1
|
Meghji S, Hilderley AJ, Murias K, Brooks BL, Andersen J, Fehlings D, Dlamini N, Kirton A, Carlson HL. Executive functioning, ADHD symptoms and resting state functional connectivity in children with perinatal stroke. Brain Imaging Behav 2024; 18:263-278. [PMID: 38038867 PMCID: PMC11156742 DOI: 10.1007/s11682-023-00827-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2023] [Indexed: 12/02/2023]
Abstract
Perinatal stroke describes a group of focal, vascular brain injuries that occur early in development, often resulting in lifelong disability. Two types of perinatal stroke predominate, arterial ischemic stroke (AIS) and periventricular venous infarction (PVI). Though perinatal stroke is typically considered a motor disorder, other comorbidities commonly exist including attention-deficit hyperactivity disorder (ADHD) and deficits in executive function. Rates of ADHD symptoms are higher in children with perinatal stroke and deficits in executive function may also occur but underlying mechanisms are not known. We measured resting state functional connectivity in children with perinatal stroke using previously established dorsal attention, frontoparietal, and default mode network seeds. Associations with parental ratings of executive function and ADHD symptoms were examined. A total of 120 participants aged 6-19 years [AIS N = 31; PVI N = 30; Controls N = 59] were recruited. In comparison to typically developing peers, both the AIS and PVI groups showed lower intra- and inter-hemispheric functional connectivity values in the networks investigated. Group differences in between-network connectivity were also demonstrated, showing weaker anticorrelations between task-positive (frontoparietal and dorsal attention) and task-negative (default mode) networks in stroke groups compared to controls. Both within-network and between-network functional connectivity values were highly associated with parental reports of executive function and ADHD symptoms. These results suggest that differences in functional connectivity exist both within and between networks after perinatal stroke, the degree of which is associated with ADHD symptoms and executive function.
Collapse
Affiliation(s)
- Suraya Meghji
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, 28 Oki Drive NW, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, 28 Oki Drive NW, Calgary, AB, Canada
| | - Alicia J Hilderley
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, 28 Oki Drive NW, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, 28 Oki Drive NW, Calgary, AB, Canada
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Kara Murias
- Alberta Children's Hospital Research Institute, 28 Oki Drive NW, Calgary, AB, Canada
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Brian L Brooks
- Alberta Children's Hospital Research Institute, 28 Oki Drive NW, Calgary, AB, Canada
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Neurosciences Program, Alberta Children's Hospital, Calgary, AB, Canada
- Department of Psychology, University of Calgary, Calgary, AB, Canada
| | - John Andersen
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Darcy Fehlings
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Nomazulu Dlamini
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada
- Children's Stroke Program, Division of Neurology, Hospital for Sick Children, Toronto, ON, Canada
| | - Adam Kirton
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, 28 Oki Drive NW, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, 28 Oki Drive NW, Calgary, AB, Canada
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Department of Radiology, University of Calgary, Calgary, AB, Canada
| | - Helen L Carlson
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, 28 Oki Drive NW, Calgary, AB, Canada.
- Alberta Children's Hospital Research Institute, 28 Oki Drive NW, Calgary, AB, Canada.
