure response following chronic VNS in children with epilepsy. Twenty-one children (ages 5-21 years) with medically-intractable epilepsy underwent resting-state fMRI prior to implantation of VNS. Ten received sedation, while 11 did not. Whole brain connectivity to thalamic regions of interest was performed. Multivariate generalized linear models were used to correlate resting-state data with seizure outcomes, while adjusting for age and sedation status. A supervised support vector machine (SVM) algorithm was used to classify response to chronic VNS on the basis of intrinsic connectivity. Of the 21 subjects, 11 (52%) had 50% or greater improvement in seizure control after VNS. Enhanced connectivity of the thalami to the anterior cingulate cortex (ACC) and left insula was associated with greater VNS efficacy. Within our test cohort, SVM correctly classified response to chronic VNS with 86% accuracy. In an external cohort of 8 children, the predictive model correctly classified the seizure response with 88% accuracy. We find that enhanced intrinsic connectivity within thalamocortical circuitry is associated with seizure response following VNS. These results encourage the study of intrinsic connectivity to inform neural network-based, personalized treatment decisions for children with intractable epilepsy.
Collapse
|
18
|
Polygenic risk for five psychiatric disorders and cross-disorder and disorder-specific neural connectivity in two independent populations. NEUROIMAGE-CLINICAL 2017; 14:441-449. [PMID: 28275544 PMCID: PMC5328751 DOI: 10.1016/j.nicl.2017.02.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/10/2017] [Accepted: 02/11/2017] [Indexed: 12/21/2022]
Abstract
Major psychiatric disorders, including attention deficit hyperactivity disorder (ADHD), autism (AUT), bipolar disorder (BD), major depressive disorder (MDD), and schizophrenia (SZ), are highly heritable and polygenic. Evidence suggests that these five disorders have both shared and distinct genetic risks and neural connectivity abnormalities. To measure aggregate genetic risks, the polygenic risk score (PGRS) was computed. Two independent general populations (N = 360 and N = 323) were separately examined to investigate whether the cross-disorder PGRS and PGRS for a specific disorder were associated with individual variability in functional connectivity. Consistent altered functional connectivity was found with the bilateral insula: for the left supplementary motor area and the left superior temporal gyrus with the cross-disorder PGRS, for the left insula and right middle and superior temporal lobe associated with the PGRS for autism, for the bilateral midbrain, posterior cingulate, cuneus, and precuneus associated with the PGRS for BD, and for the left angular gyrus and the left dorsolateral prefrontal cortex associated with the PGRS for schizophrenia. No significant functional connectivity was found associated with the PGRS for ADHD and MDD. Our findings indicated that genetic effects on the cross-disorder and disorder-specific neural connectivity of common genetic risk loci are detectable in the general population. Our findings also indicated that polygenic risk contributes to the main neurobiological phenotypes of psychiatric disorders and that identifying cross-disorder and specific functional connectivity related to polygenic risks may elucidate the neural pathways for these disorders. Altered cross-disorder functional connectivity related to PGRSs is detected. Altered disorder-specific functional connectivity related to PGRSs is detected. Altered functional connectivity related to PGRSs is involved in brain networks. Polygenic risk contributes to neurobiological phenotypes of psychiatric disorders.
Collapse
|