1
|
Huang LC, Chen LG, Kao HW, Lin SH, Tsai ST, Wu PA, Chen SY. Functional connectivity compensation in Parkinson's disease with freezing of gait. Eur J Neurosci 2024; 60:6279-6290. [PMID: 39358869 DOI: 10.1111/ejn.16547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 08/04/2024] [Accepted: 08/25/2024] [Indexed: 10/04/2024]
Abstract
Freezing of gait (FOG) is a disabling motor symptom prevalent in patients with Parkinson's disease (PD); however, its pathophysiological mechanisms are poorly understood. This study aimed to investigate whole-brain functional connectivity (FC) pattern alterations in PD patients with FOG. A total of 18 PD patients, 10 with FOG (PD-FOG) and 8 without FOG (PD-nFOG), and 10 healthy controls were enrolled. High-resolution 3D T1-weighted and resting-state functional MRI (rs-fMRI) data were obtained from all participants. The groups' internetwork connectivity differences were explored with rs-fMRI FC using seed-based analysis and graph theory. Multiple linear regression analysis estimated the relationship between FC changes and clinical measurements. Rs-fMRI analysis demonstrated alterations in FC in various brain regions between the three groups. Freezing of Gait Questionnaire severity was correlated with decreased brain functional connection between Vermis12 and the left temporal occipital fusiform cortex (r = -0.82, P < .001). Graph theory topological metrics indicated a decreased clustering coefficient in the right superior temporal gyrus in the PD-nFOG group. PD-FOG patients exhibited a compensatory increase in connectivity between the left inferior frontal gyrus language network and the postcentral gyrus compared to PD-nFOG patients. Further, the decreased connection between Vermis 12 and the left temporal occipital fusiform cortex may serve as a potential neuroimaging biomarker for tracking PD-FOG and distinguishing between PD subtypes.
Collapse
Affiliation(s)
- Li-Chuan Huang
- Department of Medical Imaging, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Medical Imaging and Radiological Sciences, Tzu Chi University, Hualien, Taiwan
| | - Li-Guo Chen
- Department of Medical Imaging, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Hung-Wen Kao
- Department of Medical Imaging, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Sheng-Huang Lin
- Department of Neurology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Sheng-Tzung Tsai
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Ping-An Wu
- Department of Medical Imaging, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Medical Imaging and Radiological Sciences, Tzu Chi University, Hualien, Taiwan
| | - Shin-Yuan Chen
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
2
|
Zhang Y, Zhang C, Wang X, Liu Y, Jin Z, Haacke EM, He N, Li D, Yan F. Iron and neuromelanin imaging in basal ganglia circuitry in Parkinson's disease with freezing of gait. Magn Reson Imaging 2024; 111:229-236. [PMID: 38777243 DOI: 10.1016/j.mri.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024]
Abstract
OBJECTIVE This study aimed to examine the structural alterations of the deep gray matter (DGM) in the basal ganglia circuitry of Parkinson's disease (PD) patients with freezing of gait (FOG) using quantitative susceptibility mapping (QSM) and neuromelanin-sensitive magnetic resonance imaging (NM-MRI). METHODS Twenty-five (25) PD patients with FOG (PD-FOG), 22 PD patients without FOG (PD-nFOG), and 30 age- and sex-matched healthy controls (HCs) underwent 3-dimensional multi-echo gradient recalled echo and NM-MRI scanning. The mean volume and susceptibility of the DGM on QSM data and the relative contrast (NMRC-SNpc) and volume (NMvolume-SNpc) of the substantia nigra pars compacta on NM-MRI were analyzed among groups. A multiple linear regression analysis was performed to explore the associations of FOG severity with MRI measurements and disease stage. RESULTS The PD-FOG group showed higher susceptibility in the bilateral caudal substantia nigra (SN) compared to the HC group. Both the PD-FOG and PD-nFOG groups showed lower volumes than the HC group in the bilateral caudate and putamen as determined from the QSM data. The NMvolume-SNpc on NM-MRI in the PD-FOG group was significantly lower than in the HC and PD-nFOG groups. Both the PD-FOG and PD-nFOG groups showed significantly decreased NMRC-SNpc. CONCLUSIONS The PD-FOG patients showed abnormal neostriatum atrophy, increases in iron deposition in the SN, and lower NMvolume-SNpc. The structural alterations of the DGM in the basal ganglia circuits could lead to the abnormal output of the basal ganglia circuit to trigger the FOG in PD patients.
Collapse
Affiliation(s)
- Youmin Zhang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chencheng Zhang
- Department of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinhui Wang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Liu
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhijia Jin
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - E Mark Haacke
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Radiology, Wayne State University, Detroit, MI, USA
| | - Naying He
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Dianyou Li
- Department of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Liu Y, Yuan J, Tan C, Wang M, Zhou F, Song C, Tang Y, Li X, Liu Q, Shen Q, Congli H, Liu J, Cai S, Liao H. Exploring brain asymmetry in early-stage Parkinson's disease through functional and structural MRI. CNS Neurosci Ther 2024; 30:e14874. [PMID: 39056398 PMCID: PMC11273215 DOI: 10.1111/cns.14874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/05/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
OBJECTIVE This study explores the correlation between asymmetrical brain functional activity, gray matter asymmetry, and the severity of early-stage Parkinson's disease (PD). METHODS Ninety-three early-stage PD patients (ePD, H-Y stages 1-2.5) were recruited, divided into 47 mild (ePD-mild, H-Y stages 1-1.5) and 46 moderate (ePD-moderate, H-Y stages 2-2.5) cases, alongside 43 matched healthy controls (HCs). The study employed the Hoehn and Yahr (H-Y) staging system for disease severity assessment and utilized voxel-mirrored homotopic connectivity (VMHC) for analyzing brain functional activity asymmetry. Asymmetry voxel-based morphometry analysis (VBM) was applied to evaluate gray matter asymmetry. RESULTS The study found that, relative to HCs, both PD subgroups demonstrated reduced VMHC values in regions including the amygdala, putamen, inferior and middle temporal gyrus, and cerebellum Crus I. The ePD-moderate group also showed decreased VMHC in additional regions such as the postcentral gyrus, lingual gyrus, and superior frontal gyrus, with notably lower VMHC in the superior frontal gyrus compared to the ePD-mild group. A negative correlation was observed between the mean VMHC values in the superior frontal gyrus and H-Y stages, UPDRS, and UPDRS-III scores. No significant asymmetry in gray matter was detected. CONCLUSIONS Asymmetrical brain functional activity is a significant characteristic of PD, which exacerbates as the disease severity increases, resembling the dissemination of Lewy bodies across the PD neurological framework. VMHC emerges as a potent tool for characterizing disease severity in early-stage PD.
Collapse
Affiliation(s)
- Yujing Liu
- Department of Radiology, The Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Jiaying Yuan
- Department of Radiology, The Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Changlian Tan
- Department of Radiology, The Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Min Wang
- Department of Radiology, The Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Fan Zhou
- Department of Radiology, The Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Chendie Song
- Department of Radiology, The Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Yuqing Tang
- Department of Radiology, The Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Xv Li
- Department of Radiology, The Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Qinru Liu
- Department of Radiology, The Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Qin Shen
- Department of Radiology, The Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Huang Congli
- Department of Radiology, The Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Jun Liu
- Department of Radiology, The Second Xiangya HospitalCentral South UniversityChangshaChina
- Clinical Research Center for Medical Imaging in Hunan ProvinceChangshaChina
| | - Sainan Cai
- Department of Radiology, The Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Haiyan Liao
- Department of Radiology, The Second Xiangya HospitalCentral South UniversityChangshaChina
- Clinical Research Center for Medical Imaging in Hunan ProvinceChangshaChina
| |
Collapse
|
4
|
Zhao M, Pang H, Li X, Bu S, Wang J, Liu Y, Jiang Y, Fan G. Low and high-order topological disruption of functional networks in multiple system atrophy with freezing of gait: A resting-state study. Neurobiol Dis 2024; 195:106504. [PMID: 38615913 DOI: 10.1016/j.nbd.2024.106504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024] Open
Abstract
OBJECTIVE Freezing of gait (FOG), a specific survival-threatening gait impairment, needs to be urgently explored in patients with multiple system atrophy (MSA), which is characterized by rapid progression and death within 10 years of symptom onset. The objective of this study was to explore the topological organisation of both low- and high-order functional networks in patients with MAS and FOG. METHOD Low-order functional connectivity (LOFC) and high-order functional connectivity FC (HOFC) networks were calculated and further analysed using the graph theory approach in 24 patients with MSA without FOG, 20 patients with FOG, and 25 healthy controls. The relationship between brain activity and the severity of freezing symptoms was investigated in patients with FOG. RESULTS Regarding global topological properties, patients with FOG exhibited alterations in the whole-brain network, dorsal attention network (DAN), frontoparietal network (FPN), and default network (DMN), compared with patients without FOG. At the node level, patients with FOG showed decreased nodal centralities in sensorimotor network (SMN), DAN, ventral attention network (VAN), FPN, limbic regions, hippocampal network and basal ganglia network (BG), and increased nodal centralities in the FPN, DMN, visual network (VIN) and, cerebellar network. The nodal centralities of the right inferior frontal sulcus, left lateral amygdala and left nucleus accumbens (NAC) were negatively correlated with the FOG severity. CONCLUSION This study identified a disrupted topology of functional interactions at both low and high levels with extensive alterations in topological properties in MSA patients with FOG, especially those associated with damage to the FPN. These findings offer new insights into the dysfunctional mechanisms of complex networks and suggest potential neuroimaging biomarkers for FOG in patients with MSA.
Collapse
Affiliation(s)
- Mengwan Zhao
- Department of radiology, the first hospital of China medical University,Shenyang, 155 Nanjing North Street, Shenyang 110001, Liaoning, PR China.
| | - Huize Pang
- Department of radiology, the first hospital of China medical University,Shenyang, 155 Nanjing North Street, Shenyang 110001, Liaoning, PR China.
| | - Xiaolu Li
- Department of radiology, the first hospital of China medical University,Shenyang, 155 Nanjing North Street, Shenyang 110001, Liaoning, PR China.
| | - Shuting Bu
- Department of radiology, the first hospital of China medical University,Shenyang, 155 Nanjing North Street, Shenyang 110001, Liaoning, PR China.
| | - Juzhou Wang
- Department of radiology, the first hospital of China medical University,Shenyang, 155 Nanjing North Street, Shenyang 110001, Liaoning, PR China.
| | - Yu Liu
- Department of radiology, the first hospital of China medical University,Shenyang, 155 Nanjing North Street, Shenyang 110001, Liaoning, PR China.
| | - Yueluan Jiang
- MR Research Collaboration, Siemens Healthineers, Beijing 7 Wangjing Zhonghuan Nanlu, Chaoyang District, Beijing 100102, PR China.
| | - Guoguang Fan
- Department of radiology, the first hospital of China medical University,Shenyang, 155 Nanjing North Street, Shenyang 110001, Liaoning, PR China.
| |
Collapse
|
5
|
Lin F, Zou X, Su J, Wan L, Wu S, Xu H, Zeng Y, Li Y, Chen X, Cai G, Ye Q, Cai G. Cortical thickness and white matter microstructure predict freezing of gait development in Parkinson's disease. NPJ Parkinsons Dis 2024; 10:16. [PMID: 38195780 PMCID: PMC10776850 DOI: 10.1038/s41531-024-00629-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/29/2023] [Indexed: 01/11/2024] Open
Abstract
The clinical applications of the association of cortical thickness and white matter fiber with freezing of gait (FoG) are limited in patients with Parkinson's disease (PD). In this retrospective study, using white matter fiber from diffusion-weighted imaging and cortical thickness from structural-weighted imaging of magnetic resonance imaging, we investigated whether a machine learning-based model can help assess the risk of FoG at the individual level in patients with PD. Data from the Parkinson's Disease Progression Marker Initiative database were used as the discovery cohort, whereas those from the Fujian Medical University Union Hospital Parkinson's Disease database were used as the external validation cohort. Clinical variables, white matter fiber, and cortical thickness were selected by random forest regression. The selected features were used to train the support vector machine(SVM) learning models. The median area under the receiver operating characteristic curve (AUC) was calculated. Model performance was validated using the external validation cohort. In the discovery cohort, 25 patients with PD were defined as FoG converters (15 men, mean age 62.1 years), whereas 60 were defined as FoG nonconverters (38 men, mean age 58.5 years). In the external validation cohort, 18 patients with PD were defined as FoG converters (8 men, mean age 66.9 years), whereas 37 were defined as FoG nonconverters (21 men, mean age 65.1 years). In the discovery cohort, the model trained with clinical variables, cortical thickness, and white matter fiber exhibited better performance (AUC, 0.67-0.88). More importantly, SVM-radial kernel models trained using random over-sampling examples, incorporating white matter fiber, cortical thickness, and clinical variables exhibited better performance (AUC, 0.88). This model trained using the above mentioned features was successfully validated in an external validation cohort (AUC, 0.91). Furthermore, the following minimal feature sets that were used: fractional anisotropy value and mean diffusivity value for right thalamic radiation, age at baseline, and cortical thickness for left precentral gyrus and right dorsal posterior cingulate gyrus. Therefore, machine learning-based models using white matter fiber and cortical thickness can help predict the risk of FoG conversion at the individual level in patients with PD, with improved performance when combined with clinical variables.