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
2
|
Koukalova L, Chmelova M, Amlerova Z, Vargova L. Out of the core: the impact of focal ischemia in regions beyond the penumbra. Front Cell Neurosci 2024; 18:1336886. [PMID: 38504666 PMCID: PMC10948541 DOI: 10.3389/fncel.2024.1336886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/08/2024] [Indexed: 03/21/2024] Open
Abstract
The changes in the necrotic core and the penumbra following induction of focal ischemia have been the focus of attention for some time. However, evidence shows, that ischemic injury is not confined to the primarily affected structures and may influence the remote areas as well. Yet many studies fail to probe into the structures beyond the penumbra, and possibly do not even find any significant results due to their short-term design, as secondary damage occurs later. This slower reaction can be perceived as a therapeutic opportunity, in contrast to the ischemic core defined as irreversibly damaged tissue, where the window for salvation is comparatively short. The pathologies in remote structures occur relatively frequently and are clearly linked to the post-stroke neurological outcome. In order to develop efficient therapies, a deeper understanding of what exactly happens in the exo-focal regions is necessary. The mechanisms of glia contribution to the ischemic damage in core/penumbra are relatively well described and include impaired ion homeostasis, excessive cell swelling, glutamate excitotoxic mechanism, release of pro-inflammatory cytokines and phagocytosis or damage propagation via astrocytic syncytia. However, little is known about glia involvement in post-ischemic processes in remote areas. In this literature review, we discuss the definitions of the terms "ischemic core", "penumbra" and "remote areas." Furthermore, we present evidence showing the array of structural and functional changes in the more remote regions from the primary site of focal ischemia, with a special focus on glia and the extracellular matrix. The collected information is compared with the processes commonly occurring in the ischemic core or in the penumbra. Moreover, the possible causes of this phenomenon and the approaches for investigation are described, and finally, we evaluate the efficacy of therapies, which have been studied for their anti-ischemic effect in remote areas in recent years.
Collapse
Affiliation(s)
- Ludmila Koukalova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Martina Chmelova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| | - Zuzana Amlerova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Lydia Vargova
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
3
|
De Benedictis A, Rossi-Espagnet MC, de Palma L, Sarubbo S, Marras CE. Structural networking of the developing brain: from maturation to neurosurgical implications. Front Neuroanat 2023; 17:1242757. [PMID: 38099209 PMCID: PMC10719860 DOI: 10.3389/fnana.2023.1242757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/09/2023] [Indexed: 12/17/2023] Open
Abstract
Modern neuroscience agrees that neurological processing emerges from the multimodal interaction among multiple cortical and subcortical neuronal hubs, connected at short and long distance by white matter, to form a largely integrated and dynamic network, called the brain "connectome." The final architecture of these circuits results from a complex, continuous, and highly protracted development process of several axonal pathways that constitute the anatomical substrate of neuronal interactions. Awareness of the network organization of the central nervous system is crucial not only to understand the basis of children's neurological development, but also it may be of special interest to improve the quality of neurosurgical treatments of many pediatric diseases. Although there are a flourishing number of neuroimaging studies of the connectome, a comprehensive vision linking this research to neurosurgical practice is still lacking in the current pediatric literature. The goal of this review is to contribute to bridging this gap. In the first part, we summarize the main current knowledge concerning brain network maturation and its involvement in different aspects of normal neurocognitive development as well as in the pathophysiology of specific diseases. The final section is devoted to identifying possible implications of this knowledge in the neurosurgical field, especially in epilepsy and tumor surgery, and to discuss promising perspectives for future investigations.
Collapse
Affiliation(s)
| | | | - Luca de Palma
- Clinical and Experimental Neurology, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Silvio Sarubbo
- Department of Neurosurgery, Santa Chiara Hospital, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy
| | | |
Collapse
|
4
|
Hill NM, Malone LA, Sun LR. Stroke in the Developing Brain: Neurophysiologic Implications of Stroke Timing, Location, and Comorbid Factors. Pediatr Neurol 2023; 148:37-43. [PMID: 37651976 DOI: 10.1016/j.pediatrneurol.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND Pediatric stroke, which is unique in that it represents a static insult to a developing brain, often leads to long-term neurological disability. Neuroplasticity in infants and children influences neurophysiologic recovery patterns after stroke; therefore outcomes depend on several factors including the timing and location of stroke and the presence of comorbid conditions. METHODS In this review, we discuss the unique implications of stroke occurring in the fetal, perinatal, and childhood/adolescent time periods. First, we highlight the impact of the developmental stage of the brain at the time of insult on the motor, sensory, cognitive, speech, and behavioral domains. Next, we consider the influence of location of stroke on the presence and severity of motor and nonmotor outcomes. Finally, we discuss the impact of associated conditions on long-term outcomes and risk for stroke recurrence. RESULTS Hemiparesis is common after stroke at any age, although the severity of impairment differs by age group. Risk of epilepsy is elevated in all age groups compared with those without stroke. Outcomes in other domains vary by age, although several studies suggest worse cognitive outcomes when stroke occurs in early childhood compared with fetal and later childhood epochs. Conditions such as congenital heart disease, sickle cell disease, and moyamoya increase the risk of stroke and leave patients differentially vulnerable to neurodevelopmental delay, stroke recurrence, silent infarcts, and cognitive impairment. CONCLUSIONS A comprehensive understanding of the interplay of various factors is essential in guiding the clinical care of patients with pediatric stroke.
