1
|
Chou TY, Huang YL, Leung W, Brown CN, Kaminski TW, Norcross MF. Does prior concussion lead to biomechanical alterations associated with lateral ankle sprain and anterior cruciate ligament injury? A systematic review and meta-analysis. Br J Sports Med 2023; 57:1509-1515. [PMID: 37648411 DOI: 10.1136/bjsports-2023-106980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2023] [Indexed: 09/01/2023]
Abstract
OBJECTIVE To determine whether individuals with a prior concussion exhibit biomechanical alterations in balance, gait and jump-landing tasks with and without cognitive demands that are associated with risk of lateral ankle sprain (LAS) and anterior cruciate ligament (ACL) injury. DESIGN Systematic review and meta-analysis. DATA SOURCES Five electronic databases (Web of Science, Scopus, PubMed, SPORTDiscus and CiNAHL) were searched in April 2023. ELIGIBILITY CRITERIA Included studies involved (1) concussed participants, (2) outcome measures of spatiotemporal, kinematic or kinetic data and (3) a comparison or the data necessary to compare biomechanical variables between individuals with and without concussion history or before and after a concussion. RESULTS Twenty-seven studies were included involving 1544 participants (concussion group (n=757); non-concussion group (n=787)). Individuals with a recent concussion history (within 2 months) had decreased postural stability (g=0.34, 95% CI 0.20 to 0.49, p<0.001) and slower locomotion-related performance (g=0.26, 95% CI 0.11 to 0.41, p<0.001), both of which are associated with LAS injury risk. Furthermore, alterations in frontal plane kinetics (g=0.41, 95% CI 0.03 to 0.79, p=0.033) and sagittal plane kinematics (g=0.30, 95% CI 0.11 to 0.50, p=0.002) were observed in individuals approximately 2 years following concussion, both of which are associated with ACL injury risk. The moderator analyses indicated cognitive demands (ie, working memory, inhibitory control tasks) affected frontal plane kinematics (p=0.009), but not sagittal plane kinematics and locomotion-related performance, between the concussion and non-concussion groups. CONCLUSION Following a recent concussion, individuals display decreased postural stability and slower locomotion-related performance, both of which are associated with LAS injury risk. Moreover, individuals within 2 years following a concussion also adopt a more erect landing posture with greater knee internal adduction moment, both of which are associated with ACL injury risk. While adding cognitive demands to jump-landing tasks affected frontal plane kinematics during landing, the altered movement patterns in locomotion and sagittal plane kinematics postconcussion persisted regardless of additional cognitive demands. PROSPERO REGISTRATION NUMBER CRD42021248916.
Collapse
Affiliation(s)
- Tsung-Yeh Chou
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, USA
| | - Yu-Lun Huang
- Department of Physical Education and Sport, National Taiwan Normal University, Taipei, Taiwan
| | - Willie Leung
- Department of Health Sciences and Human Performance, The University of Tampa, Tampa, Florida, USA
| | - Cathleen N Brown
- College of Health, Corvallis, Oregon State University, Corvallis, Oregon, USA
| | - Thomas W Kaminski
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, USA
| | - Marc F Norcross
- College of Health, Corvallis, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
2
|
Li L, Yang W, Wan Y, Shen H, Wang T, Ping L, Liu C, Chen M, Yu H, Jin S, Cheng Y, Xu X, Zhou C. White matter alterations in mild cognitive impairment revealed by meta-analysis of diffusion tensor imaging using tract-based spatial statistics. Brain Imaging Behav 2023; 17:639-651. [PMID: 37656372 DOI: 10.1007/s11682-023-00791-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
The neuropathological mechanism of mild cognitive impairment (MCI) remains unclarified. Diffusion tensor imaging (DTI) studies revealed white matter (WM) microarchitecture alterations in MCI, but consistent findings and conclusions have not yet been drawn. The present coordinate-based meta-analysis (CBMA) of tract-based spatial statistics (TBSS) studies aimed to identify the most prominent and robust WM abnormalities in patients with MCI. A systematic search of relevant studies was conducted through January 2022 to identify TBSS studies comparing fractional anisotropy (FA) between MCI patients and healthy controls (HC). We used the seed-based d mapping (SDM) software to achieve the CBMA and analyze regional FA alterations in MCI. Meta-regression analysis was subsequently applied to explore the potential associations between clinical variables and FA changes. MCI patients demonstrated significantly decreased FA in widely distributed areas in the corpus callosum (CC), including the genu, body, and splenium of the CC, as well as one cluster in the left striatum. FA in the body of the CC and in three clusters in the splenium of the CC was negatively associated with the mean age. Additionally, FA in the genu of the CC and in three clusters in the splenium of the CC had negative correlations with the MMSE scores. Disrupted integrities of the CC and left striatum might play vital roles in the process of cognitive decline. These findings enhanced our understanding of the neural mechanism underlying WM neurodegeneration in MCI and provided perspectives for the early detection and intervention of dementia.Registration number: CRD42022235716.