Collapse
Affiliation(s)
- Fabin Lin
- Department of Neurology, Center for Cognitive Neurology, Institute of Clinical Neurology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350001, China
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Xinyang Zou
- Department of Neurology, Center for Cognitive Neurology, Institute of Clinical Neurology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350001, China
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, 350001, Fujian, China
| | - Jiaqi Su
- Department of Neurology, Center for Cognitive Neurology, Institute of Clinical Neurology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350001, China
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350001, China
| | - Lijun Wan
- Department of Neurology, Center for Cognitive Neurology, Institute of Clinical Neurology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350001, China
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350001, China
| | - Shenglong Wu
- Department of Neurology, Center for Cognitive Neurology, Institute of Clinical Neurology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350001, China
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350001, China
| | - Haoling Xu
- Department of Neurology, Center for Cognitive Neurology, Institute of Clinical Neurology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350001, China
| | - Yuqi Zeng
- Department of Neurology, Center for Cognitive Neurology, Institute of Clinical Neurology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350001, China
| | - Yongjie Li
- College of Information Engineering, Guangdong University of Technology, Guangzhou, 510006, Guangdong, China
| | - Xiaochun Chen
- Department of Neurology, Center for Cognitive Neurology, Institute of Clinical Neurology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350001, China
| | - Guofa Cai
- College of Information Engineering, Guangdong University of Technology, Guangzhou, 510006, Guangdong, China.
| | - Qinyong Ye
- Department of Neurology, Center for Cognitive Neurology, Institute of Clinical Neurology, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350001, China.
| | - Guoen Cai
- Department of Neurology, Center for Cognitive Neurology, Institute of Clinical Neurology, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350001, China.
| |
Collapse
|
6
|
Quek DYL, Taylor N, Gilat M, Lewis SJG, Ehgoetz Martens KA. Effect of dopamine on limbic network connectivity at rest in Parkinson's disease patients with freezing of gait. Transl Neurosci 2024; 15:20220336. [PMID: 38708096 PMCID: PMC11066616 DOI: 10.1515/tnsci-2022-0336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 05/07/2024] Open
Abstract
Background Freezing of gait (FOG) in Parkinson's disease (PD) has a poorly understood pathophysiology, which hinders treatment development. Recent work showed a dysfunctional fronto-striato-limbic circuitry at rest in PD freezers compared to non-freezers in the dopamine "OFF" state. While other studies found that dopaminergic replacement therapy alters functional brain organization in PD, the specific effect of dopamine medication on fronto-striato-limbic functional connectivity in freezers remains unclear. Objective To evaluate how dopamine therapy alters resting state functional connectivity (rsFC) of the fronto-striato-limbic circuitry in PD freezers, and whether the degree of connectivity change is related to freezing severity and anxiety. Methods Twenty-three PD FOG patients underwent MRI at rest (rsfMRI) in their clinically defined "OFF" and "ON" dopaminergic medication states. A seed-to-seed based analysis was performed between a priori defined limbic circuitry ROIs. Functional connectivity was compared between OFF and ON states. A secondary correlation analyses evaluated the relationship between Hospital Anxiety and Depression Scale (HADS)-Anxiety) and FOG Questionnaire with changes in rsFC from OFF to ON. Results PD freezers' OFF compared to ON showed increased functional coupling between the right hippocampus and right caudate nucleus, and between the left putamen and left posterior parietal cortex (PPC). A negative association was found between HADS-Anxiety and the rsFC change from OFF to ON between the left amygdala and left prefrontal cortex, and left putamen and left PPC. Conclusion These findings suggest that dopaminergic medication partially modulates the frontoparietal-limbic-striatal circuitry in PD freezers, and that the influence of medication on the amygdala, may be related to clinical anxiety in freezer.
Collapse
Affiliation(s)
- Dione Y. L. Quek
- Parkinson’s Disease Research Clinic, Brain and Mind Centre, University of Sydney, Sydney, Australia
| | - Natasha Taylor
- Parkinson’s Disease Research Clinic, Brain and Mind Centre, University of Sydney, Sydney, Australia
| | - Moran Gilat
- Neurorehabilitation Research Group (eNRGy), Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Simon J. G. Lewis
- Parkinson’s Disease Research Clinic, Brain and Mind Centre, University of Sydney, Sydney, Australia
| | - Kaylena A. Ehgoetz Martens
- Parkinson’s Disease Research Clinic, Brain and Mind Centre, University of Sydney, Sydney, Australia
- Department of Kinesiology and Health Sciences, University of Waterloo, 200 University Avenue West, WaterlooON, N2L3G1Canada
| |
Collapse
|
7
|
Herman T, Barer Y, Bitan M, Sobol S, Giladi N, Hausdorff JM. A meta-analysis identifies factors predicting the future development of freezing of gait in Parkinson's disease. NPJ Parkinsons Dis 2023; 9:158. [PMID: 38049430 PMCID: PMC10696025 DOI: 10.1038/s41531-023-00600-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 11/02/2023] [Indexed: 12/06/2023] Open
Abstract
Freezing of gait (FOG) is a debilitating problem that is common among many, but not all, people with Parkinson's disease (PD). Numerous attempts have been made at treating FOG to reduce its negative impact on fall risk, functional independence, and health-related quality of life. However, optimal treatment remains elusive. Observational studies have recently investigated factors that differ among patients with PD who later develop FOG, compared to those who do not. With prediction and prevention in mind, we conducted a systematic review and meta-analysis of publications through 31.12.2022 to identify risk factors. Studies were included if they used a cohort design, included patients with PD without FOG at baseline, data on possible FOG predictors were measured at baseline, and incident FOG was assessed at follow-up. 1068 original papers were identified, 38 met a-priori criteria, and 35 studies were included in the meta-analysis (n = 8973; mean follow-up: 4.1 ± 2.7 years). Factors significantly associated with a risk of incident FOG included: higher age at onset of PD, greater severity of motor symptoms, depression, anxiety, poorer cognitive status, and use of levodopa and COMT inhibitors. Most results were robust in four subgroup analyses. These findings indicate that changes associated with FOG incidence can be detected in a subset of patients with PD, sometimes as long as 12 years before FOG manifests, supporting the possibility of predicting FOG incidence. Intriguingly, some of these factors may be modifiable, suggesting that steps can be taken to lower the risk and possibly even prevent the future development of FOG.
Collapse
Affiliation(s)
- Talia Herman
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Yael Barer
- Maccabitech, Maccabi Institute for Research and Innovation, Maccabi Healthcare Services, Tel Aviv, Israel
| | - Michal Bitan
- School of Computer Science, The College of Management, Rishon LeZion, Israel
| | - Shani Sobol
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Nir Giladi
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Neurology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jeffrey M Hausdorff
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
- Department of Orthopedic Surgery and Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA.
- Department of Physical Therapy, Faculty of Medicine, Tel Aviv, Israel.
| |
Collapse
|
8
|
Camicioli R, Morris ME, Pieruccini‐Faria F, Montero‐Odasso M, Son S, Buzaglo D, Hausdorff JM, Nieuwboer A. Prevention of Falls in Parkinson's Disease: Guidelines and Gaps. Mov Disord Clin Pract 2023; 10:1459-1469. [PMID: 37868930 PMCID: PMC10585979 DOI: 10.1002/mdc3.13860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/28/2023] [Accepted: 07/08/2023] [Indexed: 10/24/2023] Open
Abstract
Background People living with Parkinson's disease (PD) have a high risk for falls. Objective To examine gaps in falls prevention targeting people with PD as part of the Task Force on Global Guidelines for Falls in Older Adults. Methods A Delphi consensus process was used to identify specific recommendations for falls in PD. The current narrative review was conducted as educational background with a view to identifying gaps in fall prevention. Results A recent Cochrane review recommended exercises and structured physical activities for PD; however, the types of exercises and activities to recommend and PD subgroups likely to benefit require further consideration. Freezing of gait, reduced gait speed, and a prior history of falls are risk factors for falls in PD and should be incorporated in assessments to identify fall risk and target interventions. Multimodal and multi-domain fall prevention interventions may be beneficial. With advanced or complex PD, balance and strength training should be administered under supervision. Medications, particularly cholinesterase inhibitors, show promise for falls prevention. Identifying how to engage people with PD, their families, and health professionals in falls education and implementation remains a challenge. Barriers to the prevention of falls occur at individual, environmental, policy, and health system levels. Conclusion Effective mitigation of fall risk requires specific targeting and strategies to reduce this debilitating and common problem in PD. While exercise is recommended, the types and modalities of exercise and how to combine them as interventions for different PD subgroups (cognitive impairment, freezing, advanced disease) need further study.
Collapse
Affiliation(s)
- Richard Camicioli
- Department of Medicine (Neurology) and Neuroscience and Mental Health InstituteUniversity of AlbertaEdmontonAlbertaCanada
| | - Meg E. Morris
- La Trobe University, Academic and Research Collaborative in Health & HealthscopeMelbourneVictoriaAustralia
| | - Frederico Pieruccini‐Faria
- Gait and Brain Lab, Parkwood InstituteLawson Health Research InstituteLondonOntarioCanada
- Division of Geriatric Medicine, Department of Medicine, Schulich School of Medicine & DentistryWestern UniversityLondonOntarioCanada
| | - Manuel Montero‐Odasso
- Gait and Brain Lab, Parkwood InstituteLawson Health Research InstituteLondonOntarioCanada
- Division of Geriatric Medicine, Department of Medicine, Schulich School of Medicine & DentistryWestern UniversityLondonOntarioCanada
- Department of Epidemiology and Biostatistics, Schulich School of Medicine & DentistryWestern UniversityLondonOntarioCanada
| | - Surim Son
- Gait and Brain Lab, Parkwood InstituteLawson Health Research InstituteLondonOntarioCanada
- Department of Epidemiology and Biostatistics, Schulich School of Medicine & DentistryWestern UniversityLondonOntarioCanada
| | - David Buzaglo
- Center for the Study of Movement, Cognition and Mobility, Neurological InstituteTel Aviv Sourasky Medical CenterTel AvivIsrael
| | - Jeffrey M. Hausdorff
- Center for the Study of Movement, Cognition and Mobility, Neurological InstituteTel Aviv Sourasky Medical CenterTel AvivIsrael
- Department of Physical Therapy, Faculty of Medicine, Sagol School of NeuroscienceTel Aviv UniversityTel AvivIsrael
- Rush Alzheimer's Disease Center and Department of Orthopedic SurgeryRush University Medical CenterChicagoIllinoisUSA
| | - Alice Nieuwboer
- Department of Rehabilitation Sciences, Neurorehabilitation Research Group (eNRGy)KU LeuvenLeuvenBelgium
| |
Collapse
|
9
|
Jeong SH, Kim SH, Park CW, Lee HS, Lee PH, Kim YJ, Sohn YH, Jeong Y, Chung SJ. Differential Implications of Cerebral Hypoperfusion and Hyperperfusion in Parkinson's Disease. Mov Disord 2023; 38:1881-1890. [PMID: 37489576 DOI: 10.1002/mds.29565] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Patients with Parkinson's disease (PD) exhibit widespread brain perfusion changes. OBJECTIVE This study investigated whether cerebral regions with hypoperfusion and hyperperfusion have differential effects on motor and cognitive symptoms in PD using early-phase 18 F-N-(3-fluoropropyl)-2β-carboxymethoxy-3β-(4-iodophenyl) nortropane (18 F-FP-CIT) positron emission tomography (PET) scans. METHODS We enrolled 394 patients with newly diagnosed PD who underwent dual-phase 18 F-FP-CIT PET scans. Indices reflecting associated changes in regional cerebral hypoperfusion and hyperperfusion on early-phase 18 F-FP-CIT PET scans were calculated as PD[hypo] and PD[hyper] , respectively. The associations of PD[hypo] and PD[hyper] on motor and cognitive symptoms at baseline were assessed using multivariate linear regression. Also, Cox regression and linear mixed models were performed to investigate the effects of baseline PD[hypo] and PD[hyper] on longitudinal outcomes. RESULTS There was a weak correlation between PD[hypo] and PD[hyper] (γ = -0.19, P < 0.001). PD[hypo] was associated with baseline Unified Parkinson's Disease Rating Scale Part III scores (β = -1.02, P = 0.045), rapid increases in dopaminergic medications (β = -18.02, P < 0.001), and a higher risk for developing freezing of gait (hazard ratio [HR] = 0.67, P = 0.019), whereas PD[hyper] was not associated. Regarding cognitive function, PD[hypo] was more relevant to the baseline cognitive performance levels of visuospatial, memory, and frontal/executive function than PD[hyper] . However, greater PD[hyper] was associated with future dementia conversion (HR = 1.43, P = 0.004), whereas PD[hypo] was not associated. CONCLUSIONS These findings suggest that PD[hypo] and PD[hyper] may differentially affect motor and cognitive functions in patients with PD. © 2023 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Seong Ho Jeong
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
- Department of Neurology, Inje University Sanggye Paik Hospital, Seoul, South Korea
| | - Su Hong Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- KAIST Institute for Health Science Technology, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Chan Wook Park
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
- Department of Physiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Hye Sun Lee
- Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, South Korea
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Yun Joong Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
- Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin, South Korea
- Yonsei Beyond Lab, Yongin, South Korea
| | - Young H Sohn
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Yong Jeong
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- KAIST Institute for Health Science Technology, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Seok Jong Chung
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
- Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin, South Korea
- Yonsei Beyond Lab, Yongin, South Korea
| |
Collapse
|
10
|
Potvin-Desrochers A, Martinez-Moreno A, Clouette J, Parent-L'Ecuyer F, Lajeunesse H, Paquette C. Upregulation of the parietal cortex improves freezing of gait in Parkinson's disease. J Neurol Sci 2023; 452:120770. [PMID: 37633012 DOI: 10.1016/j.jns.2023.120770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 08/28/2023]
Abstract
BACKGROUND The posterior parietal cortex (PPC) is a key brain area for visuospatial processing and locomotion. It has been repetitively shown to be involved in the neural correlates of freezing of gait (FOG), a common symptom of Parkinson's disease (PD). However, current neuroimaging modalities do not allow to precisely determine the role of the PPC during real FOG episodes. OBJECTIVES The purpose of this study was to modulate the PPC cortical excitability using repetitive transcranial magnetic stimulation (rTMS) to determine whether the PPC contributes to FOG or compensates for dysfunctional neural networks to reduce FOG. METHODS Fourteen participants with PD who experience freezing took part in a proof of principle study consisting of three experimental sessions targeting the PPC with inhibitory, excitatory, and sham rTMS. Objective FOG outcomes and cortical excitability measurements were acquired before and after each stimulation protocol. RESULTS Increasing PPC excitability resulted in significantly fewer freezing episodes and percent time frozen during a FOG-provoking task. This reduction in FOG most likely emerged from the trend in PPC inhibiting the lower leg motor cortex excitability. CONCLUSION Our results suggest that the recruitment of the PPC is linked to less FOG, providing support for the beneficial role of the PPC upregulation in preventing FOG. This could potentially be linked to a reduction of the cortical input burden on the basal ganglia prior to FOG. Excitatory rTMS interventions targeting the PPC may have the potential to reduce FOG.