Collapse
Affiliation(s)
- Nayo M Hill
- Center for Movement Studies, Kennedy Krieger Institute, Baltimore, Maryland; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Laura A Malone
- Center for Movement Studies, Kennedy Krieger Institute, Baltimore, Maryland; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Physical Medicine and Rehabilitation, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Lisa R Sun
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
5
|
Carlson HL, Giuffre A, Ciechanski P, Kirton A. Electric field simulations of transcranial direct current stimulation in children with perinatal stroke. Front Hum Neurosci 2023; 17:1075741. [PMID: 36816507 PMCID: PMC9932338 DOI: 10.3389/fnhum.2023.1075741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction Perinatal stroke (PS) is a focal vascular brain injury and the leading cause of hemiparetic cerebral palsy. Motor impairments last a lifetime but treatments are limited. Transcranial direct-current stimulation (tDCS) may enhance motor learning in adults but tDCS effects on motor learning are less studied in children. Imaging-based simulations of tDCS-induced electric fields (EF) suggest differences in the developing brain compared to adults but have not been applied to common pediatric disease states. We created estimates of tDCS-induced EF strength using five tDCS montages targeting the motor system in children with PS [arterial ischemic stroke (AIS) or periventricular infarction (PVI)] and typically developing controls (TDC) aged 6-19 years to explore associates between simulation values and underlying anatomy. Methods Simulations were performed using SimNIBS https://simnibs.github.io/simnibs/build/html/index.html using T1, T2, and diffusion-weighted images. After tissue segmentation and tetrahedral mesh generation, tDCS-induced EF was estimated based on the finite element model (FEM). Five 1mA tDCS montages targeting motor function in the paretic (non-dominant) hand were simulated. Estimates of peak EF strength, EF angle, field focality, and mean EF in motor cortex (M1) were extracted for each montage and compared between groups. Results Simulations for eighty-three children were successfully completed (21 AIS, 30 PVI, 32 TDC). Conventional tDCS montages utilizing anodes over lesioned cortex had higher peak EF strength values for the AIS group compared to TDC. These montages showed lower mean EF strength within target M1 regions suggesting that peaks were not necessarily localized to motor network-related targets. EF angle was lower for TDC compared to PS groups for a subset of montages. Montages using anodes over lesioned cortex were more sensitive to variations in underlying anatomy (lesion and tissue volumes) than those using cathodes over non-lesioned cortex. Discussion Individualized patient-centered tDCS EF simulations are prudent for clinical trial planning and may provide insight into the efficacy of tDCS interventions in children with PS.
