1
|
Lim SH, Guo XY, Kim HG, Ko HC, Park S, Ryu CW, Jahng GH. Prediction of Hemifacial Spasm Re-Appearing Phenomenon after Microvascular Decompression Surgery in Patients with Hemifacial Spasm Using Dynamic Susceptibility Contrast Perfusion Magnetic Resonance Imaging. J Korean Neurosurg Soc 2025; 68:46-59. [PMID: 38915211 PMCID: PMC11725455 DOI: 10.3340/jkns.2024.0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/29/2024] [Accepted: 06/25/2024] [Indexed: 06/26/2024] Open
Abstract
OBJECTIVE Hemifacial spasm (HFS) is treated by a surgical procedure called microvascular decompression (MVD). However, HFS re-appearing phenomenon after surgery, presenting as early recurrence, is experienced by some patients after MVD. Dynamic susceptibility contrast (DSC) perfusion magnetic resonance imaging (MRI) and two analytical methods : receiver operating characteristic (ROC) curve and machine learning, were used to predict early recurrence in this study. METHODS This study enrolled 60 patients who underwent MVD for HFS. They were divided into two groups : group A consisted of 32 patients who had early recurrence and group B consisted of 28 patients who had no early recurrence of HFS. DSC perfusion MRI was undergone by all patients before the surgery to obtain the several parameters. ROC curve and machine learning methods were used to predict early recurrence using these parameters. RESULTS Group A had significantly lower relative cerebral blood flow than group B in most of the selected brain regions, as shown by the region-of-interest-based analysis. By combining three extraction fraction (EF) values at middle temporal gyrus, posterior cingulate, and brainstem, with age, using naive Bayes machine learning method, the best prediction model for early recurrence was obtained. This model had an area under the curve value of 0.845. CONCLUSION By combining EF values with age or sex using machine learning methods, DSC perfusion MRI can be used to predict early recurrence before MVD surgery. This may help neurosurgeons to identify patients who are at risk of HFS recurrence and provide appropriate postoperative care.
Collapse
Affiliation(s)
- Seung Hoon Lim
- Department of Neurosurgery, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul, Korea
| | - Xiao-Yi Guo
- Department of Medicine, Graduate School, Kyung Hee University, Seoul, Korea
| | - Hyug-Gi Kim
- Department of Radiology, Kyung Hee University Hospital, Seoul, Korea
| | - Hak Cheol Ko
- Department of Neurosurgery, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul, Korea
| | - Soonchan Park
- Department of Radiology, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul, Korea
| | - Chang-Woo Ryu
- Department of Radiology, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul, Korea
| | - Geon-Ho Jahng
- Department of Radiology, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul, Korea
| |
Collapse
|
2
|
Wu H, Zhou C, Guan X, Bai X, Guo T, Wu J, Chen J, Wen J, Wu C, Cao Z, Liu X, Gao T, Gu L, Huang P, Xu X, Zhang B, Zhang M. Functional connectomes of akinetic-rigid and tremor within drug-naïve Parkinson's disease. CNS Neurosci Ther 2023; 29:3507-3517. [PMID: 37305965 PMCID: PMC10580330 DOI: 10.1111/cns.14284] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 03/26/2023] [Accepted: 05/22/2023] [Indexed: 06/13/2023] Open
Abstract
AIMS To detect functional connectomes of akinetic-rigid (AR) and tremor and compare their connection pattern. METHODS Resting-state functional MRI data of 78 drug-naïve PD patients were enrolled to construct connectomes of AR and tremor via connectome-based predictive modeling (CPM). The connectomes were further validated with 17 drug-naïve patients to verify their replication. RESULTS The connectomes related to AR and tremor were identified via CPM method and successfully validated in the independent set. Additional regional-based CPM demonstrated neither AR nor tremor could be simplified to functional changes within a single brain region. Computational lesion version of CPM revealed that parietal lobe and limbic system were the most important regions among AR-related connectome, and motor strip and cerebellum were the most important regions among tremor-related connectome. Comparing two connectomes found that the patterns of connection between them were largely distinct, with only four overlapped connections identified. CONCLUSION AR and tremor were found to be associated with functional changes in multiple brain regions. Distinct connection patterns of AR-related and tremor-related connectomes suggest different neural mechanisms underlying the two symptoms.
Collapse
Affiliation(s)
- Haoting Wu
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Cheng Zhou
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiaojun Guan
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xueqin Bai
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Tao Guo
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jingjing Wu
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jingwen Chen
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jiaqi Wen
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Chenqing Wu
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Zhengye Cao
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiaocao Liu
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Ting Gao
- Department of Neurology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Luyan Gu
- Department of Neurology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiaojun Xu
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Baorong Zhang
- Department of Neurology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Minming Zhang
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
3
|
Bovenzi R, Conti M, Degoli GR, Cerroni R, Simonetta C, Liguori C, Salimei C, Pisani A, Pierantozzi M, Stefani A, Mercuri NB, Schirinzi T. Shaping the course of early-onset Parkinson's disease: insights from a longitudinal cohort. Neurol Sci 2023; 44:3151-3159. [PMID: 37140831 PMCID: PMC10415517 DOI: 10.1007/s10072-023-06826-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 04/20/2023] [Indexed: 05/05/2023]
Abstract
INTRODUCTION Early -onset Parkinson's disease (EOPD) labels those cases with onset earlier than fifty. Although peculiarities emerged either in clinical or pathological features, EOPD is managed alike typical, late-onset PD. A customized approach would be, instead, better appropriate. Accordingly, a deeper characterization of the clinical course, with an estimation of the disease progression rate, the therapy flow, and the main motor and non-motor complications occurrence, is needed. METHODS A longitudinal cohort of 193 EOPD patients (selected on a single-centre population of 2000 PD cases) was retrospectively analysed, providing descriptive statics on a series of clinical parameters (genetics, phenotype, comorbidities, therapies, motor and non-motor complications, marital and gender issues) and modelling the trajectories from diagnosis to 10 years later of both Hoehn and Yahr (H&Y) stage and levodopa equivalent daily dose (LEDD). RESULTS EOPD had a prevalence of 9.7%, including few monogenic cases. It mostly appeared as a motor syndrome, with asymmetric, rigid-akinetic presentation. H&Y linearly progressed with an increment of 0.92 points/10 years; LEDD flow had a non-linear trend, increasing of 526.90 mg/day in 0-5 years, and 166.83 mg/day in 5-10 years. Motor fluctuations started 6.5 ± 3.2 years from onset, affecting up to 80% of the cohort. Neuropsychiatric troubles interested the 50%, sexual complaints the 12%. Gender-specific motor disturbances emerged. CONCLUSION We shaped EOPD course, modelling a "brain-first" PD subtype, slowly progressive, with non-linear dopaminergic requirement. Major burden mostly resulted from motor fluctuations, neuropsychiatric complications, sexual and marital complaints, with a considerable gender-effect.
