1
|
Sanabria-Diaz G, Cagol A, Lu PJ, Barakovic M, Ocampo-Pineda M, Chen X, Weigel M, Ruberte E, Siebenborn NDOS, Galbusera R, Schädelin S, Benkert P, Kuhle J, Kappos L, Melie-Garcia L, Granziera C. Advanced MRI Measures of Myelin and Axon Volume Identify Repair in Multiple Sclerosis. Ann Neurol 2024. [PMID: 39390658 DOI: 10.1002/ana.27102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 08/10/2024] [Accepted: 09/04/2024] [Indexed: 10/12/2024]
Abstract
OBJECTIVE Pathological studies suggest that multiple sclerosis (MS) lesions endure multiple waves of damage and repair; however, the dynamics and characteristics of these processes are poorly understood in patients living with MS. METHODS We studied 128 MS patients (75 relapsing-remitting, 53 progressive) and 72 healthy controls who underwent advanced magnetic resonance imaging and clinical examination at baseline and 2 years later. Magnetization transfer saturation and multi-shell diffusion imaging were used to quantify longitudinal changes in myelin and axon volumes within MS lesions. Lesions were grouped into 4 classes (repair, damage, mixed repair damage, and stable). The frequency of each class was correlated to clinical measures, demographic characteristics, and levels of serum neurofilament light chain (sNfL). RESULTS Stable lesions were the most frequent (n = 2,276; 44%), followed by lesions with patterns of "repair" (n = 1,352; 26.2%) and damage (n = 1,214; 23.5%). The frequency of "repair" lesion was negatively associated with disability (β = -0.04; p < 0.001) and sNfL (β = -0.16; p < 0.001) at follow-up. The frequency of the "damage" class was higher in progressive than relapsing-remitting patients (p < 0.05) and was related to disability (baseline: β = -0.078; follow-up: β = -0.076; p < 0.001) and age (baseline: β = -0.078; p < 0.001). Stable lesions were more frequent in relapsing-remitting than in progressive patients (p < 0.05), and in younger patients versus older (β = -0.07; p < 0.001) at baseline. Further, "mixed" lesions were most frequent in older patients (β = 0.004; p < 0.001) at baseline. INTERPRETATION These findings show that repair and damage processes within MS lesions occur across the entire disease spectrum and that their frequency correlates with patients disability, age, disease duration, and extent of neuroaxonal damage. ANN NEUROL 2024.
Collapse
Affiliation(s)
- Gretel Sanabria-Diaz
- Neurology Clinic and Policlinic, Department of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Alessandro Cagol
- Neurology Clinic and Policlinic, Department of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Health Sciences, University of Genova, Genoa, Italy
| | - Po-Jui Lu
- Neurology Clinic and Policlinic, Department of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Muhamed Barakovic
- Neurology Clinic and Policlinic, Department of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Mario Ocampo-Pineda
- Neurology Clinic and Policlinic, Department of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Xinjie Chen
- Neurology Clinic and Policlinic, Department of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Matthias Weigel
- Neurology Clinic and Policlinic, Department of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
- Division of Radiological Physics, Department of Radiology, University Hospital Basel, Basel, Switzerland
| | - Esther Ruberte
- Neurology Clinic and Policlinic, Department of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
- Medical Image Analysis Center (MIAC), Basel, Switzerland
| | - Nina de Oliveira S Siebenborn
- Neurology Clinic and Policlinic, Department of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
- Medical Image Analysis Center (MIAC), Basel, Switzerland
| | - Riccardo Galbusera
- Neurology Clinic and Policlinic, Department of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Sabine Schädelin
- Neurology Clinic and Policlinic, Department of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Clinical Research, University Hospital and University of Basel, Basel, Switzerland
| | - Pascal Benkert
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Clinical Research, University Hospital and University of Basel, Basel, Switzerland
| | - Jens Kuhle
- Neurology Clinic and Policlinic, Department of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Ludwig Kappos
- Multiple Sclerosis Centre, Department of Neurology, Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
| | - Lester Melie-Garcia
- Neurology Clinic and Policlinic, Department of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Cristina Granziera
- Neurology Clinic and Policlinic, Department of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| |
Collapse
|
2
|
Dobrynina LA, Kremneva EI, Shamtieva KV, Geints AA, Filatov AS, Gadzhieva ZS, Gnedovskaya EV, Krotenkova MV, Maximov II. Cognitive Impairment in Cerebral Small Vessel Disease Is Associated with Corpus Callosum Microstructure Changes Based on Diffusion MRI. Diagnostics (Basel) 2024; 14:1838. [PMID: 39202326 PMCID: PMC11353603 DOI: 10.3390/diagnostics14161838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
The cerebral small vessel disease (cSVD) is one of the main causes of vascular and mixed cognitive impairment (CI), and it is associated, in particular, with brain ageing. An understanding of structural tissue changes in an intact cerebral white matter in cSVD might allow one to develop the sensitive biomarkers for early diagnosis and monitoring of disease progression. PURPOSE OF THE STUDY to evaluate microstructural changes in the corpus callosum (CC) using diffusion MRI (D-MRI) approaches in cSVD patients with different severity of CI and reveal the most sensitive correlations of diffusion metrics with CI. METHODS the study included 166 cSVD patients (51.8% women; 60.4 ± 7.6 years) and 44 healthy volunteers (65.9% women; 59.6 ± 6.8 years). All subjects underwent D-MRI (3T) with signal (diffusion tensor and kurtosis) and biophysical (neurite orientation dispersion and density imaging, NODDI, white matter tract integrity, WMTI, multicompartment spherical mean technique, MC-SMT) modeling in three CC segments as well as a neuropsychological assessment. RESULTS in cSVD patients, microstructural changes were found in all CC segments already at the subjective CI stage, which was found to worsen into mild CI and dementia. More pronounced changes were observed in the forceps minor. Among the signal models FA, MD, MK, RD, and RK, as well as among the biophysical models, MC-SMT (EMD, ETR) and WMTI (AWF) metrics exhibited the largest area under the curve (>0.85), characterizing the loss of microstructural integrity, the severity of potential demyelination, and the proportion of intra-axonal water, respectively. Conclusion: the study reveals the relevance of advanced D-MRI approaches for the assessment of brain tissue changes in cSVD. The identified diffusion biomarkers could be used for the clarification and observation of CI progression.
