1
|
Nemali A, Vockert N, Berron D, Maas A, Bernal J, Yakupov R, Peters O, Gref D, Cosma N, Preis L, Priller J, Spruth E, Altenstein S, Lohse A, Fliessbach K, Kimmich O, Vogt I, Wiltfang J, Hansen N, Bartels C, Schott BH, Maier F, Meiberth D, Glanz W, Incesoy E, Butryn M, Buerger K, Janowitz D, Pernecky R, Rauchmann B, Burow L, Teipel S, Kilimann I, Göerß D, Dyrba M, Laske C, Munk M, Sanzenbacher C, Müller S, Spottke A, Roy N, Heneka M, Brosseron F, Roeske S, Dobisch L, Ramirez A, Ewers M, Dechent P, Scheffler K, Kleineidam L, Wolfsgruber S, Wagner M, Jessen F, Duzel E, Ziegler G. Gaussian Process-based prediction of memory performance and biomarker status in ageing and Alzheimer's disease-A systematic model evaluation. Med Image Anal 2023; 90:102913. [PMID: 37660483 DOI: 10.1016/j.media.2023.102913] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/28/2023] [Accepted: 07/25/2023] [Indexed: 09/05/2023]
Abstract
Neuroimaging markers based on Magnetic Resonance Imaging (MRI) combined with various other measures (such as genetic covariates, biomarkers, vascular risk factors, neuropsychological tests etc.) might provide useful predictions of clinical outcomes during the progression towards Alzheimer's disease (AD). The use of multiple features in predictive frameworks for clinical outcomes has become increasingly prevalent in AD research. However, many studies do not focus on systematically and accurately evaluating combinations of multiple input features. Hence, the aim of the present work is to explore and assess optimal combinations of various features for MR-based prediction of (1) cognitive status and (2) biomarker positivity with a multi-kernel learning Gaussian process framework. The explored features and parameters included (A) combinations of brain tissues, modulation, smoothing, and image resolution; (B) incorporating demographics & clinical covariates; (C) the impact of the size of the training data set; (D) the influence of dimensionality reduction and the choice of kernel types. The approach was tested in a large German cohort including 959 subjects from the multicentric longitudinal study of cognitive impairment and dementia (DELCODE). Our evaluation suggests the best prediction of memory performance was obtained for a combination of neuroimaging markers, demographics, genetic information (ApoE4) and CSF biomarkers explaining 57% of outcome variance in out-of-sample predictions. The highest performance for Aβ42/40 status classification was achieved for a combination of demographics, ApoE4, and a memory score while usage of structural MRI further improved the classification of individual patient's pTau status.
Collapse
Affiliation(s)
- A Nemali
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.
| | - N Vockert
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - D Berron
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - A Maas
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - J Bernal
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - R Yakupov
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - O Peters
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany; Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Department of Psychiatry, Hindenburgdamm 30, 12203, Berlin, Germany
| | - D Gref
- Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Department of Psychiatry, Hindenburgdamm 30, 12203, Berlin, Germany
| | - N Cosma
- Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Department of Psychiatry, Hindenburgdamm 30, 12203, Berlin, Germany
| | - L Preis
- Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Department of Psychiatry, Hindenburgdamm 30, 12203, Berlin, Germany
| | - J Priller
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany; Department of Psychiatry and Psychotherapy, Charité, Charitéplatz 1, 10117 Berlin, Germany; School of Medicine, Technical University of Munich; Department of Psychiatry and Psychotherapy, Munich, Germany; University of Edinburgh and UK DRI, Edinburgh, UK
| | - E Spruth
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany; Department of Psychiatry and Psychotherapy, Charité, Charitéplatz 1, 10117 Berlin, Germany
| | - S Altenstein
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany; Department of Psychiatry and Psychotherapy, Charité, Charitéplatz 1, 10117 Berlin, Germany
| | - A Lohse
- Department of Psychiatry and Psychotherapy, Charité, Charitéplatz 1, 10117 Berlin, Germany
| | - K Fliessbach
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; University of Bonn Medical Center, Department of Neurodegenerative Disease and Geriatric Psychiatry/Psychiatry, Venusberg-Campus 1, 53127 Bonn, Germany
| | - O Kimmich
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - I Vogt
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - J Wiltfang
- German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany; Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, Von-Siebold-Str. 5, 37075 Goettingen, Germany; Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - N Hansen