Collapse
Affiliation(s)
- Helen L. Carlson
- Calgary Pediatric Stroke Program, Alberta Children’s Hospital, Calgary, AB, Canada,Alberta Children’s Hospital Research Institute (ACHRI), Calgary, AB, Canada,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada,Department of Pediatrics, University of Calgary, Calgary, AB, Canada,*Correspondence: Helen L. Carlson,
| | - Adrianna Giuffre
- Calgary Pediatric Stroke Program, Alberta Children’s Hospital, Calgary, AB, Canada,Alberta Children’s Hospital Research Institute (ACHRI), Calgary, AB, Canada,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada,Department of Pediatrics, University of Calgary, Calgary, AB, Canada
| | - Patrick Ciechanski
- Calgary Pediatric Stroke Program, Alberta Children’s Hospital, Calgary, AB, Canada,Alberta Children’s Hospital Research Institute (ACHRI), Calgary, AB, Canada,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada,Department of Pediatrics, University of Calgary, Calgary, AB, Canada
| | - Adam Kirton
- Calgary Pediatric Stroke Program, Alberta Children’s Hospital, Calgary, AB, Canada,Alberta Children’s Hospital Research Institute (ACHRI), Calgary, AB, Canada,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada,Department of Pediatrics, University of Calgary, Calgary, AB, Canada,Department of Clinical Neuroscience and Radiology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
6
|
He Y, Ying J, Tang J, Zhou R, Qu H, Qu Y, Mu D. Neonatal Arterial Ischaemic Stroke: Advances in Pathologic Neural Death, Diagnosis, Treatment, and Prognosis. Curr Neuropharmacol 2022; 20:2248-2266. [PMID: 35193484 PMCID: PMC9890291 DOI: 10.2174/1570159x20666220222144744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/04/2022] [Accepted: 02/18/2022] [Indexed: 12/29/2022] Open
Abstract
Neonatal arterial ischaemic stroke (NAIS) is caused by focal arterial occlusion and often leads to severe neurological sequelae. Neural deaths after NAIS mainly include necrosis, apoptosis, necroptosis, autophagy, ferroptosis, and pyroptosis. These neural deaths are mainly caused by upstream stimulations, including excitotoxicity, oxidative stress, inflammation, and death receptor pathways. The current clinical approaches to managing NAIS mainly focus on supportive treatments, including seizure control and anticoagulation. In recent years, research on the pathology, early diagnosis, and potential therapeutic targets of NAIS has progressed. In this review, we summarise the latest progress of research on the pathology, diagnosis, treatment, and prognosis of NAIS and highlight newly potential diagnostic and treatment approaches.
Collapse
Affiliation(s)
- Yang He
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Junjie Ying
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Jun Tang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Ruixi Zhou
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Haibo Qu
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yi Qu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Dezhi Mu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| |
Collapse
|
7
|
Spatial attention in children with perinatal stroke. Behav Brain Res 2022; 417:113614. [PMID: 34606777 DOI: 10.1016/j.bbr.2021.113614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 09/21/2021] [Accepted: 09/29/2021] [Indexed: 11/24/2022]
Abstract
Spatial neglect is a common feature of right hemisphere damage in adults, but less is known about spatial inattention following early brain damage. We used a Posner-based cueing task to examine hemispatial neglect and aspects of attention in children with perinatal stroke in either left (LH) or right hemisphere (RH) and controls. A visual perception task assessed the speed of visual perception. A spatial attention cueing task (the E-task) measured the ability to discriminate the direction of a target stimulus ("E"), when presented on the left or right side of the screen. This task provided indices of performance for attention orienting, disengagement and reorienting. Children with LH lesions had slowed visual perception compared to controls. Children with RH lesions did not demonstrate similar deficits. On the E-task, groups with both LH and RH lesions demonstrated lower accuracy on both left and right sides compared to controls. Children with LH lesions also showed impaired attention orienting and disengagement on left and right sides compared to controls, while children with RH lesions were most impaired in orienting and disengagement on their contralesional side. Children with LH lesions demonstrated more extensive attentional deficits than children with RH lesions. These results suggest that development of spatial attention may require different neural networks than maintenance of attention.
Collapse
|
8
|
Larsen N, Craig BT, Hilderley AJ, Virani S, Murias K, Brooks BL, Kirton A, Carlson HL. Frontal interhemispheric structural connectivity, attention, and executive function in children with perinatal stroke. Brain Behav 2022; 12:e2433. [PMID: 34825521 PMCID: PMC8785614 DOI: 10.1002/brb3.2433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/18/2021] [Accepted: 10/25/2021] [Indexed: 11/23/2022] Open
Abstract
Perinatal stroke affects ∼1 in 1000 births and concomitant cognitive impairments are common but poorly understood. Rates of Attention Deficit/Hyperactivity Disorder (ADHD) are increased 5-10× and executive dysfunction can be disabling. We used diffusion imaging to investigate whether stroke-related differences in frontal white matter (WM) relate to cognitive impairments. Anterior forceps were isolated using tractography and sampled along the tract. Resulting metrics quantified frontal WM microstructure. Associations between WM metrics and parent ratings of ADHD symptoms (ADHD-5 rating scale) and executive functioning (Behavior Rating Inventory of Executive Function (BRIEF)) were explored. Eighty-three children were recruited (arterial ischemic stroke [AIS] n = 26; periventricular venous infarction [PVI] n = 26; controls n = 31). WM metrics were altered for stroke groups compared to controls. Along-tract analyses showed differences in WM metrics in areas approximating the lesion as well as more remote differences at midline and in the nonlesioned hemisphere. WM metrics correlated with parental ratings of ADHD and executive function such that higher diffusivity values were associated with poorer function. These findings suggest that underlying microstructure of frontal white matter quantified via tractography may provide a relevant biomarker associated with cognition and behavior in children with perinatal stroke.