Collapse
Affiliation(s)
- Longfei Li
- Department of Psychiatry, Shandong Daizhuang Hospital, Jining, China
| | - Wei Yang
- Department of Psychiatry, Shandong Daizhuang Hospital, Jining, China
| | - Yu Wan
- School of Mental Health, Jining Medical University, Jining, China
| | - Hailong Shen
- School of Mental Health, Jining Medical University, Jining, China
| | - Ting Wang
- Outpatient Department, Affiliated Hospital of Jining Medical University, Jining, China
| | - Liangliang Ping
- Department of Psychiatry, Xiamen Xianyue Hospital, Xiamen, China
| | - Chuanxin Liu
- School of Mental Health, Jining Medical University, Jining, China
| | - Min Chen
- School of Mental Health, Jining Medical University, Jining, China
| | - Hao Yu
- School of Mental Health, Jining Medical University, Jining, China
| | - Shushu Jin
- Department of Psychology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Yuqi Cheng
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiufeng Xu
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Cong Zhou
- School of Mental Health, Jining Medical University, Jining, China.
- Department of Psychology, Affiliated Hospital of Jining Medical University, Jining, China.
| |
Collapse
|
3
|
Hoffman LJ, Mis RE, Brough C, Ramirez S, Langford D, Giovannetti T, Olson IR. Concussions in young adult athletes: No effect on cerebral white matter. Front Hum Neurosci 2023; 17:1113971. [PMID: 36936617 PMCID: PMC10014705 DOI: 10.3389/fnhum.2023.1113971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/10/2023] [Indexed: 03/05/2023] Open
Abstract
Introduction The media's recent focus on possible negative health outcomes following sports- related concussion has increased awareness as well as anxiety among parents and athletes. However, the literature on concussion outcomes is equivocal and limited by a variety of diagnostic approaches. Methods The current study used a rigorous, open- access concussion identification method-the Ohio State University Traumatic Brain Injury Identification method (OSU TBI-ID) to identify concussion and periods of repeated, subclinical head trauma in 108 young adult athletes who also underwent a comprehensive protocol of cognitive tests, mood/anxiety questionnaires, and high-angular-resolution diffusion-weighted brain imaging to evaluate potential changes in white matter microstructure. Results Analyses showed that athletes with a history of repetitive, subclinical impacts to the head performed slightly worse on a measure of inhibitory impulse control and had more anxiety symptoms compared to those who never sustained any type of head injury but were otherwise the same as athletes with no history of concussion. Importantly, there were no group differences in cerebral white matter as measured by tract- based spatial statistics (TBSS), nor were there any associations between OSU TBI-ID measures and whole-brain principal scalars and free-water corrected scalars. Discussion Our results provide support for the hypothesis that it is not concussion per se, but repetitive head impacts that beget worse outcomes.