Collapse
Affiliation(s)
- Roberta Bovenzi
- Unit of Neurology, Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier, 00133, Rome, Italy
| | - Matteo Conti
- Unit of Neurology, Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier, 00133, Rome, Italy
| | - Giulia Rebecca Degoli
- Unit of Neurology, Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier, 00133, Rome, Italy
| | - Rocco Cerroni
- Unit of Neurology, Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier, 00133, Rome, Italy
| | - Clara Simonetta
- Unit of Neurology, Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier, 00133, Rome, Italy
| | - Claudio Liguori
- Unit of Neurology, Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier, 00133, Rome, Italy
| | - Chiara Salimei
- Unit of Neurology, Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier, 00133, Rome, Italy
| | - Antonio Pisani
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
- IRCCS Mondino Foundation, Pavia, Italy
| | - Mariangela Pierantozzi
- Unit of Neurology, Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier, 00133, Rome, Italy
| | - Alessandro Stefani
- Unit of Neurology, Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier, 00133, Rome, Italy
- UOSD Parkinson Centre, Tor Vergata University Hospital, Rome, Italy
| | - Nicola Biagio Mercuri
- Unit of Neurology, Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier, 00133, Rome, Italy
- IRCCS Fondazione Santa Lucia, European Centre for Brain Research, Rome, Italy
| | - Tommaso Schirinzi
- Unit of Neurology, Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier, 00133, Rome, Italy.
| |
Collapse
|
4
|
Passera B, Harquel S, Chauvin A, Gérard P, Lai L, Moro E, Meoni S, Fraix V, David O, Raffin E. Multi-scale and cross-dimensional TMS mapping: A proof of principle in patients with Parkinson's disease and deep brain stimulation. Front Neurosci 2023; 17:1004763. [PMID: 37214390 PMCID: PMC10192635 DOI: 10.3389/fnins.2023.1004763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 03/29/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction Transcranial magnetic stimulation (TMS) mapping has become a critical tool for exploratory studies of the human corticomotor (M1) organization. Here, we propose to gather existing cutting-edge TMS-EMG and TMS-EEG approaches into a combined multi-dimensional TMS mapping that considers local and whole-brain excitability changes as well as state and time-specific changes in cortical activity. We applied this multi-dimensional TMS mapping approach to patients with Parkinson's disease (PD) with Deep brain stimulation (DBS) of the sub-thalamic nucleus (STN) ON and OFF. Our goal was to identifying one or several TMS mapping-derived markers that could provide unprecedent new insights onto the mechanisms of DBS in movement disorders. Methods Six PD patients (1 female, mean age: 62.5 yo [59-65]) implanted with DBS-STN for 1 year, underwent a robotized sulcus-shaped TMS motor mapping to measure changes in muscle-specific corticomotor representations and a movement initiation task to probe state-dependent modulations of corticospinal excitability in the ON (using clinically relevant DBS parameters) and OFF DBS states. Cortical excitability and evoked dynamics of three cortical areas involved in the neural control of voluntary movements (M1, pre-supplementary motor area - preSMA and inferior frontal gyrus - IFG) were then mapped using TMS-EEG coupling in the ON and OFF state. Lastly, we investigated the timing and nature of the STN-to-M1 inputs using a paired pulse DBS-TMS-EEG protocol. Results In our sample of patients, DBS appeared to induce fast within-area somatotopic re-arrangements of motor finger representations in M1, as revealed by mediolateral shifts of corticomuscle representations. STN-DBS improved reaction times while up-regulating corticospinal excitability, especially during endogenous motor preparation. Evoked dynamics revealed marked increases in inhibitory circuits in the IFG and M1 with DBS ON. Finally, inhibitory conditioning effects of STN single pulses on corticomotor activity were found at timings relevant for the activation of inhibitory GABAergic receptors (4 and 20 ms). Conclusion Taken together, these results suggest a predominant role of some markers in explaining beneficial DBS effects, such as a context-dependent modulation of corticospinal excitability and the recruitment of distinct inhibitory circuits, involving long-range projections from higher level motor centers and local GABAergic neuronal populations. These combined measures might help to identify discriminative features of DBS mechanisms towards deep clinical phenotyping of DBS effects in Parkinson's Disease and in other pathological conditions.