Collapse
Affiliation(s)
- Alexandra Potvin-Desrochers
- McGill University, Department of Kinesiology and Physical Education Montréal, Québec, Canada; McGill University, Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada; Centre for Interdisciplinary Research in Rehabilitation, Montréal, Québec, Canada
| | - Alejandra Martinez-Moreno
- McGill University, Department of Kinesiology and Physical Education Montréal, Québec, Canada; Centre for Interdisciplinary Research in Rehabilitation, Montréal, Québec, Canada
| | - Julien Clouette
- McGill University, Department of Kinesiology and Physical Education Montréal, Québec, Canada; Centre for Interdisciplinary Research in Rehabilitation, Montréal, Québec, Canada
| | - Frédérike Parent-L'Ecuyer
- McGill University, Department of Kinesiology and Physical Education Montréal, Québec, Canada; Centre for Interdisciplinary Research in Rehabilitation, Montréal, Québec, Canada
| | - Henri Lajeunesse
- McGill University, Department of Kinesiology and Physical Education Montréal, Québec, Canada; Centre for Interdisciplinary Research in Rehabilitation, Montréal, Québec, Canada
| | - Caroline Paquette
- McGill University, Department of Kinesiology and Physical Education Montréal, Québec, Canada; McGill University, Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada; Centre for Interdisciplinary Research in Rehabilitation, Montréal, Québec, Canada.
| |
Collapse
|
11
|
Woo S, Noh Y, Koh SB, Lee SK, Il Lee J, Kim HH, Kim SY, Cho J, Kim C. Associations of ambient manganese exposure with brain gray matter thickness and white matter hyperintensities. Hypertens Res 2023; 46:1870-1879. [PMID: 37185603 DOI: 10.1038/s41440-023-01291-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023]
Abstract
Manganese (Mn) exposure is associated with increased risks of dementia and cerebrovascular disease. However, evidence regarding the impact of ambient Mn exposure on brain imaging markers is scarce. We aimed to investigate the association between ambient Mn exposure and brain imaging markers representing neurodegeneration and cerebrovascular lesions. We recruited a total of 936 adults (442 men and 494 women) without dementia, movement disorders, or stroke from the Republic of Korea. Ambient Mn concentrations were predicted at each participant's residential address using spatial modeling. Neurodegeneration-related brain imaging markers, such as the regional cortical thickness, were estimated using 3 T brain magnetic resonance images. White matter hyperintensity volume (an indicator of cerebrovascular lesions) was also obtained from a certain number of participants (n = 397). Linear regression analyses were conducted after adjusting for potential confounders. A log-transformed ambient Mn concentration was associated with thinner parietal (β = -0.02 mm; 95% confidence interval [CI], -0.05 to -0.01) and occipital cortices (β = -0.03 mm; 95% CI, -0.04 to -0.01) after correcting for multiple comparisons. These associations remained statistically significant in men. An increase in the ambient Mn concentration was also associated with a greater volume of deep white matter hyperintensity in men (β = 772.4 mm3, 95% CI: 36.9 to 1508.0). None of the associations were significant in women. Our findings suggest that ambient Mn exposure may induce cortical atrophy in the general adult population.
Collapse
Affiliation(s)
- Shinyoung Woo
- Department of Public Health, Yonsei University College of Medicine, Seoul, Korea
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Young Noh
- Department of Neurology, Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| | - Sang-Baek Koh
- Department of Preventive Medicine, Wonju College of Medicine, Yonsei University, Wonju, Korea
| | - Seung-Koo Lee
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jung Il Lee
- Korea Testing and Research Institute, Gwacheon, Korea
| | - Ho Hyun Kim
- Department of Nano-chemical, biological and environmental engineering Seokyeong University, Seoul, Korea
| | - Sun- Young Kim
- Department of Cancer Control and Population Health, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Jaelim Cho
- Department of Public Health, Yonsei University College of Medicine, Seoul, Korea.
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Korea.
- Institute for Environmental Research, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Institute of Human Complexity and Systems Science, Yonsei University, Incheon, Republic of Korea.
| | - Changsoo Kim
- Department of Public Health, Yonsei University College of Medicine, Seoul, Korea.
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Korea.
- Institute for Environmental Research, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Institute of Human Complexity and Systems Science, Yonsei University, Incheon, Republic of Korea.
| |
Collapse
|
12
|
Sreenivasan K, Bayram E, Zhuang X, Longhurst J, Yang Z, Cordes D, Ritter A, Caldwell J, Cummings JL, Mari Z, Litvan I, Bluett B, Mishra VR. Topological reorganization of functional hubs in patients with Parkinson's disease with freezing of gait. J Neuroimaging 2023; 33:547-557. [PMID: 37080778 PMCID: PMC10523899 DOI: 10.1111/jon.13107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/10/2023] [Accepted: 04/10/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND AND PURPOSE Resting-state functional MRI (rs-fMRI) studies in Parkinson's disease (PD) patients with freezing of gait (FOG) have implicated dysfunctional connectivity over multiple resting-state networks (RSNs). While these findings provided network-specific insights and information related to the aberrant or altered regional functional connectivity (FC), whether these alterations have any effect on topological reorganization in PD-FOG patients is incompletely understood. Understanding the higher order functional organization, which could be derived from the "hub" and the "rich-club" organization of the functional networks, could be crucial to identifying the distinct and unique pattern of the network connectivity associated with PD-FOG. METHODS In this study, we use rs-fMRI data and graph theoretical approaches to explore the reorganization of RSN topology in PD-FOG when compared to those without FOG. We also compared the higher order functional organization derived using the hub and rich-club measures in the FC networks of these PD-FOG patients to understand whether there is a topological reorganization of these hubs in PD-FOG. RESULTS We found that the PD-FOG patients showed a noticeable reorganization of hub regions. Regions that are part of the prefrontal cortex, primary somatosensory, motor, and visuomotor coordination areas were some of the regions exhibiting altered hub measures in PD-FOG patients. We also found a significantly altered feeder and local connectivity in PD-FOG. CONCLUSIONS Overall, our findings demonstrate a widespread topological reorganization and disrupted higher order functional network topology in PD-FOG that may further assist in improving our understanding of functional network disturbances associated with PD-FOG.
Collapse
Affiliation(s)
| | - Ece Bayram
- Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Xiaowei Zhuang
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, Nevada, USA
| | - Jason Longhurst
- Department of Physical Therapy and Athletic Training, Saint Louis University, St. Louis, Missouri, USA
| | - Zhengshi Yang
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, Nevada, USA
| | - Dietmar Cordes
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, Nevada, USA
- Department of Radiology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Aaron Ritter
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, Nevada, USA
| | - Jessica Caldwell
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, Nevada, USA
| | - Jeffrey L. Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada, Las Vegas, Nevada, USA
| | - Zoltan Mari
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, Nevada, USA
| | - Irene Litvan
- Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Brent Bluett
- Central California Movement Disorders, Pismo Beach, California, USA
| | - Virendra R. Mishra
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, Nevada, USA
- Department of Radiology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
13
|
Suharto AP, Sensusiati AD, Hamdan M, Bastiana DS. Structural magnetic resonance imaging in Parkinson disease with freezing of gait: A systematic review of literature. J Neurosci Rural Pract 2023; 14:399-405. [PMID: 37692820 PMCID: PMC10483193 DOI: 10.25259/jnrp_107_2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/18/2023] [Indexed: 09/12/2023] Open
Abstract
Objective This review aims to the existing structural neuroimaging literature in Parkinson disease presenting with freezing of gait. The summary of this article provides an opportunity for a better understanding of the structural findings of freezing of gait in Parkinson disease based on MRI. Methods This systematic review of literature follows the procedures as described by the guideline of Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Results Initial searches yielded 545 documents. After exclusions, 11 articles were included into our study. Current findings of structural MRI on freezing of gait in Parkinson disease are associated with structural damage between sensorimotor-related cortical grey matter structures and thalamus, but not cerebellum and smaller systems, as well as extensive injuries on white matter connecting between those structures. Conclusion Current findings of structural MRI on freezing of gait in Parkinson disease are associated with structural damage between sensorimotor-related cortical grey matter structures and thalamus, but not cerebellum and smaller systems, as well as extensive injuries on white matter connecting between those structures.
Collapse
Affiliation(s)
- Ade Pambayu Suharto
- Department Neurology, Faculty of Medicine, Airlangga University - Dr Soetomo General Hospital, Surabaya, East Java, Indonesia
| | - Anggraini Dwi Sensusiati
- Department Radiology, Faculty of Medicine, Airlangga University - Universitas Airlangga Hospital, Surabaya, East Java, Indonesia
| | - Muhammad Hamdan
- Department Neurology, Faculty of Medicine, Airlangga University - Dr Soetomo General Hospital, Surabaya, East Java, Indonesia
| | - Dewi Setyaning Bastiana
- Department Neurology, Faculty of Medicine, Airlangga University - Dr Soetomo General Hospital, Surabaya, East Java, Indonesia
| |
Collapse
|
14
|
Bosch TJ, Cole RC, Bezchlibnyk Y, Flouty O, Singh A. Effects of Very Low- and High-Frequency Subthalamic Stimulation on Motor Cortical Oscillations During Rhythmic Lower-Limb Movements in Parkinson's Disease Patients. JOURNAL OF PARKINSON'S DISEASE 2023:JPD225113. [PMID: 37092236 DOI: 10.3233/jpd-225113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
BACKGROUND Standard high-frequency deep brain stimulation (HF-DBS) at the subthalamic nucleus (STN) is less effective for lower-limb motor dysfunctions in Parkinson's disease (PD) patients. However, the effects of very low frequency (VLF; 4 Hz)-DBS on lower-limb movement and motor cortical oscillations have not been compared. OBJECTIVE To compare the effects of VLF-DBS and HF-DBS at the STN on a lower-limb pedaling motor task and motor cortical oscillations in patients with PD and with and without freezing of gait (FOG). METHODS Thirteen PD patients with bilateral STN-DBS performed a cue-triggered lower-limb pedaling motor task with electroencephalography (EEG) in OFF-DBS, VLF-DBS (4 Hz), and HF-DBS (120-175 Hz) states. We performed spectral analysis on the preparatory signals and compared GO-cue-triggered theta and movement-related beta oscillations over motor cortical regions across DBS conditions in PD patients and subgroups (PDFOG-and PDFOG+). RESULTS Both VLF-DBS and HF-DBS decreased the linear speed of the pedaling task in PD, and HF-DBS decreased speed in both PDFOG-and PDFOG+. Preparatory theta and beta activities were increased with both stimulation frequencies. Both DBS frequencies increased motor cortical theta activity during pedaling movement in PD patients, but this increase was only observed in PDFOG + group. Beta activity was not significantly different from OFF-DBS at either frequency regardless of FOG status. CONCLUSION Results suggest that VL and HF DBS may induce similar effects on lower-limb kinematics by impairing movement speed and modulating motor cortical oscillations in the lower frequency band.
Collapse
Affiliation(s)
- Taylor J Bosch
- Center for Brain and Behavior Research, University of South Dakota, Vermillion, SD, USA
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
| | - Rachel C Cole
- Department of Neurology, University of Iowa, Iowa City, IA, USA
| | - Yarema Bezchlibnyk
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Oliver Flouty
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Arun Singh
- Center for Brain and Behavior Research, University of South Dakota, Vermillion, SD, USA
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
| |
Collapse
|
15
|
Sarasso E, Filippi M, Agosta F. Clinical and MRI features of gait and balance disorders in neurodegenerative diseases. J Neurol 2023; 270:1798-1807. [PMID: 36577818 DOI: 10.1007/s00415-022-11544-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022]
Abstract
Gait and balance disorders are common signs in several neurodegenerative diseases such as Parkinson's disease, atypical parkinsonism, idiopathic normal pressure hydrocephalus, cerebrovascular disease, dementing disorders and multiple sclerosis. According to each condition, patients present with different gait and balance alterations depending on the structural and functional brain changes through the disease course. In this review, we will summarize the main clinical characteristics of gait and balance disorders in the major neurodegenerative conditions, providing an overview of the significant structural and functional MRI brain alterations underlying these deficits. We also will discuss the role of neurorehabilitation strategies in promoting brain plasticity and gait/balance improvements in these patients.
Collapse
Affiliation(s)
- Elisabetta Sarasso
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, University of Genoa, Genoa, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy.
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
16
|
Effects of Patchwise Sampling Strategy to Three-Dimensional Convolutional Neural Network-Based Alzheimer's Disease Classification. Brain Sci 2023; 13:brainsci13020254. [PMID: 36831797 PMCID: PMC9953929 DOI: 10.3390/brainsci13020254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/16/2022] [Accepted: 01/03/2023] [Indexed: 02/05/2023] Open
Abstract
In recent years, the rapid development of artificial intelligence has promoted the widespread application of convolutional neural networks (CNNs) in neuroimaging analysis. Although three-dimensional (3D) CNNs can utilize the spatial information in 3D volumes, there are still some challenges related to high-dimensional features and potential overfitting issues. To overcome these problems, patch-based CNNs have been used, which are beneficial for model generalization. However, it is unclear how the choice of a patchwise sampling strategy affects the performance of the Alzheimer's Disease (AD) classification. To this end, the present work investigates the impact of a patchwise sampling strategy for 3D CNN based AD classification. A 3D framework cascaded by two-stage subnetworks was used for AD classification. The patch-level subnetworks learned feature representations from local image patches, and the subject-level subnetwork combined discriminative feature representations from all patch-level subnetworks to generate a classification score at the subject level. Experiments were conducted to determine the effect of patch partitioning methods, the effect of patch size, and interactions between patch size and training set size for AD classification. With the same data size and identical network structure, the 3D CNN model trained with 48 × 48 × 48 cubic image patches showed the best performance in AD classification (ACC = 89.6%). The model trained with hippocampus-centered, region of interest (ROI)-based image patches showed suboptimal performance. If the pathological features are concentrated only in some regions affected by the disease, the empirically predefined ROI patches might be the right choice. The better performance of cubic image patches compared with cuboidal image patches is likely related to the pathological distribution of AD. The image patch size and training sample size together have a complex influence on the performance of the classification. The size of the image patches should be determined based on the size of the training sample to compensate for noisy labels and the problem of the curse of dimensionality. The conclusions of the present study can serve as a reference for the researchers who wish to develop a superior 3D patch-based CNN model with an appropriate patch sampling strategy.
Collapse
|
17
|
Wang L, Gan C, Sun H, Ji M, Zhang H, Cao X, Wang M, Yuan Y, Zhang K. Impaired structural and reserved functional topological organizations of brain networks in Parkinson's disease with freezing of gait. Quant Imaging Med Surg 2023; 13:66-79. [PMID: 36620158 PMCID: PMC9816763 DOI: 10.21037/qims-22-351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 09/16/2022] [Indexed: 01/11/2023]
Abstract
Background Freezing of gait (FOG) is a common disabling motor disturbance in Parkinson's disease (PD). Our study aimed to probe the topological organizations of structural and functional brain networks and their coupling in FOG. Methods In this cross-sectional retrospective study, a total of 30 PD patients with FOG (PD-FOG), 40 patients without FOG, and 25 healthy controls (HCs) underwent clinical assessments and magnetic resonance imaging (MRI) scanning. Large-scale structural and functional brain networks were constructed. Subsequently, global and nodal graph theoretical properties and functional-structural coupling were investigated. Finally, correlations between the altered brain topological properties and freezing severity were analyzed in PD-FOG. Results For structural networks, at the global level, PD-FOG exhibited increased normalized characteristic path length (P=0.040, Bonferroni-corrected) and decreased global efficiency (P=0.005, Bonferroni-corrected) compared with controls, and showed reduced global (P=0.001, Bonferroni-corrected) and local (P=0.032, Bonferroni-corrected) efficiency relative to patients without FOG. At the nodal level, nodal efficiency of structural networks was reduced in PD-FOG compared with PD patients without FOG, located in the left supplementary motor area (SMA), gyrus rectus, and middle cingulate cortex (MCC) (all P<0.05, Bonferroni-corrected). Notably, altered global and nodal properties of structural networks were significantly correlated with Freezing of Gait Questionnaire scores [all P<0.05, false discovery rate (FDR)-corrected]. However, only an increase in local efficiency (P=0.003, Bonferroni-corrected) of functional networks was identified in PD-FOG compared with those without FOG. No significant structural-functional coupling was detected among the 3 groups. Conclusions This study demonstrates the extensively impaired structural and relatively reserved functional network topological organizations in PD-FOG. Our results also provide evidence that the pathogenesis of PD-FOG is primarily attributable to network vulnerability established by crucial structural damage, especially in the left SMA, gyrus rectus, and MCC.