Collapse
Affiliation(s)
- Nicole Larsen
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, Canada
| | - Brandon T Craig
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada.,Department of Pediatrics, University of Calgary, Calgary, Canada
| | - Alicia J Hilderley
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada.,Department of Pediatrics, University of Calgary, Calgary, Canada
| | - Shane Virani
- Department of Pediatrics, University of Calgary, Calgary, Canada
| | - Kara Murias
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada.,Department of Pediatrics, University of Calgary, Calgary, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, Canada
| | - Brian L Brooks
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada.,Department of Pediatrics, University of Calgary, Calgary, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, Canada.,Department of Psychology, University of Calgary, Calgary, Canada
| | - Adam Kirton
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada.,Department of Pediatrics, University of Calgary, Calgary, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, Canada.,Department of Radiology, University of Calgary, Calgary, Canada
| | - Helen L Carlson
- Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada.,Department of Pediatrics, University of Calgary, Calgary, Canada
| |
Collapse
|
9
|
Hassett J, Carlson H, Babwani A, Kirton A. Bihemispheric developmental alterations in basal ganglia volumes following unilateral perinatal stroke. NEUROIMAGE: CLINICAL 2022; 35:103143. [PMID: 36002972 PMCID: PMC9421529 DOI: 10.1016/j.nicl.2022.103143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/25/2022] [Accepted: 08/01/2022] [Indexed: 12/02/2022] Open
Abstract
Basal ganglia segmentation appears reliable in children with perinatal stroke. Alterations from perinatal stroke to basal ganglia development may be bihemispheric. Stroke type may dictate nucleus-specific differences in basal ganglia development. Putamen volume is associated with motor function in children with perinatal stroke.
Introduction Perinatal stroke affects millions of children and results in lifelong disability. Two forms prevail: arterial ischemic stroke (AIS), and periventricular venous infarction (PVI). With such focal damage early in life, neural structures may reorganize during development to determine clinical function, particularly in the contralesional hemisphere. Such processes are increasingly understood in the motor system, however, the role of the basal ganglia, a group of subcortical nuclei that are critical to movement, behaviour, and learning, remain relatively unexplored. Perinatal strokes that directly damage the basal ganglia have been associated with worse motor outcomes, but how developmental plasticity affects bilateral basal ganglia structure is unknown. We hypothesized that children with perinatal stroke have alterations in bilateral basal ganglia volumes, the degree of which correlates with clinical motor function. Methods Children with AIS or PVI, and controls, aged 6–19 years, were recruited from a population-based cohort. MRIs were acquired on a 3 T GE MR750w scanner. High-resolution T1-weighted images (166 slices, 1 mm isotropic voxels) underwent manual segmentations of bilateral caudate and putamen. Extracted volumes were corrected for total intracranial volume. A structure volume ratio quantified hemispheric asymmetry of caudate and putamen (non-dominant/dominant hemisphere structure volume) with ratios closer to 1 reflecting a greater degree of symmetry between structures. Participants were additionally dichotomized by volume ratios into two groups, those with values above the group mean (0.8) and those below. Motor function was assessed using the Assisting Hand Assessment (AHA) and the Box and Blocks test in affected (BBTA) and unaffected (BBTU) hands. Group differences in volumes were explored