Collapse
Affiliation(s)
- Brice Passera
- CNRS UMR 5105, Laboratoire Psychologie et Neurocognition, LPNC, Grenoble, France
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Sylvain Harquel
- CNRS UMR 5105, Laboratoire Psychologie et Neurocognition, LPNC, Grenoble, France
- CNRS, INSERM, IRMaGe, Grenoble, France
- Defitech Chair in Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, EPFL, Geneva, Switzerland
| | - Alan Chauvin
- CNRS UMR 5105, Laboratoire Psychologie et Neurocognition, LPNC, Grenoble, France
| | - Pauline Gérard
- CNRS UMR 5105, Laboratoire Psychologie et Neurocognition, LPNC, Grenoble, France
| | - Lisa Lai
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
| | - Elena Moro
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
| | - Sara Meoni
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
| | - Valerie Fraix
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
| | - Olivier David
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
- Aix Marseille Univ, Inserm, U1106, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | - Estelle Raffin
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
- Defitech Chair in Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, EPFL, Geneva, Switzerland
| |
Collapse
|
5
|
Torrecuso R, Mueller K, Holiga Š, Sieger T, Vymazal J, Ružička F, Roth J, Ružička E, Schroeter ML, Jech R, Möller HE. Improving fMRI in Parkinson's disease by accounting for brain region-specific activity patterns. Neuroimage Clin 2023; 38:103396. [PMID: 37037118 PMCID: PMC10120395 DOI: 10.1016/j.nicl.2023.103396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 03/26/2023] [Accepted: 04/01/2023] [Indexed: 04/12/2023]
Abstract
In functional magnetic imaging (fMRI) in Parkinson's disease (PD), a paradigm consisting of blocks of finger tapping and rest along with a corresponding general linear model (GLM) is often used to assess motor activity. However, this method has three limitations: (i) Due to the strong magnetic field and the confined environment of the cylindrical bore, it is troublesome to accurately monitor motor output and, therefore, variability in the performed movement is typically ignored. (ii) Given the loss of dopaminergic neurons and ongoing compensatory brain mechanisms, motor control is abnormal in PD. Therefore, modeling of patients' tapping with a constant amplitude (using a boxcar function) and the expected Parkinsonian motor output are prone to mismatch. (iii) The motor loop involves structures with distinct hemodynamic responses, for which only one type of modeling (e.g., modeling the whole block of finger tapping) may not suffice to capture these structure's temporal activation. The first two limitations call for considering results from online recordings of the real motor output that may lead to significant sensitivity improvements. This was shown in previous work using a non-magnetic glove to capture details of the patients' finger movements in a so-called kinematic approach. For the third limitation, modeling motion initiation instead of the whole tapping block has been suggested to account for different temporal activation signatures of the motor loop's structures. In the present study we propose improvements to the GLM as a tool to study motor disorders. For this, we test the robustness of the kinematic approach in an expanded cohort (n = 31), apply more conservative statistics than in previous work, and evaluate the benefits of an event-related model function. Our findings suggest that the integration of the kinematic approach offers a general improvement in detecting activations in subcortical structures, such as the basal ganglia. Additionally, modeling motion initiation using an event-related design yielded superior performance in capturing medication-related effects in the putamen. Our results may guide adaptations in analysis strategies for functional motor studies related to PD and also in more general applications.
Collapse
Affiliation(s)
- Renzo Torrecuso
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Karsten Mueller
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Department of Neurology, Charles University, First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Štefan Holiga
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Roche Pharma Research and Early Development, Roche Innovation Center, Basel, Switzerland
| | - Tomáš Sieger
- Department of Neurology, Charles University, First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | | | - Filip Ružička
- Department of Neurology, Charles University, First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic; Na Homolce Hospital, Prague, Czech Republic
| | - Jan Roth
- Department of Neurology, Charles University, First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic; Na Homolce Hospital, Prague, Czech Republic
| | - Evzen Ružička
- Department of Neurology, Charles University, First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Matthias L Schroeter
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Clinic for Cognitive Neurology, Leipzig University Hospital, Leipzig, Germany
| | - Robert Jech
- Department of Neurology, Charles University, First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic; Na Homolce Hospital, Prague, Czech Republic
| | - Harald E Möller
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
6
|
Yuan M, Du N, Song Z. Primary motor area-related injury of anterior central gyrus in Parkinson's disease with dyskinesia: a study based on MRS and Q-Space. Neurosci Lett 2023; 805:137224. [PMID: 37019268 DOI: 10.1016/j.neulet.2023.137224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 04/05/2023]
Abstract
INTRODUCTION By using magnetic resonance spectroscopy (MRS) and Q-Space imaging technology, this research analyzes the imaging characteristics of white matter fibers in the primary motor cortex and posterior limbs of the subcortical internal capsule in parkinsonian patients with motor disorders. The correlation among the changes in axonal function and structure in the cerebral cortex and subcortical cortex and motor disorder is further revealed. METHODS First, motor function and clinical condition of 20 patients with Parkinson's disease is assessed the third section of the Unified Parkinson's Scale and H&Y Parkinson's Clinical Staging Scale. Magnetic resonance (MR) scanning is performed with 1H-MRS. Secondly, the range maps of N-acetylaspartic acid (NAA), Choline (Cho), and Creatine (Cr) in the region of interest (the primary motor area of anterior central cortex gyrus, i.e. M1 region) are obtained, and the ratios of NAA/Cr and Cho are calculated. Third, Q-Space MR diffusion imaging technique is used to collect Q-Space images, and a Dsi-studio workstation is used to post-process the images. The fraction anisotropic (FA), generalized fraction anisotropic (GFA), and apparent diffusion coefficient (ADC) parameters of Q-Space in the primary motor cortex and the region of interest in the posterior limb of the internal capsule are obtained. Finally, the parameters of MRS and Q-Space in the experimental group and the control group are further analyzed by SPSS statistical software. RESULTS After assessing with Parkinson's score scale, there is obvious motor dysfunction in the experimental group. The average clinical stage of H&Y is 3.0±0.31. In the analysis of MRS data, the ratio of NAA/Cr in the primary motor area of the anterior central gyrus in the experimental group is significantly lower than that in the control group (P<0.05). In the ADC map obtained by Q-Space imaging technique, the ADC value in the primary motor area of the anterior central gyrus in the experimental group is higher than that in the control group (P<0.05), and the difference is statistically significant (P<0.05). There is no significant difference between the experimental group and the control group (P>0.05) in FA and GFA values of the posterior limb of capsule to characterize the characteristics of white matter fibers. CONCLUSIONS In parkinsonian patients with motor dysfunction, there are apparent functional and structural changes in the primary motor area neurons and peripheral white matter of the anterior central gyrus, and no obvious damage to the axonal structure of the descending fibers in the cortex.