Collapse
Affiliation(s)
- Lina Wang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Caiting Gan
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huimin Sun
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Min Ji
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Heng Zhang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xingyue Cao
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Min Wang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yongsheng Yuan
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kezhong Zhang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
18
|
Togo H, Nakamura T, Wakasugi N, Takahashi Y, Hanakawa T. Interactions across emotional, cognitive and subcortical motor networks underlying freezing of gait. Neuroimage Clin 2023; 37:103342. [PMID: 36739790 PMCID: PMC9932566 DOI: 10.1016/j.nicl.2023.103342] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 01/23/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023]
Abstract
Freezing of gait (FOG) is a gait disorder affecting patients with Parkinson's disease (PD) and related disorders. The pathophysiology of FOG is unclear because of its phenomenological complexity involving motor, cognitive, and emotional aspects of behavior. Here we used resting-state functional MRI to retrieve functional connectivity (FC) correlated with the New FOG questionnaire (NFOGQ) reflecting severity of FOG in 67 patients with PD. NFOGQ scores were correlated with FCs in the extended basal ganglia network (BGN) involving the striatum and amygdala, and in the extra-cerebellum network (CBLN) involving the frontoparietal network (FPN). These FCs represented interactions across the emotional (amygdala), subcortical motor (BGN and CBLN), and cognitive networks (FPN). Using these FCs as features, we constructed statistical models that explained 40% of the inter-individual variances of FOG severity and that discriminated between PD patients with and without FOG. The amygdala, which connects to the subcortical motor (BGN and CBLN) and cognitive (FPN) networks, may have a pivotal role in interactions across the emotional, cognitive, and subcortical motor networks. Future refinement of the machine learning-based classifier using FCs may clarify the complex pathophysiology of FOG further and help diagnose and evaluate FOG in clinical settings.
Collapse
Affiliation(s)
- Hiroki Togo
- Department of Integrated Neuroanatomy and Neuroimaging, Kyoto University Graduate School of Medicine, Kyoto, Yoshida-Konoe, Sakyo-ku, Kyoto 606-8501, Japan; Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry (NCNP), 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8551, Japan
| | - Tatsuhiro Nakamura
- Department of Integrated Neuroanatomy and Neuroimaging, Kyoto University Graduate School of Medicine, Kyoto, Yoshida-Konoe, Sakyo-ku, Kyoto 606-8501, Japan; Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry (NCNP), 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8551, Japan
| | - Noritaka Wakasugi
- Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry (NCNP), 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8551, Japan
| | - Yuji Takahashi
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry (NCNP), Tokyo, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8551, Japan
| | - Takashi Hanakawa
- Department of Integrated Neuroanatomy and Neuroimaging, Kyoto University Graduate School of Medicine, Kyoto, Yoshida-Konoe, Sakyo-ku, Kyoto 606-8501, Japan; Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry (NCNP), 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8551, Japan.
| |
Collapse
|
19
|
Feng H, Jiang Y, Lin J, Qin W, Jin L, Shen X. Cortical activation and functional connectivity during locomotion tasks in Parkinson's disease with freezing of gait. Front Aging Neurosci 2023; 15:1068943. [PMID: 36967824 PMCID: PMC10032375 DOI: 10.3389/fnagi.2023.1068943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/14/2023] [Indexed: 03/29/2023] Open
Abstract
Background Freezing of gait (FoG) is a severely disabling symptom in Parkinson's disease (PD). The cortical mechanisms underlying FoG during locomotion tasks have rarely been investigated. Objectives We aimed to compare the cerebral haemodynamic response during FoG-prone locomotion tasks in patients with PD and FoG (PD-FoG), patients with PD but without FoG (PD-nFoG), and healthy controls (HCs). Methods Twelve PD-FoG patients, 10 PD-nFoG patients, and 12 HCs were included in the study. Locomotion tasks included normal stepping, normal turning and fast turning ranked as three difficulty levels based on kinematic requirements and probability of provoking FoG. During each task, we used functional near-infrared spectroscopy to capture concentration changes of oxygenated haemoglobin (ΔHBO2) and deoxygenated haemoglobin (ΔHHB) that reflected cortical activation, and recorded task performance time. The cortical regions of interest (ROIs) were prefrontal cortex (PFC), supplementary motor area (SMA), premotor cortex (PMC), and sensorimotor cortex (SMC). Intra-cortical functional connectivity during each task was estimated based on correlation of ΔHBO2 between ROIs. Two-way multivariate ANOVA with task performance time as a covariate was conducted to investigate task and group effects on cerebral haemodynamic responses of ROIs. Z statistics of z-scored connectivity between ROIs were used to determine task and group effects on functional connectivity. Results PD-FoG patients spent a nearly significant longer time completing locomotion tasks than PD-nFoG patients. Compared with PD-nFoG patients, they showed weaker activation (less ΔHBO2) in the PFC and PMC. Compared with HCs, they had comparable ΔHBO2 in all ROIs but more negative ΔHHB in the SMC, whereas PD-nFoG showed SMA and PMC hyperactivity but more negative ΔHHB in the SMC. With increased task difficulty, ΔHBO2 increased in each ROI except in the PFC. Regarding functional connectivity during normal stepping, PD-FoG patients showed positive and strong PFC-PMC connectivity, in contrast to the negative PFC-PMC connectivity observed in HCs. They also had greater PFC-SMC connectivity than the other groups. However, they exhibited decreased SMA-SMC connectivity when task difficulty increased and had lower SMA-PMC connectivity than HCs during fast turning. Conclusion Insufficient compensatory cortical activation and depletion of functional connectivity during complex locomotion in PD-FoG patients could be potential mechanisms underlying FoG. Clinical trial registration Chinese clinical trial registry (URL: http://www.chictr.org.cn, registration number: ChiCTR2100042813).
Collapse
Affiliation(s)
- HongSheng Feng
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - YanNa Jiang
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - JinPeng Lin
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - WenTing Qin
- Department of Neurology and Neurological Rehabilitation, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - LingJing Jin
- Department of Neurology and Neurological Rehabilitation, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Xia Shen
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
- Rehabilitation Medicine Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Xia Shen,
| |
Collapse
|
20
|
Wang L, Ji M, Sun H, Gan C, Zhang H, Cao X, Yuan Y, Zhang K. Reduced Short-Latency Afferent Inhibition in Parkinson's Disease Patients with L-dopa-Unresponsive Freezing of Gait. JOURNAL OF PARKINSON'S DISEASE 2022; 12:2507-2518. [PMID: 36502341 DOI: 10.3233/jpd-223498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Freezing of gait (FOG) in Parkinson's disease (PD), especially the "L-dopa-unresponsive" subtype, is associated with the dysfunction of non-dopaminergic circuits. OBJECTIVE We sought to determine whether cortical sensorimotor inhibition evaluated by short-latency afferent inhibition (SAI) related to cholinergic and gamma-aminobutyric acid (GABA)-ergic activities is impaired in PD patients with L-dopa-unresponsive FOG (ONOFF-FOG). METHODS SAI protocol was performed in 28 PD patients with ONOFF-FOG, 15 PD patients with "off" FOG (OFF-FOG), and 25 PD patients without FOG during medication "on" state. Additionally, 10 ONOFF-FOG patients underwent SAI testing during both "off" and "on" states. Twenty healthy controls participated in this study. Gait was measured objectively using a portable Inertial Measurement Unit system, and participants performed 5-meter Timed Up and Go single- and dual-task conditions. Spatiotemporal gait characteristics and their variability were determined. FOG manifestations and cognition were assessed with clinical scales. RESULTS Compared to controls, PD patients without FOG and with OFF-FOG, ONOFF-FOG PD patients showed significantly reduced SAI. Further, dopaminergic therapy had no remarkable effect on this SAI alterations in ONOFF-FOG. Meanwhile, OFF-FOG patients presented decreased SAI only relative to controls. PD patients with ONOFF-FOG exhibited decreased gait speed, stride length, and increased gait variability relative to PD patients without FOG and controls under both walking conditions. For ONOFF-FOG patients, significant associations were found between SAI and FOG severity, gait characteristics and variability. CONCLUSION Reduced SAI was associated with severe FOG manifestations, impaired gait characteristics and variability in PD patients with ONOFF-FOG, suggesting the impaired thalamocortical cholinergic-GABAergic SAI pathways underlying ONOFF-FOG.
Collapse
Affiliation(s)
- Lina Wang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Min Ji
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huimin Sun
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Caiting Gan
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Heng Zhang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xingyue Cao
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yongsheng Yuan
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kezhong Zhang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
21
|
MRI biomarkers of freezing of gait development in Parkinson’s disease. NPJ Parkinsons Dis 2022; 8:158. [DOI: 10.1038/s41531-022-00426-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022] Open
Abstract
AbstractThis study investigated longitudinal clinical, structural and functional brain alterations in Parkinson’s disease patients with freezing of gait (PD-FoG) and in those developing (PD-FoG-converters) and not developing FoG (PD-non-converters) over two years. Moreover, this study explored if any clinical and/or MRI metric predicts FoG development. Thirty PD-FoG, 11 PD-FoG-converters and 11 PD-non-converters were followed for two years. Thirty healthy controls were included at baseline. Participants underwent clinical and MRI visits. Cortical thickness, basal ganglia volumes and functional network graph metrics were evaluated at baseline and over time. In PD groups, correlations between baseline MRI and clinical worsening were tested. A ROC curve analysis investigated if baseline clinical and MRI measures, selected using a stepwise model procedure, could differentiate PD-FoG-converters from PD-non-converters. At baseline, PD-FoG patients had widespread cortical/subcortical atrophy, while PD-FoG-converters and non-converters showed atrophy in sensorimotor areas and basal ganglia relative to controls. Over time, PD-non-converters accumulated cortical thinning of left temporal pole and pallidum without significant clinical changes. PD-FoG-converters showed worsening of disease severity, executive functions, and mood together with an accumulation of occipital atrophy, similarly to PD-FoG. At baseline, PD-FoG-converters relative to controls and PD-FoG showed higher global and parietal clustering coefficient and global local efficiency. Over time, PD-FoG-converters showed reduced parietal clustering coefficient and sensorimotor local efficiency, PD-non-converters showed increased sensorimotor path length, while PD-FoG patients showed stable graph metrics. Stepwise prediction model including dyskinesia, postural instability and gait disorders scores and parietal clustering coefficient was the best predictor of FoG conversion. Combining clinical and MRI data, ROC curves provided the highest classification power to predict the conversion (AUC = 0.95, 95%CI: 0.86–1). Structural MRI is a useful tool to monitor PD progression, while functional MRI together with clinical features may be helpful to identify FoG conversion early.
Collapse
|
22
|
Temiz G, Santin MDN, Olivier C, Collomb-Clerc A, Fernandez-Vidal S, Hainque E, Bardinet E, Lau B, François C, Karachi C, Welter ML. Freezing of gait depends on cortico-subthalamic network recruitment following STN-DBS in PD patients. Parkinsonism Relat Disord 2022; 104:49-57. [PMID: 36242900 DOI: 10.1016/j.parkreldis.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/29/2022] [Accepted: 10/02/2022] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Subthalamic deep-brain-stimulation (STN-DBS) is an effective means to treat Parkinson's disease (PD) symptoms. Its benefit on gait disorders is variable, with freezing of gait (FOG) worsening in about 30% of cases. Here, we investigate the clinical and anatomical features that could explain post-operative FOG. METHODS Gait and balance disorders were assessed in 19 patients, before and after STN-DBS using clinical scales and gait recordings. The location of active stimulation contacts were evaluated individually and the volumes of activated tissue (VAT) modelled for each hemisphere. We used a whole brain tractography template constructed from another PD cohort to assess the connectivity of each VAT within the 39 Brodmann cortical areas (BA) to search for correlations between postoperative PD disability and cortico-subthalamic connectivity. RESULTS STN-DBS induced a 100% improvement to a 166% worsening in gait disorders, with a mean FOG decrease of 36%. We found two large cortical clusters for VAT connectivity: one "prefrontal", mainly connected with BA 8,9,10,11 and 32, and one "sensorimotor", mainly connected with BA 1-2-3,4 and 6. After surgery, FOG severity positively correlated with the right prefrontal VAT connectivity, and negatively with the right sensorimotor VAT connectivity. The right prefrontal VAT connectivity also tended to be positively correlated with the UPDRS-III score, and negatively with step length. The MDRS score positively correlated with the right sensorimotor VAT connectivity. CONCLUSION Recruiting right sensorimotor and avoiding right prefrontal cortico-subthalamic fibres with STN-DBS could explain reduced post-operative FOG, since gait is a complex locomotor program that necessitates accurate cognitive control.