using Kruskal-Wallis tests, and interhemispheric differences using Wilcoxon. Partial Spearman correlations explored associations between volumes and motor function (factoring out age, and whole-brain white matter volume, a proxy for lesion extent). Results In the dominant (non-lesioned) hemisphere, volumes were larger in AIS compared to PVI for both the caudate (p < 0.05) and putamen (p < 0.01) but comparable between stroke groups and controls. Non-dominant (lesioned) hemisphere volumes were larger for controls than AIS for the putamen (p < 0.05), and for the caudate in PVI (p = 0.001). Interhemispheric differences showed greater dominant hemisphere volumes for the putamen in controls (p < 0.01), for both the caudate (p < 0.01) and putamen (p < 0.001) in AIS, and for the caudate (p = 0.01) in PVI. Motor scores did not differ between AIS and PVI thus groups were combined to increase statistical power. Better motor scores were associated with larger non-dominant putamen volumes (BBTA: r = 0.40, p = 0.011), and larger putamen volume ratios (BBTA: r = 0.52, p < 0.001, AHA: r = 0.43, p < 0.01). For those with relatively symmetrical putamen volume ratios (ratio > group mean of 0.8), age was positively correlated with BBTA (r = 0.54, p < 0.01) and BBTU (r = 0.69, p < 0.001). For those with more asymmetrical putamen volume ratios, associations with motor function and age were not seen (BBTA: r = 0.21, p = 0.40, BBTU: r = 0.37, p = 0.13). Conclusion Specific perinatal stroke lesions affect different elements of basal ganglia development. PVI primarily affected the caudate, while AIS primarily affected the putamen. Putamen volumes in the lesioned hemisphere are associated with clinical motor function. The basal ganglia should be included in evolving models of developmental plasticity after perinatal stroke.
Collapse
Affiliation(s)
- Jordan Hassett
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Helen Carlson
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute (ACHRI), Calgary, AB, Canada
| | - Ali Babwani
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Adam Kirton
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute (ACHRI), Calgary, AB, Canada.
| |
Collapse
|
10
|
McCall JV, Ludovice MC, Elliott C, Kamper DG. Hand function development of children with hemiplegic cerebral palsy: A scoping review. J Pediatr Rehabil Med 2022; 15:211-228. [PMID: 34864699 DOI: 10.3233/prm-200714] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
PURPOSE Hemiplegic cerebral palsy (hCP) typically impacts sensorimotor control of the hand, but comprehensive assessments of the hands of children with hCP are relatively rare. This scoping review summarizes the development of hand function for children with hCP. METHODS This scoping review focused on the development of hand function in children with hCP. Electronic databases (PubMed, PEDro, Web of Science, CINAHL, and SpringerLink) were searched to identify studies assessing hand function in children with hCP. The search was performed using keywords (e.g., "hemiplegia"). An iterative approach verified by two authors was used to select the studies. Articles which reported quantitative data for children with hCP on any items of a specified set of hand evaluations were included. Measures were sorted into three categories: quantitative neuromechanics, clinical assessments, and clinical functional evaluations. RESULTS Initial searches returned 1536 articles, 131 of which were included in the final review. Trends between assessment scores and age were examined for both hands. CONCLUSION While several studies have evaluated hand function in children with hCP, the majority relied on clinical scales, assessments, or qualitative descriptions. Further assessments of kinematics, kinetics, and muscle activation patterns are needed to identify the underlying impairment mechanisms that should be targeted for treatment.