Collapse
|
7
|
Li J, Zhang Y, Huang Z, Jiang Y, Ren Z, Liu D, Zhang J, La Piana R, Chen Y. Cortical and subcortical morphological alterations in motor subtypes of Parkinson's disease. NPJ Parkinsons Dis 2022; 8:167. [PMID: 36470900 PMCID: PMC9723125 DOI: 10.1038/s41531-022-00435-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease (PD) can be classified into an akinetic-rigid (AR) and a tremor-dominant (TD) subtype based on predominant motor symptoms. Patients with different motor subtypes often show divergent clinical manifestations; however, the underlying neural mechanisms remain unclear. This study aimed to characterize the cortical and subcortical morphological alterations in motor subtypes of PD. T1-weighted MRI images were obtained for 90 patients with PD (64 with the AR subtype and 26 with the TD subtype) and 56 healthy controls (HCs). Cortical surface area, sulcal depth (measured by Freesurfer's Sulc index), and subcortical volume were computed to identify the cortical and subcortical morphological alterations in the two motor subtypes. Compared with HCs, we found widespread surface area reductions in the AR subtype yet sparse surface area reductions in the TD subtype. We found no significant Sulc change in the AR subtype yet increased Sulc in the right supramarginal gyrus in the TD subtype. The hippocampal volumes in both subtypes were lower than those of HCs. In PD patients, the surface area of left posterior cingulate cortex was positively correlated with Mini-Mental State Examination (MMSE) score, while the Sulc value of right middle frontal gyrus was positively correlated with severity of motor impairments. Additionally, the hippocampal volumes were positively correlated with MMSE and Montreal Cognitive Assessment scores and negatively correlated with severity of motor impairments and Hoehn & Yahr scores. Taken together, these findings may contribute to a better understanding of the neural substrates underlying the distinct symptom profiles in the two PD subtypes.
Collapse
Affiliation(s)
- Jianyu Li
- grid.54549.390000 0004 0369 4060Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054 P. R. China
| | - Yuanchao Zhang
- grid.54549.390000 0004 0369 4060Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054 P. R. China
| | - Zitong Huang
- grid.54549.390000 0004 0369 4060Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054 P. R. China
| | - Yihan Jiang
- grid.54549.390000 0004 0369 4060Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054 P. R. China
| | - Zhanbing Ren
- grid.263488.30000 0001 0472 9649Department of Physical Education, Shenzhen University, Shenzhen, 518060 China
| | - Daihong Liu
- grid.452285.cDepartment of Radiology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, 400030 P. R. China
| | - Jiuquan Zhang
- grid.452285.cDepartment of Radiology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, 400030 P. R. China
| | - Roberta La Piana
- grid.14709.3b0000 0004 1936 8649Department of Neurology & Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 0G4 Canada
| | - Yifan Chen
- grid.54549.390000 0004 0369 4060Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054 P. R. China
| |
Collapse
|
8
|
Criaud M, Laurencin C, Poisson A, Metereau E, Redouté J, Thobois S, Boulinguez P, Ballanger B. Noradrenaline and Movement Initiation Disorders in Parkinson’s Disease: A Pharmacological Functional MRI Study with Clonidine. Cells 2022; 11:cells11172640. [PMID: 36078048 PMCID: PMC9454805 DOI: 10.3390/cells11172640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/13/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Slowness of movement initiation is a cardinal motor feature of Parkinson’s disease (PD) and is not fully reverted by current dopaminergic treatments. This trouble could be due to the dysfunction of executive processes and, in particular, of inhibitory control of response initiation, a function possibly associated with the noradrenergic (NA) system. The implication of NA in the network supporting proactive inhibition remains to be elucidated using pharmacological protocols. For that purpose, we administered 150 μg of clonidine to 15 healthy subjects and 12 parkinsonian patients in a double-blind, randomized, placebo-controlled design. Proactive inhibition was assessed by means of a Go/noGo task, while pre-stimulus brain activity was measured by event-related functional MRI. Acute reduction in noradrenergic transmission induced by clonidine enhanced difficulties initiating movements reflected by an increase in omission errors and modulated the activity of the anterior node of the proactive inhibitory network (dorsomedial prefrontal and anterior cingulate cortices) in PD patients. We conclude that NA contributes to movement initiation by acting on proactive inhibitory control via the α2-adrenoceptor. We suggest that targeting noradrenergic dysfunction may represent a new treatment approach in some of the movement initiation disorders seen in Parkinson’s disease.
Collapse
Affiliation(s)
- Marion Criaud
- Institute of Psychiatry Psychology & Neuroscience, Department Child & Adolescent Psychiatry, Kings College London, London SE24 9QR, UK
| | - Chloé Laurencin
- Université de Lyon, 69622 Lyon, France
- Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
- INSERM U1028, Lyon Neuroscience Research Center (CRNL), 69000 Lyon, France
- CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), 69000 Lyon, France
- Hôpital Neurologique Pierre Wertheimer, Service de Neurologie C, Centre Expert Parkinson, Hospices Civils de Lyon, 69677 Bron, France
| | - Alice Poisson
- Hôpital Neurologique Pierre Wertheimer, Service de Neurologie C, Centre Expert Parkinson, Hospices Civils de Lyon, 69677 Bron, France
| | - Elise Metereau
- Hôpital Neurologique Pierre Wertheimer, Service de Neurologie C, Centre Expert Parkinson, Hospices Civils de Lyon, 69677 Bron, France
| | | | - Stéphane Thobois
- Hôpital Neurologique Pierre Wertheimer, Service de Neurologie C, Centre Expert Parkinson, Hospices Civils de Lyon, 69677 Bron, France
- CNRS UMR5229, Institute of Cognitive Science Marc Jeannerod, 69500 Bron, France
| | - Philippe Boulinguez
- Université de Lyon, 69622 Lyon, France
- Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
- INSERM U1028, Lyon Neuroscience Research Center (CRNL), 69000 Lyon, France
- CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), 69000 Lyon, France
| | - Bénédicte Ballanger
- Université de Lyon, 69622 Lyon, France
- Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
- INSERM U1028, Lyon Neuroscience Research Center (CRNL), 69000 Lyon, France
- CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), 69000 Lyon, France
- Correspondence:
| |
Collapse
|
9
|
Development and validation of an instrument for measuring parkinsonian motor impairment: TRAPS-D. Neurol Sci 2021; 43:2519-2524. [PMID: 34709480 DOI: 10.1007/s10072-021-05533-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/04/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Parkinson's disease is incurable, idiopathic, degenerative, and progressive, and affects about 1% of the elderly population. Multidisciplinary clinical treatment is the best and most adopted therapeutic option, while surgical treatment is used in less than 15% of those affected. In practice, there is a lack of reliable and validated scales for measuring motor impairment, and monitoring and screening for surgical indications. OBJECTIVE To develop and validate an instrument for measuring parkinsonian motor impairment in candidates for neurosurgical treatment. METHOD The development and validation methods followed published guidelines. The first part was the choice of domains that would make up the construct: cardinal signs of disease (tremor, rigidity (stiffness), posture/balance/gait, hypokinesia/akinesia, and speech), along with pain and dyskinesia. A multi-professional working group prepared an initial pilot instrument. Ten renowned specialists evaluated, judged, and suggested modifications to the instrument. The second phase was the evaluation of the content of each domain and the respective ability to classify commitment intensity. The third phase was the correction of the main flaws detected and new submission to the board. The instrument was applied to 41 candidates for neurosurgical treatment in two situations: with and without medication RESULTS: The final form received 100% agreement from the judges. Its average time for application was 8 min. It was very responsive (p = 0.001, Wilcoxon) in different situations (On-Off). CONCLUSION TRASP-D is a valid instrument for measuring motor impairment in patients with Parkinson's disease who are candidates for neurosurgical treatment. It allows measurement in multiple domains with reliability and sensitivity.