Collapse
Affiliation(s)
- Gizem Temiz
- Inserm 1127, Sorbonne Université, UPMC Univ Paris 06, UMRS 1127, CNRS, UMR 7225, Institut Du Cerveau et de la Moelle Epinière, F-75013, Paris, France
| | - Marie des Neiges Santin
- Inserm 1127, Sorbonne Université, UPMC Univ Paris 06, UMRS 1127, CNRS, UMR 7225, Institut Du Cerveau et de la Moelle Epinière, F-75013, Paris, France
| | - Claire Olivier
- Inserm 1127, Sorbonne Université, UPMC Univ Paris 06, UMRS 1127, CNRS, UMR 7225, Institut Du Cerveau et de la Moelle Epinière, F-75013, Paris, France; PANAM core Facility, Paris Brain Institute, Paris, France
| | - Antoine Collomb-Clerc
- Inserm 1127, Sorbonne Université, UPMC Univ Paris 06, UMRS 1127, CNRS, UMR 7225, Institut Du Cerveau et de la Moelle Epinière, F-75013, Paris, France
| | - Sara Fernandez-Vidal
- Inserm 1127, Sorbonne Université, UPMC Univ Paris 06, UMRS 1127, CNRS, UMR 7225, Institut Du Cerveau et de la Moelle Epinière, F-75013, Paris, France
| | - Elodie Hainque
- Inserm 1127, Sorbonne Université, UPMC Univ Paris 06, UMRS 1127, CNRS, UMR 7225, Institut Du Cerveau et de la Moelle Epinière, F-75013, Paris, France
| | - Eric Bardinet
- Inserm 1127, Sorbonne Université, UPMC Univ Paris 06, UMRS 1127, CNRS, UMR 7225, Institut Du Cerveau et de la Moelle Epinière, F-75013, Paris, France
| | - Brian Lau
- Inserm 1127, Sorbonne Université, UPMC Univ Paris 06, UMRS 1127, CNRS, UMR 7225, Institut Du Cerveau et de la Moelle Epinière, F-75013, Paris, France
| | - Chantal François
- Inserm 1127, Sorbonne Université, UPMC Univ Paris 06, UMRS 1127, CNRS, UMR 7225, Institut Du Cerveau et de la Moelle Epinière, F-75013, Paris, France
| | - Carine Karachi
- Inserm 1127, Sorbonne Université, UPMC Univ Paris 06, UMRS 1127, CNRS, UMR 7225, Institut Du Cerveau et de la Moelle Epinière, F-75013, Paris, France; Neurosurgery Department, AP-HP, Hôpitaux Universitaires Pitié Salpêtrière - Charles Foix, F-75013, Paris, France
| | - Marie-Laure Welter
- Inserm 1127, Sorbonne Université, UPMC Univ Paris 06, UMRS 1127, CNRS, UMR 7225, Institut Du Cerveau et de la Moelle Epinière, F-75013, Paris, France; PANAM core Facility, Paris Brain Institute, Paris, France; Neurophysiology Department, Rouen University Hospital, CHU Rouen, F-76000, Rouen, France.
| |
Collapse
|
23
|
Bosch TJ, Espinoza AI, Mancini M, Horak FB, Singh A. Functional Connectivity in Patients With Parkinson’s Disease and Freezing of Gait Using Resting-State EEG and Graph Theory. Neurorehabil Neural Repair 2022; 36:715-725. [DOI: 10.1177/15459683221129282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background Although many studies have shown abnormalities in brain structure and function in people with Parkinson’s disease (PD), we still have a poor understanding of how brain structure and function relates to freezing of gait (FOG). Graph theory analysis of electroencephalography (EEG) can explore the relationship between brain network structure and gait function in PD. Methods Scalp EEG signals of 83 PD (42 PDFOG+ and 41 PDFOG−) and 42 healthy controls were recorded in an eyes-opened resting-state. The phase lag index was calculated for each electrode pair in different frequency bands, but we focused our analysis on the theta-band and performed global analyses along with nodal analyses over a midfrontal channel. The resulting connectivity matrices were converted to weighted graphs, whose structure was characterized using strength and clustering coefficient measurements, our main outcomes. Results We observed increased global strength and increased global clustering coefficient in people with PD compared to healthy controls in the theta-band, though no differences were observed in midfrontal nodal strength and midfrontal clustering coefficient. Furthermore, no differences in global nor midfrontal nodal strength nor global clustering coefficients were observed between PDFOG+ and PDFOG− in the theta-band. However, PDFOG+ exhibited a significantly diminished midfrontal nodal clustering coefficient in the theta-band compared to PDFOG−. Furthermore, FOG scores were negatively correlated with midfrontal nodal clustering coefficient in the theta-band. Conclusion The present findings support the involvement of midfrontal theta oscillations in FOG symptoms in PD and the sensitivity of graph metrics to characterize functional networks in PDFOG+.
Collapse
Affiliation(s)
- Taylor J. Bosch
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
| | | | - Martina Mancini
- Department of Neurology, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Fay B. Horak
- Department of Neurology, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Arun Singh
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
| |
Collapse
|
24
|
Demographic reporting across a decade of neuroimaging: a systematic review. Brain Imaging Behav 2022; 16:2785-2796. [DOI: 10.1007/s11682-022-00724-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2022] [Indexed: 11/25/2022]
Abstract
Abstract
Diversity of participants in biomedical research with respect to race, ethnicity, and biological sex is crucial, particularly given differences in disease prevalence, recovery, and survival rates between demographic groups. The objective of this systematic review was to report on the demographics of neuroimaging studies using magnetic resonance imaging (MRI). The Web of Science database was used and data collection was performed between June 2021 to November 2021; all articles were reviewed independently by at least two researchers. Articles utilizing MR data acquired in the United States, with n ≥ 10 human subjects, and published between 2010–2020 were included. Non-primary research articles and those published in journals that did not meet a quality control check were excluded. Of the 408 studies meeting inclusion criteria, approximately 77% report sex, 10% report race, and 4% report ethnicity. Demographic reporting also varied as function of disease studied, participant age range, funding, and publisher. We anticipate quantitative data on the extent, or lack, of reporting will be necessary to ensure inclusion of diverse populations in biomedical research.
Collapse
|
25
|
Gan L, Yan R, Su D, Liu Z, Miao G, Wang Z, Wang X, Ma H, Bai Y, Zhou J, Feng T. Alterations of structure and functional connectivity of visual brain network in patients with freezing of gait in Parkinson’s disease. Front Aging Neurosci 2022; 14:978976. [PMID: 36158540 PMCID: PMC9490224 DOI: 10.3389/fnagi.2022.978976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022] Open
Abstract
Freezing of gait (FOG) is a disabling gait disorder common in advanced stage of Parkinson’s disease (PD). The gait performance of PD-FOG patients is closely linked with visual processing. Here, we aimed to investigate the structural and functional change of visual network in PD-FOG patients. Seventy-eight PD patients (25 with FOG, 53 without FOG) and 29 healthy controls (HCs) were included. All the participants underwent structural 3D T1-weighted magnetic resonance imaging (MRI) and resting state functional MRI scan. Our results demonstrated a significant decrease of right superior occipital gyrus gray matter density in PD-FOG relative to non-FOG (NFOG) patients and healthy controls (PD-FOG vs. PD-NFOG: 0.33 ± 0.04 vs. 0.37 ± 0.05, p = 0.005; PD-FOG vs. HC: 0.37 ± 0.05 vs. 0.39 ± 0.06, p = 0.002). Functional MRI revealed a significant decrease of connectivity between right superior occipital gyrus and right paracentral lobule in PD-FOG compared to PD-NFOG (p = 0.045). In addition, the connectivity strength was positively correlated with gray matter density of right superior occipital gyrus (r = 0.471, p = 0.027) and negatively associated with freezing of gait questionnaire (FOGQ) score (r = -0.562, p = 0.004). Our study suggests that the structural and functional impairment of visual-motor network might underlie the neural mechanism of FOG in PD.
Collapse
Affiliation(s)
- Lu Gan
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Lu Gan,
| | - Rui Yan
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Dongning Su
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Zhu Liu
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Guozhen Miao
- Maranatha High School, Pasadena, CA, United States
| | - Zhan Wang
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xuemei Wang
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Huizi Ma
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yutong Bai
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Junhong Zhou
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Roslindale, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Tao Feng
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Parkinson’s Disease Center, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
- Tao Feng,
| |
Collapse
|
26
|
Chen R, Berardelli A, Bhattacharya A, Bologna M, Chen KHS, Fasano A, Helmich RC, Hutchison WD, Kamble N, Kühn AA, Macerollo A, Neumann WJ, Pal PK, Paparella G, Suppa A, Udupa K. Clinical neurophysiology of Parkinson's disease and parkinsonism. Clin Neurophysiol Pract 2022; 7:201-227. [PMID: 35899019 PMCID: PMC9309229 DOI: 10.1016/j.cnp.2022.06.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 06/11/2022] [Accepted: 06/22/2022] [Indexed: 01/01/2023] Open
Abstract
This review is part of the series on the clinical neurophysiology of movement disorders and focuses on Parkinson’s disease and parkinsonism. The pathophysiology of cardinal parkinsonian motor symptoms and myoclonus are reviewed. The recordings from microelectrode and deep brain stimulation electrodes are reported in detail.
This review is part of the series on the clinical neurophysiology of movement disorders. It focuses on Parkinson’s disease and parkinsonism. The topics covered include the pathophysiology of tremor, rigidity and bradykinesia, balance and gait disturbance and myoclonus in Parkinson’s disease. The use of electroencephalography, electromyography, long latency reflexes, cutaneous silent period, studies of cortical excitability with single and paired transcranial magnetic stimulation, studies of plasticity, intraoperative microelectrode recordings and recording of local field potentials from deep brain stimulation, and electrocorticography are also reviewed. In addition to advancing knowledge of pathophysiology, neurophysiological studies can be useful in refining the diagnosis, localization of surgical targets, and help to develop novel therapies for Parkinson’s disease.
Collapse
Affiliation(s)
- Robert Chen
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Division of Neurology, Department of Medicine, University of Toronto, Ontario, Canada.,Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Alfredo Berardelli
- Department of Human Neurosciences, Sapienza University of Rome, Italy.,IRCCS Neuromed Pozzilli (IS), Italy
| | - Amitabh Bhattacharya
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| | - Matteo Bologna
- Department of Human Neurosciences, Sapienza University of Rome, Italy.,IRCCS Neuromed Pozzilli (IS), Italy
| | - Kai-Hsiang Stanley Chen
- Department of Neurology, National Taiwan University Hospital Hsinchu Branch, Hsinchu, Taiwan
| | - Alfonso Fasano
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Division of Neurology, Department of Medicine, University of Toronto, Ontario, Canada.,Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Rick C Helmich
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology and Centre of Expertise for Parkinson & Movement Disorders, Nijmegen, the Netherlands
| | - William D Hutchison
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Departments of Surgery and Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Nitish Kamble
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| | - Andrea A Kühn
- Department of Neurology, Movement Disorder and Neuromodulation Unit, Charité - Universitätsmedizin Berlin, Germany
| | - Antonella Macerollo
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, United Kingdom.,The Walton Centre NHS Foundation Trust for Neurology and Neurosurgery, Liverpool, United Kingdom
| | - Wolf-Julian Neumann
- Department of Neurology, Movement Disorder and Neuromodulation Unit, Charité - Universitätsmedizin Berlin, Germany
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| | | | - Antonio Suppa
- Department of Human Neurosciences, Sapienza University of Rome, Italy.,IRCCS Neuromed Pozzilli (IS), Italy
| | - Kaviraja Udupa
- Department of Neurophysiology National Institute of Mental Health & Neurosciences (NIMHANS), Bangalore, India
| |
Collapse
|
27
|
Morelli N. Patients with Parkinson's disease and a history of falls have decreased cerebellar grey matter volumes in the cognitive cerebellum. Rev Neurol (Paris) 2022; 178:924-931. [PMID: 35871015 DOI: 10.1016/j.neurol.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/17/2022] [Accepted: 05/13/2022] [Indexed: 11/19/2022]
Abstract
The objective of this study was to determine if cerebellar gray matter (GM) structure differs between fallers and non-fallers with Parkinson's disease (PD) and their respective association to cognitive function. A total of 48 fallers and 63 non-fallers with PD were identified from the Parkinson's Progression Markers Initiative database. Fallers were categorized as those who self-reported a fall within the past year. Unified Parkinson's Disease Rating Scale-III (UPDRS-III), Montreal Cognitive Assessment (MoCA), Trail Making Test parts A (TMT-A) and B (TMT-B) scores were collected for each patient. Cerebellar GM volumes were derived from magnetic resonance imaging data. Analyses of covariance were used to compare group differences. Partial Pearson's correlations were used to assess the relationship between cerebellar GM volumes to UPDRS-III and cognitive outcomes. Significance was set at P ≤ 0.01. Fallers had significantly decreased GM volumes in lobules V, Crus-1, Crus-2, and VIIb (P<0.01). Cerebellar GM volumes in non-fallers demonstrated little-to-no relationship with UPDRS-III, MoCA, and TMT-B (P>0.01). However, TMT-A performance demonstrated significant, fair association to GM volumes in lobules I-IV, V, VI, Crus-1, and Crus-2 (r=-0.44 - -0.34, P<0.01) in non-fallers. Patients with PD and a history of falls have significantly decreased GM volumes in cerebellar lobules associated with cognitive functions. However, these lobule volumes become disassociated with cognitive function compared to non-fallers.
Collapse
Affiliation(s)
- N Morelli
- Medtronic PLC, Minneapolis, MN, USA.
| |
Collapse
|
28
|
Jin C, Yang L, Qi S, Teng Y, Li C, Yao Y, Ruan X, Wei X. Structural Brain Network Abnormalities in Parkinson’s Disease With Freezing of Gait. Front Aging Neurosci 2022; 14:944925. [PMID: 35875794 PMCID: PMC9304752 DOI: 10.3389/fnagi.2022.944925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveDiffusion tensor imaging (DTI) studies have investigated white matter (WM) integrity abnormalities in Parkinson’s disease (PD). However, little is known about the topological changes in the brain network. This study aims to reveal these changes by comparing PD without freezing of gait (FOG) (PD FOG–), PD with FOG (PD FOG+), and healthy control (HC).Methods21 PD FOG+, 34 PD FOG-, and 23 HC were recruited, and DTI images were acquired. The graph theoretical analysis and network-based statistical method were used to calculate the topological parameters and assess connections.ResultsPD FOG+ showed a decreased normalized clustering coefficient, small-worldness, clustering coefficient, and increased local network efficiency compared with HCs. PD FOG+ showed decreased centrality, degree centrality, and nodal efficiency in the striatum, frontal gyrus, and supplementary motor area (SMA). PD FOG+ showed decreased connections in the frontal gyrus, cingulate gyrus, and caudate nucleus (CAU). The between centrality of the left SMA and left CAU was negatively correlated with FOG questionnaire scores.ConclusionThis study demonstrates that PD FOG+ exhibits disruption of global and local topological organization in structural brain networks, and the disrupted topological organization can be potential biomarkers in PD FOG+. These new findings may provide increasing insight into the pathophysiological mechanism of PD FOG+.
Collapse
Affiliation(s)
- Chaoyang Jin
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Lei Yang
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Shouliang Qi
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, China
- *Correspondence: Shouliang Qi,
| | - Yueyang Teng
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Chen Li
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Yudong Yao
- Department of Electrical and Computer Engineering, Stevens Institute of Technology, Hoboken, NJ, United States
| | - Xiuhang Ruan
- Department of Radiology, School of Medicine, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
| | - Xinhua Wei
- Department of Radiology, School of Medicine, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
| |
Collapse
|
29
|
Stereotactic Surgery of Parkinson’s Disease with Magnetic Resonance Imaging under Three-Dimensional Mark Point Positioning Algorithm. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:9383982. [PMID: 35833058 PMCID: PMC9251154 DOI: 10.1155/2022/9383982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 11/17/2022]
Abstract
This research aimed to study the application of magnetic resonance imaging (MRI) under three-dimensional mark point positioning algorithm in stereotactic surgery for Parkinson's disease (PD) and improve clinical treatment effect. Eighty patients with PD in Tianjin Medical University General Hospital were selected as the research objects and randomly divided into two groups. The three-dimensional mark point positioning algorithm was applied to perform feature positioning on the MRI images of PD patients, and the international unified Parkinson's disease rating scale (UPDRS) was assessed before and after single-target surgery of the two groups. There was a significant difference in the postoperative treatment effect between the two groups compared with the preoperative one (P < 0.05). Among the patients in the observation group, 37 cases were marked as markedly effective, accounting for 92.5% of the total group; 1 case was ineffective and 2 cases were improved, accounting for 2.5% and 5%, respectively. In the control group, 35, 2, and 3 cases were assessed as markedly effective, ineffective, and improved, accounting for 87.5%, 5%, and 7.5%, respectively. The overall curative effect of the observation group was better than that of the control group, and the difference was significant (P < 0.05). The MRI manifestations of PD patients were diversified. MRI under the three-dimensional mark point positioning algorithm had a high value for the stereotactic treatment of PD patients, which was beneficial to the clinical surgery.