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, Von-Siebold-Str. 5, 37075 Goettingen, Germany
| | - C Bartels
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, Von-Siebold-Str. 5, 37075 Goettingen, Germany
| | - B H Schott
- Leibniz Institute for Neurobiology, Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany; Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, Von-Siebold-Str. 5, 37075 Goettingen, Germany
| | - F Maier
- Department of Psychiatry, University of Cologne, Medical Faculty, Kerpener Strasse 62, 50924 Cologne, Germany
| | - D Meiberth
- Department of Psychiatry, University of Cologne, Medical Faculty, Kerpener Strasse 62, 50924 Cologne, Germany
| | - W Glanz
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Germany
| | - E Incesoy
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - M Butryn
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - K Buerger
- German Center for Neurodegenerative Diseases (DZNE, Munich), Feodor-Lynen-Strasse 17, 81377 Munich, Germany; Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Feodor-Lynen-Strasse 17, 81377 Munich, Germany
| | - D Janowitz
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Feodor-Lynen-Strasse 17, 81377 Munich, Germany
| | - R Pernecky
- German Center for Neurodegenerative Diseases (DZNE, Munich), Feodor-Lynen-Strasse 17, 81377 Munich, Germany; Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy) Munich, Munich, Germany; Ageing Epidemiology Research Unit (AGE), School of Public Health, Imperial College London, London, UK
| | - B Rauchmann
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - L Burow
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - S Teipel
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany; Department of Psychosomatic Medicine, Rostock University Medical Center, Gehlsheimer Str. 20, 18147 Rostock, Germany
| | - I Kilimann
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany; Department of Psychosomatic Medicine, Rostock University Medical Center, Gehlsheimer Str. 20, 18147 Rostock, Germany
| | - D Göerß
- Department of Psychosomatic Medicine, Rostock University Medical Center, Gehlsheimer Str. 20, 18147 Rostock, Germany
| | - M Dyrba
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
| | - C Laske
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany; Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - M Munk
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany; Department of Psychiatry and Psychotherapy, University of Tuebingen, Tuebingen, Germany
| | - C Sanzenbacher
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - S Müller
- Department of Psychiatry and Psychotherapy, University of Tuebingen, Tuebingen, Germany
| | - A Spottke
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; Department of Neurology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - N Roy
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - M Heneka
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; Department of Psychiatry and Psychotherapy, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - F Brosseron
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - S Roeske
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - L Dobisch
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - A Ramirez
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; Department of Neurology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Köln, Germany; Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Department of Psychiatry & Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, San Antonio, TX, USA
| | - M Ewers
- German Center for Neurodegenerative Diseases (DZNE, Munich), Feodor-Lynen-Strasse 17, 81377 Munich, Germany; Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Feodor-Lynen-Strasse 17, 81377 Munich, Germany
| | - P Dechent
- MR-Research in Neurosciences, Department of Cognitive Neurology, Georg-August-University Goettingen, Germany
| | - K Scheffler
- Department for Biomedical Magnetic Resonance, University of Tübingen, 72076 Tübingen, Germany
| | - L Kleineidam
- University of Bonn Medical Center, Department of Neurodegenerative Disease and Geriatric Psychiatry/Psychiatry, Venusberg-Campus 1, 53127 Bonn, Germany
| | - S Wolfsgruber
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; University of Bonn Medical Center, Department of Neurodegenerative Disease and Geriatric Psychiatry/Psychiatry, Venusberg-Campus 1, 53127 Bonn, Germany
| | - M Wagner
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; University of Bonn Medical Center, Department of Neurodegenerative Disease and Geriatric Psychiatry/Psychiatry, Venusberg-Campus 1, 53127 Bonn, Germany
| | - F Jessen
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; Department of Psychiatry, University of Cologne, Medical Faculty, Kerpener Strasse 62, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Köln, Germany
| | - E Duzel
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - G Ziegler
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| |
Collapse
|
3
|