Collapse
|
10
|
A Systematic Review of Neurofeedback for the Management of Motor Symptoms in Parkinson's Disease. Brain Sci 2021; 11:brainsci11101292. [PMID: 34679358 PMCID: PMC8534214 DOI: 10.3390/brainsci11101292] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 09/27/2021] [Indexed: 12/04/2022] Open
Abstract
Background: Neurofeedback has been proposed as a treatment for Parkinson’s disease (PD) motor symptoms by changing the neural network activity directly linked with movement. However, the effectiveness of neurofeedback as a treatment for PD motor symptoms is unclear. Aim: To systematically review the literature to identify the effects of neurofeedback in people with idiopathic PD; as defined by measurement of brain activity; motor function; and performance. Design: A systematic review. Included Sources and Articles: PubMed; MEDLINE; Cinhal; PsychoInfo; Prospero; Cochrane; ClinicalTrials.gov; EMBASE; Web of Science; PEDro; OpenGrey; Conference Paper Index; Google Scholar; and eThos; searched using the Population-Intervention-Comparison-Outcome (PICO) framework. Primary studies with the following designs were included: randomized controlled trials (RCTs), non-RCTs; quasi-experimental; pre/post studies; and case studies. Results: This review included 11 studies out of 6197 studies that were identified from the literature search. Neuroimaging methods used were fMRI; scalp EEG; surface brain EEG; and deep brain EEG; where 10–15 Hz and the supplementary motor area were the most commonly targeted signatures for EEG and fMRI, respectively. Success rates for changing one’s brain activity ranged from 47% to 100%; however, both sample sizes and success criteria differed considerably between studies. While six studies included a clinical outcome; a lack of consistent assessments prevented a reliable conclusion on neurofeedback’s effectiveness. Narratively, fMRI neurofeedback has the greatest potential to improve PD motor symptoms. Two main limitations were found in the studies that contributed to the lack of a confident conclusion: (1) insufficient clinical information and perspectives (e.g., no reporting of adverse events), and (2) limitations in numerical data reporting (e.g., lack of explicit statistics) that prevented a meta-analysis. Conclusions: While fMRI neurofeedback was narratively the most effective treatment; the omission of clinical outcome measures in studies using other neurofeedback approaches limits comparison. Therefore, no single neurofeedback type can currently be identified as an optimal treatment for PD motor symptoms. This systematic review highlights the need to improve the inclusion of clinical information and more robust reporting of numerical data in future work. Neurofeedback appears to hold great potential as a treatment for PD motor symptoms. However, this field is still in its infancy and needs high quality RCTs to establish its effectiveness. Review Registration: PROSPERO (ID: CRD42020191097)
Collapse
|
11
|
Johari K, Behroozmand R. Neural correlates of speech and limb motor timing deficits revealed by aberrant beta band desynchronization in Parkinson's disease. Clin Neurophysiol 2021; 132:2711-2721. [PMID: 34373199 DOI: 10.1016/j.clinph.2021.06.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 05/25/2021] [Accepted: 06/06/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE We used a classical motor reaction time paradigm to examine the effects of Parkinson's disease (PD) on the mechanisms of speech production and upper limb movement. METHODS Electro-encephalography (EEG) signals were recorded in PD and control groups during speech vowel production and button press tasks in response to temporally predictable and unpredictable visual stimuli. RESULTS Motor reaction times were slower in PD vs. control group independent of stimulus timing and movement modality. This effect was accompanied by stronger desynchronizations of low beta (13-18 Hz) and high beta (18-25 Hz) band neural oscillations in PD vs. control prior to the onset of speech and hand movement. In addition, pre-movement desynchronization of beta band oscillations were correlated with motor reaction time in control subjects with faster responses associated with weaker beta band desynchronizations during the planning phase of movement. However, no such effect was found in the PD group. CONCLUSIONS We suggest that the aberrant pattern of beta band desynchronization is a neural correlate of speech and upper limb motor timing deficits as a result of cortico-striatal pathology in PD. SIGNIFICANCE These findings motivate interventions targeted toward normalizing beta band activities for improving speech and upper limb movement timing in PD.