Collapse
|
30
|
Freezing of gait: overview on etiology, treatment, and future directions. Neurol Sci 2022; 43:1627-1639. [DOI: 10.1007/s10072-021-05796-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 11/28/2021] [Indexed: 10/19/2022]
|
31
|
Wenger N, Vogt A, Skrobot M, Garulli EL, Kabaoglu B, Salchow-Hömmen C, Schauer T, Kroneberg D, Schuhmann M, Ip CW, Harms C, Endres M, Isaias I, Tovote P, Blum R. Rodent models for gait network disorders in Parkinson's disease - a translational perspective. Exp Neurol 2022; 352:114011. [PMID: 35176273 DOI: 10.1016/j.expneurol.2022.114011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/23/2022] [Accepted: 02/10/2022] [Indexed: 11/26/2022]
Abstract
Gait impairments in Parkinson's disease remain a scientific and therapeutic challenge. The advent of new deep brain stimulation (DBS) devices capable of recording brain activity from chronically implanted electrodes has fostered new studies of gait in freely moving patients. The hope is to identify gait-related neural biomarkers and improve therapy using closed-loop DBS. In this context, animal models offer the opportunity to investigate gait network activity at multiple biological scales and address unresolved questions from clinical research. Yet, the contribution of rodent models to the development of future neuromodulation therapies will rely on translational validity. In this review, we summarize the most effective strategies to model parkinsonian gait in rodents. We discuss how clinical observations have inspired targeted brain lesions in animal models, and whether resulting motor deficits and network oscillations match recent findings in humans. Gait impairments with hypo-, bradykinesia and altered limb rhythmicity were successfully modelled in rodents. However, clear evidence for the presence of freezing of gait was missing. The identification of reliable neural biomarkers for gait impairments has remained challenging in both animals and humans. Moving forward, we expect that the ongoing investigation of circuit specific neuromodulation strategies in animal models will lead to future optimizations of gait therapy in Parkinson's disease.
Collapse
Affiliation(s)
- Nikolaus Wenger
- Department of Neurology with experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; Berlin Institute of Health, Germany.
| | - Arend Vogt
- Department of Neurology with experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Matej Skrobot
- Department of Neurology with experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Elisa L Garulli
- Department of Neurology with experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Burce Kabaoglu
- Department of Neurology with experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Christina Salchow-Hömmen
- Department of Neurology with experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Thomas Schauer
- Technische Universität Berlin, Control Systems Group, 10587 Berlin, Germany
| | - Daniel Kroneberg
- Department of Neurology with experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; Berlin Institute of Health, Germany
| | - Michael Schuhmann
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080 Wuerzburg, Germany
| | - Chi Wang Ip
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080 Wuerzburg, Germany
| | - Christoph Harms
- Department of Neurology with experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Germany
| | - Matthias Endres
- Department of Neurology with experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Germany; DZHK (German Center for Cardiovascular Research), Berlin Site, Germany; DZNE (German Center for Neurodegenerative Disease), Berlin Site, Germany
| | - Ioannis Isaias
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080 Wuerzburg, Germany
| | - Philip Tovote
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Versbacher Str. 5, 97078 Wuerzburg, Germany; Center for Mental Health, University of Wuerzburg, Margarete-Höppel-Platz 1, 97080 Wuerzburg, Germany
| | - Robert Blum
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080 Wuerzburg, Germany
| |
Collapse
|
32
|
Gérard M, Bayot M, Derambure P, Dujardin K, Defebvre L, Betrouni N, Delval A. EEG-based functional connectivity and executive control in patients with Parkinson’s disease and freezing of gait. Clin Neurophysiol 2022; 137:207-215. [DOI: 10.1016/j.clinph.2022.01.128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/08/2021] [Accepted: 01/11/2022] [Indexed: 01/13/2023]
|
33
|
Zampogna A, D'Onofrio V, Suppa A. Theta rhythms may support executive functions in Parkinson’s disease with freezing of gait. Clin Neurophysiol 2022; 137:181-182. [DOI: 10.1016/j.clinph.2022.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 11/15/2022]
|
34
|
Ragothaman A, Miranda-Dominguez O, Brumbach BH, Giritharan A, Fair DA, Nutt JG, Mancini M, Horak FB. Relationship Between Brain Volumes and Objective Balance and Gait Measures in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2022; 12:283-294. [PMID: 34657849 DOI: 10.3233/jpd-202403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
BACKGROUND Instrumented measures of balance and gait measure more specific balance and gait impairments than clinical rating scales. No prior studies have used objective balance/gait measures to examine associations with ventricular and brain volumes in people with Parkinson's disease (PD). OBJECTIVE To test the hypothesis that larger ventricular and smaller cortical and subcortical volumes are associated with impaired balance and gait in people with PD. METHODS Regional volumes from structural brain images were included from 96 PD and 50 control subjects. Wearable inertial sensors quantified gait, anticipatory postural adjustments prior to step initiation (APAs), postural responses to a manual push, and standing postural sway on a foam surface. Multiple linear regression models assessed the relationship between brain volumes and balance/gait and their interactions in PD and controls, controlling for sex, age and corrected for multiple comparisons. RESULTS Smaller brainstem and subcortical gray matter volumes were associated with larger sway area in people with PD, but not healthy controls. In contrast, larger ventricle volume was associated with smaller APAs in healthy controls, but not in people with PD. A sub-analysis in PD showed significant interactions between freezers and non-freezers, in several subcortical areas with stride time variability, gait speed and step initiation. CONCLUSION Our models indicate that smaller subcortical and brainstem volumes may be indicators of standing balance dysfunction in people with PD whereas enlarged ventricles may be related to step initiation difficulties in healthy aging. Also, multiple subcortical region atrophy may be associated with freezing of gait in PD.
Collapse
Affiliation(s)
| | - Oscar Miranda-Dominguez
- Masonic Institute for the Developing Brain (MIDB), University of Minnesota, Minneapolis, MN, USA
- Institute of Child Development, College of Education and Human Development, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota Medical School, University of Minnesota, Minneapolis, MN, USA
| | - Barbara H Brumbach
- Biostatistics and Design Program, Oregon Health and Science University, Portland, OR, USA
| | - Andrew Giritharan
- Department of Neurology, Oregon Health and Science University, Portland, OR, USA
| | - Damien A Fair
- Masonic Institute for the Developing Brain (MIDB), University of Minnesota, Minneapolis, MN, USA
- Institute of Child Development, College of Education and Human Development, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota Medical School, University of Minnesota, Minneapolis, MN, USA
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, USA
| | - John G Nutt
- Department of Neurology, Oregon Health and Science University, Portland, OR, USA
| | - Martina Mancini
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA
- Department of Neurology, Oregon Health and Science University, Portland, OR, USA
| | - Fay B Horak
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, USA
- Department of Neurology, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
35
|
Steidel K, Ruppert MC, Palaghia I, Greuel A, Tahmasian M, Maier F, Hammes J, van Eimeren T, Timmermann L, Tittgemeyer M, Drzezga A, Pedrosa D, Eggers C. Dopaminergic pathways and resting-state functional connectivity in Parkinson's disease with freezing of gait. Neuroimage Clin 2021; 32:102899. [PMID: 34911202 PMCID: PMC8645514 DOI: 10.1016/j.nicl.2021.102899] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/15/2022]
Abstract
Freezing of gait is a common phenomenon of advanced Parkinson's disease. Besides locomotor function per se, a role of cognitive deficits has been suggested. Limited evidence of associated dopaminergic deficits points to caudatal denervation. Further, altered functional connectivity within resting-state networks with importance for cognitive functions has been described in freezers. A potential pathophysiological link between both imaging findings has not yet been addressed. The current study sought to investigate the association between dopaminergic pathway dysintegrity and functional dysconnectivity in relation to FOG severity and cognitive performance in a well-characterized PD cohort undergoing high-resolution 6-[18F]fluoro-L-Dopa PET and functional MRI. The freezing of gait questionnaire was applied to categorize patients (n = 59) into freezers and non-freezers. A voxel-wise group comparison of 6-[18F]fluoro-L-Dopa PET scans with focus on striatum was performed between both well-matched and neuropsychologically characterized patient groups. Seed-to-voxel resting-state functional connectivity maps of the resulting dopamine depleted structures and dopaminergic midbrain regions were created and compared between both groups. For a direct between-group comparison of dopaminergic pathway integrity, a molecular connectivity approach was conducted on 6-[18F]fluoro-L-Dopa scans. With respect to striatal regions, freezers showed significant dopaminergic deficits in the left caudate nucleus, which exhibited altered functional connectivity with regions of the visual network. Regarding midbrain structures, the bilateral ventral tegmental area showed altered functional coupling to regions of the default mode network. An explorative examination of the integrity of dopaminergic pathways by molecular connectivity analysis revealed freezing-associated impairments in mesolimbic and mesocortical pathways. This study represents the first characterization of a link between dopaminergic pathway dysintegrity and altered functional connectivity in Parkinson's disease with freezing of gait and hints at a specific involvement of striatocortical and mesocorticolimbic pathways in freezers.
Collapse
Affiliation(s)
- Kenan Steidel
- Department of Neurology, University Hospital of Marburg, Germany.
| | - Marina C Ruppert
- Department of Neurology, University Hospital of Marburg, Germany; Center for Mind, Brain and Behavior - CMBB, Universities Marburg and Gießen, Germany
| | - Irina Palaghia
- Department of Neurology, University Hospital of Marburg, Germany
| | - Andrea Greuel
- Department of Neurology, University Hospital of Marburg, Germany
| | - Masoud Tahmasian
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Franziska Maier
- Department of Psychiatry, University Hospital Cologne, Medical Faculty, Cologne, Germany
| | - Jochen Hammes
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, Medical Faculty and University Hospital Cologne, University Hospital Cologne, Germany
| | - Thilo van Eimeren
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, Medical Faculty and University Hospital Cologne, University Hospital Cologne, Germany; Department of Neurology, Medical Faculty and University Hospital Cologne, University Hospital Cologne, Germany; German Center for Neurodegenerative Diseases (DZNE), Bonn- Cologne, Germany
| | - Lars Timmermann
- Department of Neurology, University Hospital of Marburg, Germany; Center for Mind, Brain and Behavior - CMBB, Universities Marburg and Gießen, Germany
| | - Marc Tittgemeyer
- Max Planck Institute for Metabolism Research, Cologne, Germany; Cluster of Excellence in Cellular Stress and Aging Associated Disease (CECAD), Cologne, Germany
| | - Alexander Drzezga
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, Medical Faculty and University Hospital Cologne, University Hospital Cologne, Germany; German Center for Neurodegenerative Diseases (DZNE), Bonn- Cologne, Germany; Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-2), Research Center Jülich, Germany
| | - David Pedrosa
- Department of Neurology, University Hospital of Marburg, Germany; Center for Mind, Brain and Behavior - CMBB, Universities Marburg and Gießen, Germany
| | - Carsten Eggers
- Department of Neurology, University Hospital of Marburg, Germany; Center for Mind, Brain and Behavior - CMBB, Universities Marburg and Gießen, Germany
| |
Collapse
|
36
|
Cerebrospinal fluid biomarkers in Parkinson's disease with freezing of gait: an exploratory analysis. NPJ Parkinsons Dis 2021; 7:105. [PMID: 34845234 PMCID: PMC8629994 DOI: 10.1038/s41531-021-00247-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 10/27/2021] [Indexed: 01/06/2023] Open
Abstract
We explore the association between three Alzheimer’s disease-related and ten inflammation-related CSF markers and freezing of gait (FOG) in patients with Parkinson’s disease (PD). The study population includes PD patients with FOG (PD-FOG, N = 12), without FOG (PD-NoFOG, N = 19), and healthy controls (HC, N = 12). Age and PD duration are not significantly different between groups. After adjusting for covariates and multiple comparisons, the anti-inflammatory marker, fractalkine, is significantly decreased in the PD groups compared to HC (P = 0.002), and further decreased in PD-FOG compared to PD-NoFOG (P = 0.007). The Alzheimer’s disease-related protein, Aβ42, is increased in PD-FOG compared to PD-NoFOG and HC (P = 0.001). Group differences obtained in individual biomarker analyses are confirmed with multivariate discriminant partial least squares regression (P < 0.001). High levels of Aβ42 in PD-FOG patients supports an increase over time from early to advanced state. Low levels of fractalkine might suggest anti-inflammatory effect. These findings warrant replication.
Collapse
|
37
|
Jin C, Qi S, Teng Y, Li C, Yao Y, Ruan X, Wei X. Altered Degree Centrality of Brain Networks in Parkinson's Disease With Freezing of Gait: A Resting-State Functional MRI Study. Front Neurol 2021; 12:743135. [PMID: 34707559 PMCID: PMC8542685 DOI: 10.3389/fneur.2021.743135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022] Open
Abstract
Freezing of gait (FOG) in Parkinson's disease (PD) leads to devastating consequences; however, little is known about its functional brain network. We explored the differences in degree centrality (DC) of functional networks among PD with FOG (PD FOG+), PD without FOG (PD FOG–), and healthy control (HC) groups. In all, 24 PD FOG+, 37 PD FOG–, and 22 HCs were recruited and their resting-state functional magnetic imaging images were acquired. The whole brain network was analyzed using graph theory analysis. DC was compared among groups using the two-sample t-test. The DC values of disrupted brain regions were correlated with the FOG Questionnaire (FOGQ) scores. Receiver operating characteristic curve analysis was performed. We found significant differences in DC among groups. Compared with HCs, PD FOG+ patients showed decreased DC in the middle frontal gyrus (MFG), superior temporal gyrus (STG), parahippocampal gyrus (PhG), inferior temporal gyrus (ITG), and middle temporal gyrus (MTG). Compared with HC, PD FOG– presented with decreased DC in the MFG, STG, PhG, and ITG. Compared with PD FOG–, PD FOG+ showed decreased DC in the MFG and ITG. A negative correlation existed between the DC of ITG and FOGQ scores; the DC in ITG could distinguish PD FOG+ from PD FOG– and HC. The calculated AUCs were 81.3, 89.5, and 77.7% for PD FOG+ vs. HC, PD FOG– vs. HC, and PD FOG+ vs. PD FOG–, respectively. In conclusion, decreased DC of ITG in PD FOG+ patients compared to PD FOG– patients and HCs may be a unique feature for PD FOG+ and can likely distinguish PD FOG+ from PD FOG– and HC groups.