Collapse
Affiliation(s)
- Linda J. Hoffman
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA, United States
| | - Rachel E. Mis
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA, United States
| | - Caroline Brough
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA, United States
| | - Servio Ramirez
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Dianne Langford
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Tania Giovannetti
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA, United States
| | - Ingrid R. Olson
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA, United States
- *Correspondence: Ingrid R. Olson,
| |
Collapse
|
4
|
Tamez-Peña J, Rosella P, Totterman S, Schreyer E, Gonzalez P, Venkataraman A, Meyers SP. Post-concussive mTBI in Student Athletes: MRI Features and Machine Learning. Front Neurol 2022; 12:734329. [PMID: 35082743 PMCID: PMC8784748 DOI: 10.3389/fneur.2021.734329] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/26/2021] [Indexed: 12/14/2022] Open
Abstract
Purpose: To determine and characterize the radiomics features from structural MRI (MPRAGE) and Diffusion Tensor Imaging (DTI) associated with the presence of mild traumatic brain injuries on student athletes with post-concussive syndrome (PCS). Material and Methods: 122 student athletes (65 M, 57 F), median (IQR) age 18.8 (15–20) years, with a mixed level of play and sports activities, with a known history of concussion and clinical PCS, and 27 (15 M, 12 F), median (IQR) age 20 (19, 21) years, concussion free athlete subjects were MRI imaged in a clinical MR machine. MPRAGE and DTI-FA and DTI-ADC images were used to extract radiomic features from white and gray matter regions within the entire brain (2 ROI) and the eight main lobes of the brain (16 ROI) for a total of 18 analyzed regions. Radiomic features were divided into five different data sets used to train and cross-validate five different filter-based Support Vector Machines. The top selected features of the top model were described. Furthermore, the test predictions of the top four models were ensembled into a single average prediction. The average prediction was evaluated for the association to the number of concussions and time from injury. Results: Ninety-one PCS subjects passed inclusion criteria (91 Cases, 27 controls). The average prediction of the top four models had a sensitivity of 0.80, 95% CI: [0.71, 0.88] and specificity of 0.74 95%CI [0.54, 0.89] for distinguishing subjects from controls. The white matter features were strongly associated with mTBI, while the whole-brain analysis of gray matter showed the worst association. The predictive index was significantly associated with the number of concussions (p < 0.0001) and associated with the time from injury (p < 0.01). Conclusion: MRI Radiomic features are associated with a history of mTBI and they were successfully used to build a predictive machine learning model for mTBI for subjects with PCS associated with a history of one or more concussions.
Collapse
Affiliation(s)
- José Tamez-Peña
- Tecnologico de Monterrey, Escuela de Medicina, Monterrey, Mexico.,Qmetrics Technologies, Rochester, NY, United States
| | - Peter Rosella
- UR Imaging-UMI, University of Rochester Medical Center, University of Rochester, Rochester, NY, United States
| | | | | | | | - Arun Venkataraman
- UR Imaging-UMI, University of Rochester Medical Center, University of Rochester, Rochester, NY, United States
| | - Steven P Meyers
- UR Imaging-UMI, University of Rochester Medical Center, University of Rochester, Rochester, NY, United States
| |
Collapse
|
5
|
Lees B, Earls NE, Meares S, Batchelor J, Oxenham V, Rae CD, Jugé L, Cysique LA. Diffusion Tensor Imaging in Sport-Related Concussion: A Systematic Review Using an a priori Quality Rating System. J Neurotrauma 2021; 38:3032-3046. [PMID: 34309410 DOI: 10.1089/neu.2021.0154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Diffusion tensor imaging (DTI) of brain white matter (WM) may be useful for characterizing the nature and degree of brain injury after sport-related concussion (SRC) and assist in establishing objective diagnostic and prognostic biomarkers. This study aimed to conduct a systematic review using an a priori quality rating strategy to determine the most consistent DTI-WM changes post-SRC. Articles published in English (until June 2020) were retrieved by standard research engine and gray literature searches (N = 4932), using PRISMA guidelines. Eligible studies were non-interventional naturalistic original studies that conducted DTI within 6 months of SRC in current athletes from all levels of play, types of sports, and sex. A total of 29 articles were included in the review, and after quality appraisal by two raters, data from 10 studies were extracted after being identified as high quality. High-quality studies showed widespread moderate-to-large WM differences when SRC samples were compared to controls during the acute to early chronic stage (days to weeks) post-SRC, including both increased and decreased fractional anisotropy and axial diffusivity and decreased mean diffusivity and radial diffusivity. WM differences remained stable in the chronic stage (2-6 months post-SRC). DTI metrics were commonly associated with SRC symptom severity, although standardized SRC diagnostics would improve future research. This indicates that microstructural recovery is often incomplete at return to play and may lag behind clinically assessed recovery measures. Future work should explore interindividual trajectories to improve understanding of the heterogeneous and dynamic WM patterns post-SRC.