Collapse
Affiliation(s)
- Karim Johari
- Speech Neuroscience Lab, Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, 915 Greene Street, Columbia, SC 29208, United States; Human Brain Research Lab, Department of Neurosurgery, University of Iowa, 200 Hawkins Dr., Iowa City, IA 52242, United States
| | - Roozbeh Behroozmand
- Speech Neuroscience Lab, Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, 915 Greene Street, Columbia, SC 29208, United States.
| |
Collapse
|
12
|
The Human Basal Ganglia Mediate the Interplay between Reactive and Proactive Control of Response through Both Motor Inhibition and Sensory Modulation. Brain Sci 2021; 11:brainsci11050560. [PMID: 33925153 PMCID: PMC8146223 DOI: 10.3390/brainsci11050560] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 11/17/2022] Open
Abstract
The basal ganglia (BG) have long been known for contributing to the regulation of motor behaviour by means of a complex interplay between tonic and phasic inhibitory mechanisms. However, after having focused for a long time on phasic reactive mechanisms, it is only recently that psychological research in healthy humans has modelled tonic proactive mechanisms of control. Mutual calibration between anatomo-functional and psychological models is still needed to better understand the unclear role of the BG in the interplay between proactive and reactive mechanisms of control. Here, we implemented an event-related fMRI design allowing proper analysis of both the brain activity preceding the target-stimulus and the brain activity induced by the target-stimulus during a simple go/nogo task, with a particular interest in the ambiguous role of the basal ganglia. Post-stimulus activity was evoked in the left dorsal striatum, the subthalamus nucleus and internal globus pallidus by any stimulus when the situation was unpredictable, pinpointing its involvement in reactive, non-selective inhibitory mechanisms when action restraint is required. Pre-stimulus activity was detected in the ventral, not the dorsal, striatum, when the situation was unpredictable, and was associated with changes in functional connectivity with the early visual, not the motor, cortex. This suggests that the ventral striatum supports modulatory influence over sensory processing during proactive control.
Collapse
|
13
|
Walton L, Domellöf ME, Boraxbekk CJ, Domellöf E, Rönnqvist L, Bäckström D, Forsgren L, Stigsdotter Neely A. The Effects of Working Memory Updating Training in Parkinson's Disease: A Feasibility and Single-Subject Study on Cognition, Movement and Functional Brain Response. Front Psychol 2021; 11:587925. [PMID: 33519604 PMCID: PMC7838443 DOI: 10.3389/fpsyg.2020.587925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/15/2020] [Indexed: 11/18/2022] Open
Abstract
In Parkinson’s disease (PD), the fronto-striatal network is involved in motor and cognitive symptoms. Working memory (WM) updating training engages this network in healthy populations, as observed by improved cognitive performance and increased striatal BOLD signal. This two-part study aimed to assess the feasibility of WM updating training in PD and measure change in cognition, movement and functional brain response in one individual with PD after WM updating training. A feasibility and single-subject (FL) study were performed in which patients with PD completed computerized WM updating training. The outcome measures were the pre-post changes in criterion and transfer cognitive tests; cognitive complaints; psychological health; movement kinematics; and task-related BOLD signal. Participants in the feasibility study showed improvements on the criterion tests at post-test. FL displayed the largest improvements on the criterion tests and smaller improvements on transfer tests. Furthermore, FL reported improved cognitive performance in everyday life. A shorter onset latency and smoother upper-limb goal-directed movements were measured at post-test, as well as increased activation within the striatum and decreased activation throughout the fronto-parietal WM network. This two-part study demonstrated that WM updating training is feasible to complete for PD patients and that change occurred in FL at post-test in the domains of cognition, movement and functional brain response.
Collapse
Affiliation(s)
- Lois Walton
- Department of Social and Psychological Studies, Karlstad University, Karlstad, Sweden
| | | | - Carl-Johan Boraxbekk
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden.,Department of Radiation Sciences, Umeå University, Umeå, Sweden.,Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital, Hvidovre, Denmark.,Institute of Sports Medicine Copenhagen (ISMC), Bispebjerg Hospital, Copenhagen University, Copenhagen, Denmark
| | - Erik Domellöf
- Department of Psychology, Umeå University, Umeå, Sweden
| | | | - David Bäckström
- Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden
| | - Lars Forsgren
- Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden
| | - Anna Stigsdotter Neely
- Department of Social and Psychological Studies, Karlstad University, Karlstad, Sweden.,Engineering Psychology, Luleå University of Technology, Luleå, Sweden
| |
Collapse
|
14
|
Herz DM, Meder D, Camilleri JA, Eickhoff SB, Siebner HR. Brain Motor Network Changes in Parkinson's Disease: Evidence from Meta-Analytic Modeling. Mov Disord 2021; 36:1180-1190. [PMID: 33427336 PMCID: PMC8127399 DOI: 10.1002/mds.28468] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/30/2022] Open
Abstract
Background Motor‐related brain activity in Parkinson's disease has been investigated in a multitude of functional neuroimaging studies, which often yielded apparently conflicting results. Our previous meta‐analysis did not resolve inconsistencies regarding cortical activation differences in Parkinson's disease, which might be related to the limited number of studies that could be included. Therefore, we conducted a revised meta‐analysis including a larger number of studies. The objectives of this study were to elucidate brain areas that consistently show abnormal motor‐related activation in Parkinson's disease and to reveal their functional connectivity profiles using meta‐analytic approaches. Methods We applied a quantitative meta‐analysis of functional neuroimaging studies testing limb movements in Parkinson's disease comprising data from 39 studies, of which 15 studies (285 of 571 individual patients) were published after the previous meta‐analysis. We also conducted meta‐analytic connectivity modeling to elucidate the connectivity profiles of areas showing abnormal activation. Results We found consistent motor‐related underactivation of bilateral posterior putamen and cerebellum in Parkinson's disease. Primary motor cortex and the supplementary motor area also showed deficient activation, whereas cortical regions localized directly anterior to these areas expressed overactivation. Connectivity modeling revealed that areas showing decreased activation shared a common pathway through the posterior putamen, whereas areas showing increased activation were connected to the anterior putamen. Conclusions Despite conflicting results in individual neuroimaging studies, this revised meta‐analytic approach identified consistent patterns of abnormal motor‐related activation in Parkinson's disease. The distinct patterns of decreased and increased activity might be determined by their connectivity with different subregions of the putamen. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Damian M Herz