Collapse
Affiliation(s)
- Chaoyang Jin
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Shouliang Qi
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China.,Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, China
| | - Yueyang Teng
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Chen Li
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Yudong Yao
- Department of Electrical and Computer Engineering, Stevens Institute of Technology, Hoboken, NJ, United States
| | - Xiuhang Ruan
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xinhua Wei
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
38
|
Lu M, Zhao Q, Poston KL, Sullivan EV, Pfefferbaum A, Shahid M, Katz M, Montaser-Kouhsari L, Schulman K, Milstein A, Niebles JC, Henderson VW, Fei-Fei L, Pohl KM, Adeli E. Quantifying Parkinson's disease motor severity under uncertainty using MDS-UPDRS videos. Med Image Anal 2021; 73:102179. [PMID: 34340101 PMCID: PMC8453121 DOI: 10.1016/j.media.2021.102179] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/28/2021] [Accepted: 07/13/2021] [Indexed: 11/15/2022]
Abstract
Parkinson's disease (PD) is a brain disorder that primarily affects motor function, leading to slow movement, tremor, and stiffness, as well as postural instability and difficulty with walking/balance. The severity of PD motor impairments is clinically assessed by part III of the Movement Disorder Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS), a universally-accepted rating scale. However, experts often disagree on the exact scoring of individuals. In the presence of label noise, training a machine learning model using only scores from a single rater may introduce bias, while training models with multiple noisy ratings is a challenging task due to the inter-rater variabilities. In this paper, we introduce an ordinal focal neural network to estimate the MDS-UPDRS scores from input videos, to leverage the ordinal nature of MDS-UPDRS scores and combat class imbalance. To handle multiple noisy labels per exam, the training of the network is regularized via rater confusion estimation (RCE), which encodes the rating habits and skills of raters via a confusion matrix. We apply our pipeline to estimate MDS-UPDRS test scores from their video recordings including gait (with multiple Raters, R=3) and finger tapping scores (single rater). On a sizable clinical dataset for the gait test (N=55), we obtained a classification accuracy of 72% with majority vote as ground-truth, and an accuracy of ∼84% of our model predicting at least one of the raters' scores. Our work demonstrates how computer-assisted technologies can be used to track patients and their motor impairments, even when there is uncertainty in the clinical ratings. The latest version of the code will be available at https://github.com/mlu355/PD-Motor-Severity-Estimation.
Collapse
Affiliation(s)
- Mandy Lu
- Department of Computer Science, Stanford University, Stanford CA 94305, USA
| | - Qingyu Zhao
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford CA 94305, USA
| | - Kathleen L Poston
- Department of Neurology & Neurological Sciences, Stanford University, Stanford CA 94305, USA
| | - Edith V Sullivan
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford CA 94305, USA
| | - Adolf Pfefferbaum
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford CA 94305, USA; Center for Health Sciences, SRI International, Menlo Park CA 94025, USA
| | - Marian Shahid
- Department of Neurology & Neurological Sciences, Stanford University, Stanford CA 94305, USA
| | - Maya Katz
- Department of Neurology & Neurological Sciences, Stanford University, Stanford CA 94305, USA
| | - Leila Montaser-Kouhsari
- Department of Neurology & Neurological Sciences, Stanford University, Stanford CA 94305, USA
| | - Kevin Schulman
- Department of Medicine, Stanford University, Stanford CA 94305, USA
| | - Arnold Milstein
- Department of Medicine, Stanford University, Stanford CA 94305, USA
| | | | - Victor W Henderson
- Department of Epidemiology & Population Health, Stanford University, Stanford CA 94305, USA; Department of Neurology & Neurological Sciences, Stanford University, Stanford CA 94305, USA
| | - Li Fei-Fei
- Department of Computer Science, Stanford University, Stanford CA 94305, USA
| | - Kilian M Pohl
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford CA 94305, USA; Center for Health Sciences, SRI International, Menlo Park CA 94025, USA
| | - Ehsan Adeli
- Department of Computer Science, Stanford University, Stanford CA 94305, USA; Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford CA 94305, USA.
| |
Collapse
|
39
|
Dijkstra BW, Gilat M, Cofré Lizama LE, Mancini M, Bergmans B, Verschueren SMP, Nieuwboer A. Impaired Weight-Shift Amplitude in People with Parkinson's Disease with Freezing of Gait. JOURNAL OF PARKINSONS DISEASE 2021; 11:1367-1380. [PMID: 33749618 DOI: 10.3233/jpd-202370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND People with Parkinson's disease and freezing of gait (FOG; freezers) suffer from pronounced postural instability. However, the relationship between these phenomena remains unclear and has mostly been tested in paradigms requiring step generation. OBJECTIVE To determine if freezing-related dynamic balance deficits are present during a task without stepping and determine the influence of dopaminergic medication on dynamic balance control. METHODS Twenty-two freezers, 16 non-freezers, and 20 healthy age-matched controls performed mediolateral weight-shifts at increasing frequencies when following a visual target projected on a screen (MELBA task). The amplitude and phase shift differences between center of mass and target motion were measured. Balance scores (Mini-BESTest), 360° turning speed and the freezing ratio were also measured. Subjects with Parkinson's disease were tested ON and partial OFF (overnight withdrawal) dopaminergic medication. RESULTS Freezers had comparable turning speed and balance scores to non-freezers and took more levodopa. Freezers produced hypokinetic weight-shift amplitudes throughout the MELBA task compared to non-freezers (p = 0.002), which were already present at task onset (p < 0.001). Freezers also displayed an earlier weight-shift breakdown than controls when OFF-medication (p = 0.008). Medication improved mediolateral weight-shifting in freezers and non-freezers. Freezers decreased their freezing ratio in response to medication. CONCLUSION Hypokinetic weight-shifting proved a marked postural control deficit in freezers, while balance scores and turning speed were similar to non-freezers. Both weight-shift amplitudes and the freezing ratio were responsive to medication in freezers, suggesting axial motor vigor is levodopa-responsive. Future work needs to test whether weight-shifting and freezing severity can be further ameliorated through training.
Collapse
Affiliation(s)
- Bauke W Dijkstra
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Moran Gilat
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - L Eduardo Cofré Lizama
- School of Allied Health, Human Services and Sports, La Trobe University, Victoria, Australia
| | - Martina Mancini
- Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA
| | - Bruno Bergmans
- Department of Neurology, AZ Sint-Jan Brugge-Oostende AV, Bruges, Belgium.,Department of Neurology, Ghent University Hospital, Ghent, Belgium
| | - Sabine M P Verschueren
- Research Group for Musculoskeletal Rehabilitation, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Alice Nieuwboer
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
40
|
Lerario A, Girotti F, Sassone J, Poletti B, Ciammola A, Silani V. Unilateral freezing of gait or "magnetic feet phenomenon" caused by ischemic lesion involving fronto-striatal networks. Neurol Sci 2021; 42:3467-3469. [PMID: 33931820 DOI: 10.1007/s10072-021-05290-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/26/2021] [Indexed: 11/25/2022]
Affiliation(s)
- Alberto Lerario
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Piazzale Brescia 20, 20149, Milan, Italy.
| | - Floriano Girotti
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Piazzale Brescia 20, 20149, Milan, Italy
| | - Jenny Sassone
- San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milano, Italy.,Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milano, Italy
| | - Barbara Poletti
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Piazzale Brescia 20, 20149, Milan, Italy
| | - Andrea Ciammola
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Piazzale Brescia 20, 20149, Milan, Italy.
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Piazzale Brescia 20, 20149, Milan, Italy.,Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi di Milano, Via Francesco Sforza 35, 20122, Milan, Italy
| |
Collapse
|
41
|
Taximaimaiti R, Wang XP. Comparing the Clinical and Neuropsychological Characteristics of Parkinson's Disease With and Without Freezing of Gait. Front Neurosci 2021; 15:660340. [PMID: 33986641 PMCID: PMC8110824 DOI: 10.3389/fnins.2021.660340] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/23/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction Freezing of gait (FOG) is one of the most common walking problems in Parkinson’s disease (PD). Impaired cognitive function is believed to play an important role in developing and aggravating FOG in PD. But some evidence suggests that motor function discrepancy may affect testing results. Therefore, we think it is necessary for PD-FOG(+) and PD-FOG(−) patients to complete neuropsychological tests under similar motor conditions. Methods This study recruited 44 idiopathic PD patients [PD-FOG(+) n = 22, PD-FOG(−) n = 22] and 20 age-matched healthy controls (HC). PD-FOG(+) and PD-FOG(−) patients were matched for age, year of education, and Hoehn and Yahr score (H&Y). All participants underwent a comprehensive battery of neuropsychological assessment, and demographical and clinical information was also collected. Results PD patients showed poorer cognitive function, higher risks of depression and anxiety, and more neuropsychiatric symptoms compared with HC. When controlling for age, years of education, and H&Y, there were no statistical differences in cognitive function between PD-FOG(+) and PD-FOG(−) patients. But PD-FOG(+) patients had worse motor and non-motor symptoms than PD-FOG(−) patients. PD patients whose motor symptoms initiated with rigidity and initiated unilaterally were more likely to experience FOG. Conclusion Traditional neuropsychological testing may not be sensitive enough to detect cognitive impairment in PD. Motor symptoms initiated with rigidity and initiated unilaterally might be an important predictor of FOG.
Collapse
Affiliation(s)
- Reyisha Taximaimaiti
- Department of Neurology, Shanghai TongRen Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Ping Wang
- Department of Neurology, Shanghai TongRen Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
42
|
Jin C, Qi S, Teng Y, Li C, Yao Y, Ruan X, Wei X. Integrating Structural and Functional Interhemispheric Brain Connectivity of Gait Freezing in Parkinson's Disease. Front Neurol 2021; 12:609866. [PMID: 33935931 PMCID: PMC8081966 DOI: 10.3389/fneur.2021.609866] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 03/04/2021] [Indexed: 11/23/2022] Open
Abstract
Freezing of gait (FOG) has devastating consequences for patients with Parkinson's disease (PD), but the underlying pathophysiological mechanism is unclear. This was investigated in the present study by integrated structural and functional connectivity analyses of PD patients with or without FOG (PD FOG+ and PD FOG-, respectively) and healthy control (HC) subjects. We performed resting-state functional magnetic resonance imaging (fMRI) and diffusion tensor imaging of 24 PD FOG+ patients, 37 PD FOG- patients, and 24 HCs. Tract-based spatial statistics was applied to identify white matter (WM) abnormalities across the whole brain. Fractional anisotropy (FA) and mean diffusivity (MD) of abnormal WM areas were compared among groups, and correlations between these parameters and clinical severity as determined by FOG Questionnaire (FOGQ) score were analyzed. Voxel-mirrored homotopic connectivity (VMHC) was calculated to identify brain regions with abnormal interhemispheric connectivity. Structural and functional measures were integrated by calculating correlations between VMHC and FOGQ score and between FA, MD, and VMHC. The results showed that PD FOG+ and PD FOG- patients had decreased FA in the corpus callosum (CC), cingulum (hippocampus), and superior longitudinal fasciculus and increased MD in the CC, internal capsule, corona radiata, superior longitudinal fasciculus, and thalamus. PD FOG+ patients had more WM abnormalities than PD FOG- patients. FA and MD differed significantly among the splenium, body, and genu of the CC in all three groups (P < 0.05). The decreased FA in the CC was positively correlated with FOGQ score. PD FOG+ patients showed decreased VMHC in the post-central gyrus (PCG), pre-central gyrus, and parietal inferior margin. In PD FOG+ patients, VMHC in the PCG was negatively correlated with FOGQ score but positively correlated with FA in CC. Thus, FOG is associated with impaired interhemispheric brain connectivity measured by FA, MD, and VMHC, which are related to clinical FOG severity. These results demonstrate that integrating structural and functional MRI data can provide new insight into the pathophysiological mechanism of FOG in PD.
Collapse
Affiliation(s)
- Chaoyang Jin
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Shouliang Qi
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, China
| | - Yueyang Teng
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Chen Li
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Yudong Yao
- Department of Electrical and Computer Engineering, Stevens Institute of Technology, Hoboken, NJ, United States
| | - Xiuhang Ruan
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xinhua Wei
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
43
|
Dadar M, Miyasaki J, Duchesne S, Camicioli R. White matter hyperintensities mediate the impact of amyloid ß on future freezing of gait in Parkinson's disease. Parkinsonism Relat Disord 2021; 85:95-101. [PMID: 33770671 DOI: 10.1016/j.parkreldis.2021.02.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/17/2021] [Accepted: 02/28/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Freezing of gait (FOG) is a common symptom in Parkinson's Disease (PD) patients. Previous studies have reported relationships between FOG, substantia nigra (SN) degeneration, dopamine transporter (DAT) concentration, as well as amyloid β deposition. However, there is a paucity of research on the concurrent impact of white matter damage. OBJECTIVES To assess the inter-relationships between these different co-morbidities, their impact on future FOG and whether they act independently of each other. METHODS We used baseline MRI and longitudinal gait data from 423 de novo PD patients from the Parkinson's Progression Markers Initiative (PPMI). We used deformation based morphometry (DBM) from T1-weighted MRI to measure SN atrophy, and segmentation of white matter hyperintensities (WMH) as a measure of WM pathological load. Putamen and caudate DAT levels from SPECT as well as cerebrospinal fluid (CSF) amyloid β were obtained directly from the PPMI. Following correlation analyses, we investigated whether WMH burden mediates the impact of amyloid β on future FOG. RESULTS SN DBM, WMH load, putamen and caudate DAT activity and CSF amyloid β levels were significantly different between PD patients with and without future FOG (p < 0.008). Mediation analysis demonstrated an effect of CSF amyloid β levels on future FOG via WMH load, independent of SN atrophy and striatal DAT activity levels. CONCLUSIONS Amyloid β might impact future FOG in PD patients through an increase in WMH burden, in a pathway independent of Lewy body pathology.