Collapse
Affiliation(s)
- James V McCall
- Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC, USA
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Miranda C Ludovice
- Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC, USA
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Catherine Elliott
- School of Occupational Therapy, Social Work and Speech Pathology, Curtin University, Perth, Australia
- Child and Adolescent Health Services, Perth Children's Hospital, Perth, Australia
| | - Derek G Kamper
- Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC, USA
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
11
|
Yu S, Lam C, Shinde S, Kuczynski AM, Carlson HL, Dukelow SP, Brooks BL, Kirton A. Perilesional Gliosis Is Associated with Outcome after Perinatal Stroke. JOURNAL OF PEDIATRIC NEUROLOGY 2021. [DOI: 10.1055/s-0041-1728687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractPerinatal ischemic stroke results in focal brain injury and life-long disability. Hemiplegic cerebral palsy and additional sequelae are common. With no prevention strategies, improving outcomes depends on understanding brain development. Reactive astrogliosis is a hallmark of brain injury that has been associated with outcomes but is unstudied in perinatal stroke. In this article, we hypothesized that gliosis was quantifiable and its extent would inversely correlate with clinical motor function. This was a population-based, retrospective, and cross-sectional study. Children with perinatal arterial ischemic stroke (AIS) or periventricular venous infarction (PVI) with magnetic resonance (MR) imaging were included. An image thresholding technique based on image intensity was utilized to quantify the degree of chronic gliosis on T2-weighted sequences. Gliosis scores were corrected for infarct volume and compared with the Assisting Hand and Melbourne Assessments (AHA and MA), neuropsychological profiles, and robotic measures. In total, 42 children were included: 25 with AIS and 17 with PVI (median = 14.0 years, range: 6.3–19 years, 63% males). Gliosis was quantifiable in all scans and scores were highly reliable. Gliosis scores as percentage of brain volume ranged from 0.3 to 3.2% and were comparable between stroke types. Higher gliosis scores were associated with better motor function for all three outcomes in the AIS group, but no association was observed for PVI. Gliosis can be objectively quantified in children with perinatal stroke. Associations with motor outcome in arterial but not venous strokes suggest differing glial responses may play a role in tissue remodeling and developmental plasticity following early focal brain injury.
Collapse
Affiliation(s)
- Sabrina Yu
- Department of Pediatrics, University of Calgary, Calgary, Canada
| | - Charissa Lam
- Department of Pediatrics, University of Calgary, Calgary, Canada
| | - Siddharth Shinde
- Department of Pediatrics, University of Calgary, Calgary, Canada
| | | | - Helen L. Carlson
- Department of Pediatrics, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Sean P. Dukelow
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Department of Radiology, University of Calgary, Calgary, Canada
| | - Brian L. Brooks
- Department of Pediatrics, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
- Department of Psychology, University of Calgary, Calgary, Canada
| | - Adam Kirton
- Department of Pediatrics, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
- Department of Clinical Neuroscience, University of Calgary, Calgary, Canada
- Department of Radiology, University of Calgary, Calgary, Canada
| |
Collapse
|
12
|
Craig BT, Hilderley A, Kinney-Lang E, Long X, Carlson HL, Kirton A. Developmental neuroplasticity of the white matter connectome in children with perinatal stroke. Neurology 2020; 95:e2476-e2486. [PMID: 32887781 PMCID: PMC7682831 DOI: 10.1212/wnl.0000000000010669] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 06/03/2020] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE To employ diffusion imaging connectome methods to explore network development in the contralesional hemisphere of children with perinatal stroke and its relationship to clinical function. We hypothesized alterations in global efficiency of the intact hemisphere would correlate with clinical disability. METHODS Children with unilateral perinatal arterial (n = 26) or venous (n = 27) stroke and typically developing controls (n = 32) underwent 3T diffusion and T1 anatomical MRI and completed established motor assessments. A validated atlas coregistered to whole-brain tractography for each individual was used to estimate connectivity between 47 regions. Graph theory metrics (assortativity, hierarchical coefficient of regression, global and local efficiency, and small worldness) were calculated for the left hemisphere of controls and the intact contralesioned hemisphere of both stroke groups. Validated clinical motor assessments were then correlated with connectivity outcomes. RESULTS Global efficiency was higher in arterial strokes compared to venous strokes (p < 0.001) and controls (p < 0.001) and was inversely associated with all motor assessments (all p < 0.012). Additional graph theory metrics including assortativity, hierarchical coefficient of regression, and local efficiency also demonstrated consistent differences in the intact hemisphere associated with clinical function. CONCLUSIONS The structural connectome of the contralesional hemisphere is altered after perinatal stroke and correlates with clinical function. Connectomics represents a powerful tool to understand whole brain developmental plasticity in children with disease-specific cerebral palsy.