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - David Meder
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Julia A Camilleri
- Research Center Juelich, Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Juelich, Germany.,Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Simon B Eickhoff
- Research Center Juelich, Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Juelich, Germany.,Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark.,Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark.,Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Luo FF, Xu H, Zhang M, Wang Y. Abnormal Regional Spontaneous Brain Activity and Its Indirect Effect on Spasm Ratings in Patients With Hemifacial Spasm. Front Neurosci 2020; 14:601088. [PMID: 33362459 PMCID: PMC7756088 DOI: 10.3389/fnins.2020.601088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/13/2020] [Indexed: 11/13/2022] Open
Abstract
PURPOSE Three classical methods of resting-state functional magnetic resonance imaging (rs-fMRI) were employed to explore the local functional abnormalities and their effect on spasm ratings in hemifacial spasm (HFS) patients. METHODS Thirty HFS patients and 30 matched healthy controls (HCs) were recruited. Rs-fMRI data, neurovascular compression (NVC) degree and spasm severity were collected in each subject. Fractional amplitude of low-frequency fluctuation (fALFF), regional homogeneity (ReHo), and degree centrality (DC) were calculated in the whole brain voxels. Two sample t-tests were performed to investigate group differences of fALFF, ReHo, and DC. Correlation analysis was performed to assess the relationships between the regional brain abnormalities and clinical variables in HFS. RESULTS Compared with HCs, HFS patients exhibited increased fALFF in the left precuneus and right posterior cingulate cortex (PCC), together with increased ReHo in the bilateral PCC and bilateral precuneus. Decreased ReHo was observed in the right middle occipital gyrus (MOG), right superior occipital gyrus (SOG), right cuneus, and right angular gyrus (AG) in HFS patients. Moreover, ReHo in the right PCC were positively correlated with NVC degree and spasm severity in HFS patients, respectively. Mediation analysis revealed that increased ReHo in the right PCC regulated the neurovascular compression degree, and further resulted in increased spasm ratings. CONCLUSION Our study revealed regional brain dysfunctions from different perspectives and an indirect effect of ReHo in right PCC on spasm ratings predominantly through the alteration of NVC.
Collapse
Affiliation(s)
- Fei-Fei Luo
- Department of Medical Imaging, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Institute of Biomedical Engineering, School of Life Sciences and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Hui Xu
- Department of Medical Imaging, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Ming Zhang
- Department of Medical Imaging, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yuan Wang
- Department of Medical Imaging, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
16
|
Kann SJ, Chang C, Manza P, Leung HC. Akinetic rigid symptoms are associated with decline in a cortical motor network in Parkinson's disease. NPJ PARKINSONS DISEASE 2020; 6:19. [PMID: 32885038 PMCID: PMC7445297 DOI: 10.1038/s41531-020-00120-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 07/09/2020] [Indexed: 12/12/2022]
Abstract
The akinetic/rigid (AR) motor subtype of Parkinson's Disease is associated with increased rates of motor and cognitive decline. Cross-sectional studies examining the neural correlates of AR have found abnormalities in both subcortical and cortical networks involved in motor planning and execution relative to controls. To better understand how these cross-sectional findings are implicated in the unique decline associated with the AR subtype, we examined whether baseline AR symptoms are associated with longitudinal decline of these networks, in contrast to other motor symptoms such as tremor. Using whole brain multiple regression analyses we found that worse AR symptoms at baseline were associated with greater gray matter loss over four years in superior parietal and paracentral lobules and motor cortex. These regions also showed altered connectivity patterns with posterior parietal, premotor, pre-supplementary motor area and dorsolateral prefrontal regions in association with AR symptoms across subjects. Thus, AR symptoms are related to gray matter decline and aberrant functional connectivity in a network of frontal-parietal regions critical for motor planning and execution. These structural and functional abnormalities may therefore be implicated in the more aggressive course of decline associated with the AR relative to tremor-dominant subtype.
Collapse
Affiliation(s)
- Sarah J Kann
- Department of Psychology, Integrative Neuroscience Program, Stony Brook University, Stony Brook, NY USA
| | - Chiapei Chang
- Renaissance School of Medicine, Stony Brook University, Stony Brook, NY USA
| | - Peter Manza
- National Institute on Alcoholism and Alcohol Abuse, National Institute of Health, Bethesda, MD USA
| | - Hoi-Chung Leung
- Department of Psychology, Integrative Neuroscience Program, Stony Brook University, Stony Brook, NY USA
| |
Collapse
|
17
|
Ursino M, Véronneau-Veilleux F, Nekka F. A non-linear deterministic model of action selection in the basal ganglia to simulate motor fluctuations in Parkinson's disease. CHAOS (WOODBURY, N.Y.) 2020; 30:083139. [PMID: 32872807 DOI: 10.1063/5.0013666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
Motor fluctuations and dyskinesias are severe complications of Parkinson's disease (PD), especially evident at its advanced stage, under long-term levodopa therapy. Despite their strong clinical prevalence, the neural origin of these motor symptoms is still a subject of intense debate. In this work, a non-linear deterministic neurocomputational model of the basal ganglia (BG), inspired by biology, is used to provide more insights into possible neural mechanisms at the basis of motor complications in PD. In particular, the model is used to simulate the finger tapping task. The model describes the main neural pathways involved in the BG to select actions [the direct or Go, the indirect or NoGo, and the hyperdirect pathways via the action of the sub-thalamic nucleus (STN)]. A sensitivity analysis is performed on some crucial model parameters (the dopamine level, the strength of the STN mechanism, and the strength of competition among different actions in the motor cortex) at different levels of synapses, reflecting major or minor motor training. Depending on model parameters, results show that the model can reproduce a variety of clinically relevant motor patterns, including normokinesia, bradykinesia, several attempts before movement, freezing, repetition, and also irregular fluctuations. Motor symptoms are, especially, evident at low or high dopamine levels, with excessive strength of the STN and with weak competition among alternative actions. Moreover, these symptoms worsen if the synapses are subject to insufficient learning. The model may help improve the comprehension of motor complications in PD and, ultimately, may contribute to the treatment design.