Canas LS, Sudre CH, Capdevila Pujol J, Polidori L, Murray B, Molteni E, Graham MS, Klaser K, Antonelli M, Berry S, Davies R, Nguyen LH, Drew DA, Wolf J, Chan AT, Spector T, Steves CJ, Ourselin S, Modat M. Early detection of COVID-19 in the UK using self-reported symptoms: a large-scale, prospective, epidemiological surveillance study. LANCET DIGITAL HEALTH 2021; 3:e587-e598. [PMID: 34334333 PMCID: PMC8321433 DOI: 10.1016/s2589-7500(21)00131-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 06/10/2021] [Accepted: 06/16/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND Self-reported symptoms during the COVID-19 pandemic have been used to train artificial intelligence models to identify possible infection foci. To date, these models have only considered the culmination or peak of symptoms, which is not suitable for the early detection of infection. We aimed to estimate the probability of an individual being infected with SARS-CoV-2 on the basis of early self-reported symptoms to enable timely self-isolation and urgent testing. METHODS In this large-scale, prospective, epidemiological surveillance study, we used prospective, observational, longitudinal, self-reported data from participants in the UK on 19 symptoms over 3 days after symptoms onset and COVID-19 PCR test results extracted from the COVID-19 Symptom Study mobile phone app. We divided the study population into a training set (those who reported symptoms between April 29, 2020, and Oct 15, 2020) and a test set (those who reported symptoms between Oct 16, 2020, and Nov 30, 2020), and used three models to analyse the self-reported symptoms: the UK's National Health Service (NHS) algorithm, logistic regression, and the hierarchical Gaussian process model we designed to account for several important variables (eg, specific COVID-19 symptoms, comorbidities, and clinical information). Model performance to predict COVID-19 positivity was compared in terms of sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) in the test set. For the hierarchical Gaussian process model, we also evaluated the relevance of symptoms in the early detection of COVID-19 in population subgroups stratified according to occupation, sex, age, and body-mass index. FINDINGS The training set comprised 182 991 participants and the test set comprised 15 049 participants. When trained on 3 days of self-reported symptoms, the hierarchical Gaussian process model had a higher prediction AUC (0·80 [95% CI 0·80-0·81]) than did the logistic regression model (0·74 [0·74-0·75]) and the NHS algorithm (0·67 [0·67-0·67]). AUCs for all models increased with the number of days of self-reported symptoms, but were still high for the hierarchical Gaussian process model at day 1 (0·73 [95% CI 0·73-0·74]) and day 2 (0·79 [0·78-0·79]). At day 3, the hierarchical Gaussian process model also had a significantly higher sensitivity, but a non-statistically lower specificity, than did the two other models. The hierarchical Gaussian process model also identified different sets of relevant features to detect COVID-19 between younger and older subgroups, and between health-care workers and non-health-care workers. When used during different pandemic periods, the model was robust to changes in populations. INTERPRETATION Early detection of SARS-CoV-2 infection is feasible with our model. Such early detection is crucial to contain the spread of COVID-19 and efficiently allocate medical resources. FUNDING ZOE, the UK Government Department of Health and Social Care, the Wellcome Trust, the UK Engineering and Physical Sciences Research Council, the UK National Institute for Health Research, the UK Medical Research Council, the British Heart Foundation, the Alzheimer's Society, the Chronic Disease Research Foundation, and the Massachusetts Consortium on Pathogen Readiness.
Collapse
Affiliation(s)
- Liane S Canas
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.
| | - Carole H Sudre
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK; Medical Research Council Unit for Lifelong Health and Ageing, Department of Population Science and Experimental Medicine, University College London, London, UK; Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
| | | | | | - Benjamin Murray
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Erika Molteni
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Mark S Graham
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Kerstin Klaser
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Michela Antonelli
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Sarah Berry
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | | | - Long H Nguyen
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - David A Drew
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Andrew T Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Tim Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Claire J Steves
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Sebastien Ourselin
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Marc Modat
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| |
Collapse
|