Collapse
Affiliation(s)
- Briana Lees
- The Matilda Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Nicola E Earls
- Department of Psychology, Macquarie University, Sydney, New South Wales, Australia
| | - Susanne Meares
- Department of Psychology, Macquarie University, Sydney, New South Wales, Australia
| | - Jennifer Batchelor
- Department of Psychology, Macquarie University, Sydney, New South Wales, Australia
| | - Vincent Oxenham
- Department of Psychology, Macquarie University, Sydney, New South Wales, Australia.,Neuroscience Research Australia, Randwick, New South Wales, Australia.,Department of Neurology, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Caroline D Rae
- Neuroscience Research Australia, Randwick, New South Wales, Australia.,School of Medical Sciences, UNSW Medicine, The University of New South Wales, Sydney, New South Wales, Australia
| | - Lauriane Jugé
- Neuroscience Research Australia, Randwick, New South Wales, Australia.,School of Medical Sciences, UNSW Medicine, The University of New South Wales, Sydney, New South Wales, Australia
| | - Lucette A Cysique
- Neuroscience Research Australia, Randwick, New South Wales, Australia.,St. Vincent's Hospital Applied Medical Research Centre, Peter Duncan Neuroscience, Sydney, New South Wales, Australia.,School of Psychology, The University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
6
|
Vakhtin AA, Zhang Y, Wintermark M, Ashford JW, Furst AJ. Distant histories of mild traumatic brain injury exacerbate age-related differences in white matter properties. Neurobiol Aging 2021; 107:30-41. [PMID: 34371285 DOI: 10.1016/j.neurobiolaging.2021.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 10/20/2022]
Abstract
We examined associations of distant histories of mild traumatic brain injury (mTBI) with non-linear and linear trajectories of white matter (WM) properties across a wide age range (23-77). Diffusion tensor imaging (DTI) data obtained from 171 Veterans with histories of clinically diagnosed mTBIs and 115 controls were subjected to tractography, isolating 20 major WM tracts. Non-linear and linear effects of age on each tract's diffusion properties were examined in terms of their interactions with group (mTBI and control). The non-linear model revealed 7 tracts in which the mTBI group's DTI metrics rapidly deviated from control trajectories in middle and late adulthoods, despite the injuries having occurred in the late 20s, on average. In contrast, no interactions between prior injuries and age were detected when examining linear trajectories. Distant mTBIs may thus accelerate normal age-related trajectories of WM degeneration much later in life. As such, life-long histories of head trauma should be assessed in all patients in their mid-to-late adulthoods, whether neurologically healthy or presenting with seemingly unrelated neuropathology.