Collapse
Affiliation(s)
- Mauro Ursino
- Department of Electrical, Electronic and Information Engineering Guglielmo Marconi, University of Bologna, I 40136 Bologna, Italy
| | | | - Fahima Nekka
- Faculté de Pharmacie, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| |
Collapse
|
18
|
Frequency-Specific Changes of Resting Brain Activity in Parkinson’s Disease: A Machine Learning Approach. Neuroscience 2020; 436:170-183. [DOI: 10.1016/j.neuroscience.2020.01.049] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/24/2022]
|
19
|
Nguyen HM, Aravindakshan A, Ross JM, Disbrow EA. Time course of cognitive training in Parkinson disease. NeuroRehabilitation 2020; 46:311-320. [DOI: 10.3233/nre-192940] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Hoang M. Nguyen
- Department of Pharmacology, Toxicology, and Neuroscience, LSUHSC-Shreveport, Shreveport, LA, USA
- LSU Health Shreveport Center for Brain Health, Shreveport, LA, USA
| | | | - Jessica M. Ross
- Berenson-Allen Center for Noninvasive Brain Stimulation, Harvard Medical School, Boston MA, USA
| | - Elizabeth A. Disbrow
- Department of Pharmacology, Toxicology, and Neuroscience, LSUHSC-Shreveport, Shreveport, LA, USA
- LSU Health Shreveport Center for Brain Health, Shreveport, LA, USA
- Department of Neurology, LSUHSC-Shreveport, Shreveport, LA, USA
| |
Collapse
|
20
|
Bologna M, Paparella G, Fasano A, Hallett M, Berardelli A. Evolving concepts on bradykinesia. Brain 2020; 143:727-750. [PMID: 31834375 PMCID: PMC8205506 DOI: 10.1093/brain/awz344] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/02/2019] [Accepted: 09/06/2019] [Indexed: 12/20/2022] Open
Abstract
Bradykinesia is one of the cardinal motor symptoms of Parkinson's disease and other parkinsonisms. The various clinical aspects related to bradykinesia and the pathophysiological mechanisms underlying bradykinesia are, however, still unclear. In this article, we review clinical and experimental studies on bradykinesia performed in patients with Parkinson's disease and atypical parkinsonism. We also review studies on animal experiments dealing with pathophysiological aspects of the parkinsonian state. In Parkinson's disease, bradykinesia is characterized by slowness, the reduced amplitude of movement, and sequence effect. These features are also present in atypical parkinsonisms, but the sequence effect is not common. Levodopa therapy improves bradykinesia, but treatment variably affects the bradykinesia features and does not significantly modify the sequence effect. Findings from animal and patients demonstrate the role of the basal ganglia and other interconnected structures, such as the primary motor cortex and cerebellum, as well as the contribution of abnormal sensorimotor processing. Bradykinesia should be interpreted as arising from network dysfunction. A better understanding of bradykinesia pathophysiology will serve as the new starting point for clinical and experimental purposes.
Collapse
Affiliation(s)
- Matteo Bologna
- Department of Human Neurosciences, Sapienza University of Rome, Italy
- IRCCS Neuromed, Pozzilli (IS), Italy
| | | | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, Ontario, Canada
- Division of Neurology, University of Toronto, Toronto, Ontario, Canada
- Krembil Brain Institute, Toronto, Ontario, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, Canada
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Alfredo Berardelli
- Department of Human Neurosciences, Sapienza University of Rome, Italy
- IRCCS Neuromed, Pozzilli (IS), Italy
| |
Collapse
|
21
|
Jellinger KA. Neuropathology and pathogenesis of extrapyramidal movement disorders: a critical update-I. Hypokinetic-rigid movement disorders. J Neural Transm (Vienna) 2019; 126:933-995. [PMID: 31214855 DOI: 10.1007/s00702-019-02028-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/05/2019] [Indexed: 02/06/2023]
Abstract
Extrapyramidal movement disorders include hypokinetic rigid and hyperkinetic or mixed forms, most of them originating from dysfunction of the basal ganglia (BG) and their information circuits. The functional anatomy of the BG, the cortico-BG-thalamocortical, and BG-cerebellar circuit connections are briefly reviewed. Pathophysiologic classification of extrapyramidal movement disorder mechanisms distinguish (1) parkinsonian syndromes, (2) chorea and related syndromes, (3) dystonias, (4) myoclonic syndromes, (5) ballism, (6) tics, and (7) tremor syndromes. Recent genetic and molecular-biologic classifications distinguish (1) synucleinopathies (Parkinson's disease, dementia with Lewy bodies, Parkinson's disease-dementia, and multiple system atrophy); (2) tauopathies (progressive supranuclear palsy, corticobasal degeneration, FTLD-17; Guamian Parkinson-dementia; Pick's disease, and others); (3) polyglutamine disorders (Huntington's disease and related disorders); (4) pantothenate kinase-associated neurodegeneration; (5) Wilson's disease; and (6) other hereditary neurodegenerations without hitherto detected genetic or specific markers. The diversity of phenotypes is related to the deposition of pathologic proteins in distinct cell populations, causing neurodegeneration due to genetic and environmental factors, but there is frequent overlap between various disorders. Their etiopathogenesis is still poorly understood, but is suggested to result from an interaction between genetic and environmental factors. Multiple etiologies and noxious factors (protein mishandling, mitochondrial dysfunction, oxidative stress, excitotoxicity, energy failure, and chronic neuroinflammation) are more likely than a single factor. Current clinical consensus criteria have increased the diagnostic accuracy of most neurodegenerative movement disorders, but for their definite diagnosis, histopathological confirmation is required. We present a timely overview of the neuropathology and pathogenesis of the major extrapyramidal movement disorders in two parts, the first one dedicated to hypokinetic-rigid forms and the second to hyperkinetic disorders.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| |
Collapse
|