Collapse
Affiliation(s)
- Mahsa Dadar
- CERVO Brain Research Center, Centre Intégré Universitaire Santé et Services Sociaux de La Capitale Nationale, Québec, QC, Canada.
| | - Janis Miyasaki
- Neuroscience and Mental Health Institute and Department of Medicine, Division of Neurology, University of Alberta, Edmonton, AB, Canada
| | - Simon Duchesne
- CERVO Brain Research Center, Centre Intégré Universitaire Santé et Services Sociaux de La Capitale Nationale, Québec, QC, Canada; Department of Radiology and Nuclear Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Richard Camicioli
- Neuroscience and Mental Health Institute and Department of Medicine, Division of Neurology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
44
|
Song W, Raza HK, Lu L, Zhang Z, Zu J, Zhang W, Dong L, Xu C, Gong X, Lv B, Cui G. Functional MRI in Parkinson's disease with freezing of gait: a systematic review of the literature. Neurol Sci 2021; 42:1759-1771. [PMID: 33713258 DOI: 10.1007/s10072-021-05121-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/04/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Freezing of gait (FOG), a common and disabling symptom of Parkinson's disease (PD), is characterized by an episodic inability to generate effective stepping. Functional MRI (fMRI) has been used to evaluate abnormal brain connectivity patterns at rest and brain activation patterns during specific tasks in patients with PD-FOG. This review has examined the existing functional neuroimaging literature in PD-FOG, including those with treatment. Summarizing these articles provides an opportunity for a better understanding of the underlying pathophysiology in PD-FOG. METHODS According to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we performed a literature review of studies using fMRI to investigate the underlying pathophysiological mechanisms of PD-FOG. RESULTS We initially identified 201 documents. After excluding the duplicates, reviews, and other irrelevant articles, 39 articles were finally identified, including 18 task-based fMRI studies and 21 resting-state fMRI studies. CONCLUSIONS Studies using fMRI techniques to evaluate PD-FOG have found dysfunctional connectivity in widespread cortical and subcortical regions. Standardized imaging protocols and detailed subtypes of PD-FOG are furthered required to elucidate current findings.
Collapse
Affiliation(s)
- Wenjing Song
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People's Republic of China
| | - Hafiz Khuram Raza
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People's Republic of China
| | - Li Lu
- Department of Radiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People's Republic of China
| | - Zuohui Zhang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People's Republic of China
| | - Jie Zu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People's Republic of China
| | - Wei Zhang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People's Republic of China
| | - Liguo Dong
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People's Republic of China
| | - Chuanying Xu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People's Republic of China
| | - Xiangyao Gong
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People's Republic of China
| | - Bingchen Lv
- Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People's Republic of China
| | - Guiyun Cui
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People's Republic of China.
| |
Collapse
|
45
|
D'Cruz N, Vervoort G, Chalavi S, Dijkstra BW, Gilat M, Nieuwboer A. Thalamic morphology predicts the onset of freezing of gait in Parkinson's disease. NPJ Parkinsons Dis 2021; 7:20. [PMID: 33654103 PMCID: PMC7925565 DOI: 10.1038/s41531-021-00163-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 01/14/2021] [Indexed: 11/08/2022] Open
Abstract
The onset of freezing of gait (FOG) in Parkinson's disease (PD) is a critical milestone, marked by a higher risk of falls and reduced quality of life. FOG is associated with alterations in subcortical neural circuits, yet no study has assessed whether subcortical morphology can predict the onset of clinical FOG. In this prospective multimodal neuroimaging cohort study, we performed vertex-based analysis of grey matter morphology in fifty-seven individuals with PD at study entry and two years later. We also explored the behavioral correlates and resting-state functional connectivity related to these local volume differences. At study entry, we found that freezers (N = 12) and persons who developed FOG during the course of the study (converters) (N = 9) showed local inflations in bilateral thalamus in contrast to persons who did not (non-converters) (N = 36). Longitudinally, converters (N = 7) also showed local inflation in the left thalamus, as compared to non-converters (N = 36). A model including sex, daily levodopa equivalent dose, and local thalamic inflation predicted conversion with good accuracy (AUC: 0.87, sensitivity: 88.9%, specificity: 77.8%). Exploratory analyses showed that local thalamic inflations were associated with larger medial thalamic sub-nuclei volumes and better cognitive performance. Resting-state analyses further revealed that converters had stronger thalamo-cortical coupling with limbic and cognitive regions pre-conversion, with a marked reduction in coupling over the two years. Finally, validation using the PPMI cohort suggested FOG-specific non-linear evolution of thalamic local volume. These findings provide markers of, and deeper insights into conversion to FOG, which may foster earlier intervention and better mobility for persons with PD.
Collapse
Affiliation(s)
- Nicholas D'Cruz
- KU Leuven, Department of Rehabilitation Sciences, Neurorehabilitation Research Group, B-3000, Leuven, Belgium.
| | - Griet Vervoort
- KU Leuven, Department of Rehabilitation Sciences, Neurorehabilitation Research Group, B-3000, Leuven, Belgium
| | - Sima Chalavi
- KU Leuven, Department of Movement Sciences, Movement Control & Neuroplasticity Research Group, B-3000, Leuven, Belgium
| | - Bauke W Dijkstra
- KU Leuven, Department of Rehabilitation Sciences, Neurorehabilitation Research Group, B-3000, Leuven, Belgium
| | - Moran Gilat
- KU Leuven, Department of Rehabilitation Sciences, Neurorehabilitation Research Group, B-3000, Leuven, Belgium
| | - Alice Nieuwboer
- KU Leuven, Department of Rehabilitation Sciences, Neurorehabilitation Research Group, B-3000, Leuven, Belgium
| |
Collapse
|
46
|
Freezing of Gait in Parkinson's Disease: Risk Factors, Their Interactions, and Associated Nonmotor Symptoms. PARKINSONS DISEASE 2021; 2021:8857204. [PMID: 33505652 PMCID: PMC7815408 DOI: 10.1155/2021/8857204] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/22/2020] [Accepted: 12/30/2020] [Indexed: 11/26/2022]
Abstract
Background Freezing of gait (FOG) is a debilitating and incompletely understood symptom in Parkinson's disease (PD). Objective To determine the principal clinical factors predisposing to FOG in PD, their interactions, and associated nonmotor symptoms. Methods 164 PD subjects were assessed in a cross-sectional retrospective study, using the MDS-UPDRS scale, MMSE, and Clinical Dementia Rating Scale. Clinical factors associated with FOG were determined using univariate analysis and nominal logistic regression. Receiver operating characteristic curves were computed, to obtain measures of sensitivity and specificity of predictors of FOG. Subgroups of patients with FOG were compared with those without FOG, based on defining aspects of their clinical phenotype. Results Relative to non-FOG patients, those with FOG had a longer disease duration, higher PIGD and balance-gait score, higher LED, and more motor complications (p < 0.0001) and were more likely to exhibit urinary dysfunction (p < 0.0003), cognitive impairment, hallucinations, and psychosis (p=0.003). The balance-gait score and motor complications, at their optimum cutoff values, together predicted FOG with 86% accuracy. Interactions were noted between cognitive dysfunction and both the Bal-Gait score and motor complication status, cognitive impairment or dementia increasing the likelihood of FOG in subjects without motor complications (p=0.0009), but not in those with motor complications. Conclusions Both disease and treatment-related factors, notably LED, influence the risk of FOG in PD, with a selective influence of cognitive dysfunction in patients with balance-gait disorder but not in those with motor fluctuations. These findings may help to inform clinical management and highlight distinct subgroups of patients with PD-FOG, which are likely to differ in their network pathophysiology.
Collapse
|
47
|
Smith MD, Brazier DE, Henderson EJ. Current Perspectives on the Assessment and Management of Gait Disorders in Parkinson's Disease. Neuropsychiatr Dis Treat 2021; 17:2965-2985. [PMID: 34584414 PMCID: PMC8464370 DOI: 10.2147/ndt.s304567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/25/2021] [Indexed: 12/31/2022] Open
Abstract
Gait dysfunction is a key defining feature of Parkinson's disease (PD), and is associated with symptoms of freezing and an increased risk of falls. In this narrative review, we cover the putative mechanisms of gait dysfunction in PD, the assessment of gait abnormalities, and the management of symptoms caused by the inherent difficulty in walking. Our understanding of the causes of gait problems in PD has progressed in recent times, moving from neurocognitive theory to correlates of affected neuronal pathways. In particular, this can be shown to correspond with abnormalities in responses to dual-task paradigms and dysfunction in cholinergic signaling. Great progress has been made in the sophistication and precision of gait assessment; however, it has firmly remained in the research domain. There is significant momentum behind wearable technologies that can be used by patients in their own environment, acting as digital biomarkers that can not only reflect progression but also independently discriminate PD from non-PD individuals. The treatment of gait dysfunction has historically relied on physical therapies and training combined with a view to mitigating the impact of such consequences as falls. Pharmacological therapies that are the mainstay of treatment in PD have tended to address symptoms like bradykinesia; however, optimization of dopaminergic therapies likely has a positive effect on quality of gait. Other targets have been assessed with the goal of improving gait, of which medications that improve cholinergic signaling appear most promising. Neuromodulation techniques are increasingly used in the form of deep-brain stimulation; however, standard targets, such as the globus pallidus interna, have a modest effect on gait. Considerable benefit has been seen through targeting the pedunculopontine nucleus, and a dual-target approach may be warranted. Stimulation of the spinal cord and brain through direct or magnetic approaches has been assessed, but requires further evidence.
Collapse
Affiliation(s)
- Matthew D Smith
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.,Older People's Unit, Royal United Hospital NHS Foundation Trust, Bath, UK
| | - Danielle E Brazier
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Emily J Henderson
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.,Older People's Unit, Royal United Hospital NHS Foundation Trust, Bath, UK
| |
Collapse
|
48
|
Zhang YD, Dong Z, Wang SH, Yu X, Yao X, Zhou Q, Hu H, Li M, Jiménez-Mesa C, Ramirez J, Martinez FJ, Gorriz JM. Advances in multimodal data fusion in neuroimaging: Overview, challenges, and novel orientation. AN INTERNATIONAL JOURNAL ON INFORMATION FUSION 2020; 64:149-187. [PMID: 32834795 PMCID: PMC7366126 DOI: 10.1016/j.inffus.2020.07.006] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/06/2020] [Accepted: 07/14/2020] [Indexed: 05/13/2023]
Abstract
Multimodal fusion in neuroimaging combines data from multiple imaging modalities to overcome the fundamental limitations of individual modalities. Neuroimaging fusion can achieve higher temporal and spatial resolution, enhance contrast, correct imaging distortions, and bridge physiological and cognitive information. In this study, we analyzed over 450 references from PubMed, Google Scholar, IEEE, ScienceDirect, Web of Science, and various sources published from 1978 to 2020. We provide a review that encompasses (1) an overview of current challenges in multimodal fusion (2) the current medical applications of fusion for specific neurological diseases, (3) strengths and limitations of available imaging modalities, (4) fundamental fusion rules, (5) fusion quality assessment methods, and (6) the applications of fusion for atlas-based segmentation and quantification. Overall, multimodal fusion shows significant benefits in clinical diagnosis and neuroscience research. Widespread education and further research amongst engineers, researchers and clinicians will benefit the field of multimodal neuroimaging.
Collapse
Affiliation(s)
- Yu-Dong Zhang
- School of Informatics, University of Leicester, Leicester, LE1 7RH, Leicestershire, UK
- Department of Information Systems, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Zhengchao Dong
- Department of Psychiatry, Columbia University, USA
- New York State Psychiatric Institute, New York, NY 10032, USA
| | - Shui-Hua Wang
- Department of Information Systems, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- School of Architecture Building and Civil engineering, Loughborough University, Loughborough, LE11 3TU, UK
- School of Mathematics and Actuarial Science, University of Leicester, LE1 7RH, UK
| | - Xiang Yu
- School of Informatics, University of Leicester, Leicester, LE1 7RH, Leicestershire, UK
| | - Xujing Yao
- School of Informatics, University of Leicester, Leicester, LE1 7RH, Leicestershire, UK
| | - Qinghua Zhou
- School of Informatics, University of Leicester, Leicester, LE1 7RH, Leicestershire, UK
| | - Hua Hu
- Department of Psychiatry, Columbia University, USA
- Department of Neurology, The Second Affiliated Hospital of Soochow University, China
| | - Min Li
- Department of Psychiatry, Columbia University, USA
- School of Internet of Things, Hohai University, Changzhou, China
| | - Carmen Jiménez-Mesa
- Department of Signal Theory, Networking and Communications, University of Granada, Granada, Spain
| | - Javier Ramirez
- Department of Signal Theory, Networking and Communications, University of Granada, Granada, Spain
| | - Francisco J Martinez
- Department of Signal Theory, Networking and Communications, University of Granada, Granada, Spain
| | - Juan Manuel Gorriz
- Department of Signal Theory, Networking and Communications, University of Granada, Granada, Spain
- Department of Psychiatry, University of Cambridge, Cambridge CB21TN, UK
| |
Collapse
|
49
|
Apolipoprotein E ε4 genotype and risk of freezing of gait in Parkinson's disease. Parkinsonism Relat Disord 2020; 81:173-178. [DOI: 10.1016/j.parkreldis.2020.10.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/14/2020] [Accepted: 10/19/2020] [Indexed: 11/22/2022]
|
50
|
Marquez JS, Hasan SMS, Siddiquee MR, Luca CC, Mishra VR, Mari Z, Bai O. Neural Correlates of Freezing of Gait in Parkinson's Disease: An Electrophysiology Mini-Review. Front Neurol 2020; 11:571086. [PMID: 33240199 PMCID: PMC7683766 DOI: 10.3389/fneur.2020.571086] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022] Open
Abstract
Freezing of gait (FoG) is a disabling symptom characterized as a brief inability to step or by short steps, which occurs when initiating gait or while turning, affecting over half the population with advanced Parkinson's disease (PD). Several non-competing hypotheses have been proposed to explain the pathophysiology and mechanism behind FoG. Yet, due to the complexity of FoG and the lack of a complete understanding of its mechanism, no clear consensus has been reached on the best treatment options. Moreover, most studies that aim to explore neural biomarkers of FoG have been limited to semi-static or imagined paradigms. One of the biggest unmet needs in the field is the identification of reliable biomarkers that can be construed from real walking scenarios to guide better treatments and validate medical and therapeutic interventions. Advances in neural electrophysiology exploration, including EEG and DBS, will allow for pathophysiology research on more real-to-life scenarios for better FoG biomarker identification and validation. The major aim of this review is to highlight the most up-to-date studies that explain the mechanisms underlying FoG through electrophysiology explorations. The latest methodological approaches used in the neurophysiological study of FoG are summarized, and potential future research directions are discussed.
Collapse
Affiliation(s)
- J. Sebastian Marquez
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL, United States
| | - S. M. Shafiul Hasan
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL, United States
| | - Masudur R. Siddiquee
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL, United States
| | - Corneliu C. Luca
- Department of Neurology, University of Miami Hospital, Miami, FL, United States
| | - Virendra R. Mishra
- Lou Ruvo Center for Brain Health, Cleveland Clinic, Las Vegas, NV, United States
| | - Zoltan Mari
- Lou Ruvo Center for Brain Health, Cleveland Clinic, Las Vegas, NV, United States
| | - Ou Bai
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL, United States
| |
Collapse
|