Collapse
Affiliation(s)
- Andrei A Vakhtin
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, USA.
| | - Yu Zhang
- War Related Illness and Injury Study Center (WRIISC), Palo Alto Veterans Affairs Hospital, Palo Alto, CA, USA
| | - Max Wintermark
- Neuroradiology, Stanford University School of Medicine, Stanford, CA, USA
| | - John W Ashford
- War Related Illness and Injury Study Center (WRIISC), Palo Alto Veterans Affairs Hospital, Palo Alto, CA, USA; Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Ansgar J Furst
- War Related Illness and Injury Study Center (WRIISC), Palo Alto Veterans Affairs Hospital, Palo Alto, CA, USA; Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA; Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Polytrauma System of Care, Palo Alto Veterans Affairs Hospital, Palo Alto, CA, USA
| |
Collapse
|
7
|
Chmielewski TL, Tatman J, Suzuki S, Horodyski M, Reisman DS, Bauer RM, Clugston JR, Herman DC. Impaired motor control after sport-related concussion could increase risk for musculoskeletal injury: Implications for clinical management and rehabilitation. JOURNAL OF SPORT AND HEALTH SCIENCE 2021; 10:154-161. [PMID: 33188963 PMCID: PMC7987572 DOI: 10.1016/j.jshs.2020.11.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/27/2020] [Accepted: 09/18/2020] [Indexed: 05/29/2023]
Abstract
This review presents a conceptual framework and supporting evidence that links impaired motor control after sport-related concussion (SRC) to increased risk for musculoskeletal injury. Multiple studies have found that athletes who are post-SRC have higher risk for musculoskeletal injury compared to their counterparts. A small body of research suggests that impairments in motor control are associated with musculoskeletal injury risk. Motor control involves the perception and processing of sensory information and subsequent coordination of motor output within the central nervous system to perform a motor task. Motor control is inclusive of motor planning and motor learning. If sensory information is not accurately perceived or there is interference with sensory information processing and cognition, motor function will be altered, and an athlete may become vulnerable to injury during sport participation. Athletes with SRC show neuroanatomic and neurophysiological changes relevant to motor control even after meeting return to sport criteria, including a normal neurological examination, resolution of symptoms, and return to baseline function on traditional concussion testing. In conjunction, altered motor function is demonstrated after SRC in muscle activation and force production, movement patterns, balance/postural stability, and motor task performance, especially performance of a motor task paired with a cognitive task (i.e., dual-task condition). The clinical implications of this conceptual framework include a need to intentionally address motor control impairments after SRC to mitigate musculoskeletal injury risk and to monitor motor control as the athlete progresses through the return to sport continuum.
Collapse
Affiliation(s)
| | | | - Shuhei Suzuki
- TRIA Orthopedic Center, Bloomington, MN 55431, USA; ATP Tour Inc., Ponte Vedra Beach, FL 32082, USA
| | - MaryBeth Horodyski
- Department of Orthopaedics and Rehabilitation, University of Florida, Gainesville, FL 32607, USA
| | - Darcy S Reisman
- Department of Physical Therapy, University of Delaware, Newark, DE 19716, USA
| | - Russell M Bauer
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL 32611, USA
| | - James R Clugston
- Department of Community Health & Family Medicine, University of Florida, Gainesville, FL 32603, USA
| | - Daniel C Herman
- Department of Orthopaedics and Rehabilitation, University of Florida, Gainesville, FL 32607, USA
| |
Collapse
|
8
|
Abstract
Mild traumatic brain injuries, or concussions, often result in transient brain abnormalities not readily detected by conventional imaging methods. Several advanced imaging studies have been evaluated in the past couple decades to improve understanding of microstructural and functional abnormalities in the brain in patients suffering concussions. The thought remains a functional or pathophysiologic change rather than a structural one. The mechanism of injury, whether direct, indirect, or rotational, may drive specific clinical and radiological presentations. This remains a dynamic and constantly evolving area of research. This article focuses on the current status of imaging and future directions in concussion-related research.
Collapse
|
9
|
Hähnel S. Value of Advanced MR Imaging Techniques in Mild Traumatic Brain Injury. AJNR Am J Neuroradiol 2020; 41:1269-1270. [PMID: 32554427 PMCID: PMC7357652 DOI: 10.3174/ajnr.a6629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- S Hähnel
- Department of Neuroradiology University of Heidelberg Medical Center Heidelberg, Germany
| |
Collapse
|