Collapse
Affiliation(s)
- Brandon T Craig
- From the Calgary Pediatric Stroke Program (B.T.C., A.H., E.K.-L., H.L.C., A.K.); and Hotchkiss Brain Institute (B.T.C., A.H., E.K.-L., X.L., H.L.C., A.K.), Alberta Children's Hospital Research Institute (B.T.C., A.H., E.K.-L., X.L., H.L.C., A.K.), and Departments of Pediatrics (H.L.C., A.K.) and Clinical Neuroscience (A.K.), Cumming School of Medicine, University of Calgary, Canada
| | - Alicia Hilderley
- From the Calgary Pediatric Stroke Program (B.T.C., A.H., E.K.-L., H.L.C., A.K.); and Hotchkiss Brain Institute (B.T.C., A.H., E.K.-L., X.L., H.L.C., A.K.), Alberta Children's Hospital Research Institute (B.T.C., A.H., E.K.-L., X.L., H.L.C., A.K.), and Departments of Pediatrics (H.L.C., A.K.) and Clinical Neuroscience (A.K.), Cumming School of Medicine, University of Calgary, Canada
| | - Eli Kinney-Lang
- From the Calgary Pediatric Stroke Program (B.T.C., A.H., E.K.-L., H.L.C., A.K.); and Hotchkiss Brain Institute (B.T.C., A.H., E.K.-L., X.L., H.L.C., A.K.), Alberta Children's Hospital Research Institute (B.T.C., A.H., E.K.-L., X.L., H.L.C., A.K.), and Departments of Pediatrics (H.L.C., A.K.) and Clinical Neuroscience (A.K.), Cumming School of Medicine, University of Calgary, Canada
| | - Xiangyu Long
- From the Calgary Pediatric Stroke Program (B.T.C., A.H., E.K.-L., H.L.C., A.K.); and Hotchkiss Brain Institute (B.T.C., A.H., E.K.-L., X.L., H.L.C., A.K.), Alberta Children's Hospital Research Institute (B.T.C., A.H., E.K.-L., X.L., H.L.C., A.K.), and Departments of Pediatrics (H.L.C., A.K.) and Clinical Neuroscience (A.K.), Cumming School of Medicine, University of Calgary, Canada
| | - Helen L Carlson
- From the Calgary Pediatric Stroke Program (B.T.C., A.H., E.K.-L., H.L.C., A.K.); and Hotchkiss Brain Institute (B.T.C., A.H., E.K.-L., X.L., H.L.C., A.K.), Alberta Children's Hospital Research Institute (B.T.C., A.H., E.K.-L., X.L., H.L.C., A.K.), and Departments of Pediatrics (H.L.C., A.K.) and Clinical Neuroscience (A.K.), Cumming School of Medicine, University of Calgary, Canada
| | - Adam Kirton
- From the Calgary Pediatric Stroke Program (B.T.C., A.H., E.K.-L., H.L.C., A.K.); and Hotchkiss Brain Institute (B.T.C., A.H., E.K.-L., X.L., H.L.C., A.K.), Alberta Children's Hospital Research Institute (B.T.C., A.H., E.K.-L., X.L., H.L.C., A.K.), and Departments of Pediatrics (H.L.C., A.K.) and Clinical Neuroscience (A.K.), Cumming School of Medicine, University of Calgary, Canada.
| |
Collapse
|
13
|
Imaging Developmental and Interventional Plasticity Following Perinatal Stroke. Can J Neurol Sci 2020; 48:157-171. [DOI: 10.1017/cjn.2020.166] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
ABSTRACT:Perinatal stroke occurs around the time of birth and leads to lifelong neurological disabilities including hemiparetic cerebral palsy. Magnetic resonance imaging (MRI) has revolutionized our understanding of developmental neuroplasticity following early injury, quantifying volumetric, structural, functional, and metabolic compensatory changes after perinatal stroke. Such techniques can also be used to investigate how the brain responds to treatment (interventional neuroplasticity). Here, we review the current state of knowledge of how established and emerging neuroimaging modalities are informing neuroplasticity models in children with perinatal stroke. Specifically, we review structural imaging characterizing lesion characteristics and volumetrics, diffusion tensor imaging investigating white matter tracts and networks, task-based functional MRI for localizing function, resting state functional imaging for characterizing functional connectomes, and spectroscopy examining neurometabolic changes. Key challenges and exciting avenues for future investigations are also considered.
Collapse
|