Collapse
Affiliation(s)
- Larisa A. Dobrynina
- Research Center of Neurology, 125367 Moscow, Russia; (L.A.D.); (A.A.G.); (A.S.F.); (E.V.G.); (M.V.K.)
| | - Elena I. Kremneva
- Research Center of Neurology, 125367 Moscow, Russia; (L.A.D.); (A.A.G.); (A.S.F.); (E.V.G.); (M.V.K.)
| | - Kamila V. Shamtieva
- Research Center of Neurology, 125367 Moscow, Russia; (L.A.D.); (A.A.G.); (A.S.F.); (E.V.G.); (M.V.K.)
| | - Anastasia A. Geints
- Research Center of Neurology, 125367 Moscow, Russia; (L.A.D.); (A.A.G.); (A.S.F.); (E.V.G.); (M.V.K.)
| | - Alexey S. Filatov
- Research Center of Neurology, 125367 Moscow, Russia; (L.A.D.); (A.A.G.); (A.S.F.); (E.V.G.); (M.V.K.)
| | - Zukhra Sh. Gadzhieva
- Research Center of Neurology, 125367 Moscow, Russia; (L.A.D.); (A.A.G.); (A.S.F.); (E.V.G.); (M.V.K.)
| | - Elena V. Gnedovskaya
- Research Center of Neurology, 125367 Moscow, Russia; (L.A.D.); (A.A.G.); (A.S.F.); (E.V.G.); (M.V.K.)
| | - Marina V. Krotenkova
- Research Center of Neurology, 125367 Moscow, Russia; (L.A.D.); (A.A.G.); (A.S.F.); (E.V.G.); (M.V.K.)
| | - Ivan I. Maximov
- Department of Health and Functioning, Western Norway University of Applied Sciences (HVL), 5063 Bergen, Norway;
| |
Collapse
|
3
|
Vivó F, Solana E, Calvi A, Lopez‐Soley E, Reid LB, Pascual‐Diaz S, Garrido C, Planas‐Tardido L, Cabrera‐Maqueda JM, Alba‐Arbalat S, Sepulveda M, Blanco Y, Kanber B, Prados F, Saiz A, Llufriu S, Martinez‐Heras E. Microscopic fractional anisotropy outperforms multiple sclerosis lesion assessment and clinical outcome associations over standard fractional anisotropy tensor. Hum Brain Mapp 2024; 45:e26706. [PMID: 38867646 PMCID: PMC11170024 DOI: 10.1002/hbm.26706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 06/14/2024] Open
Abstract
We aimed to compare the ability of diffusion tensor imaging and multi-compartment spherical mean technique to detect focal tissue damage and in distinguishing between different connectivity patterns associated with varying clinical outcomes in multiple sclerosis (MS). Seventy-six people diagnosed with MS were scanned using a SIEMENS Prisma Fit 3T magnetic resonance imaging (MRI), employing both conventional (T1w and fluid-attenuated inversion recovery) and advanced diffusion MRI sequences from which fractional anisotropy (FA) and microscopic FA (μFA) maps were generated. Using automated fiber quantification (AFQ), we assessed diffusion profiles across multiple white matter (WM) pathways to measure the sensitivity of anisotropy diffusion metrics in detecting localized tissue damage. In parallel, we analyzed structural brain connectivity in a specific patient cohort to fully grasp its relationships with cognitive and physical clinical outcomes. This evaluation comprehensively considered different patient categories, including cognitively preserved (CP), mild cognitive deficits (MCD), and cognitively impaired (CI) for cognitive assessment, as well as groups distinguished by physical impact: those with mild disability (Expanded Disability Status Scale [EDSS] <=3) and those with moderate-severe disability (EDSS >3). In our initial objective, we employed Ridge regression to forecast the presence of focal MS lesions, comparing the performance of μFA and FA. μFA exhibited a stronger association with tissue damage and a higher predictive precision for focal MS lesions across the tracts, achieving an R-squared value of .57, significantly outperforming the R-squared value of .24 for FA (p-value <.001). In structural connectivity, μFA exhibited more pronounced differences than FA in response to alteration in both cognitive and physical clinical scores in terms of effect size and number of connections. Regarding cognitive groups, FA differences between CP and MCD groups were limited to 0.5% of connections, mainly around the thalamus, while μFA revealed changes in 2.5% of connections. In the CP and CI group comparison, which have noticeable cognitive differences, the disparity was 5.6% for FA values and 32.5% for μFA. Similarly, μFA outperformed FA in detecting WM changes between the MCD and CI groups, with 5% versus 0.3% of connections, respectively. When analyzing structural connectivity between physical disability groups, μFA still demonstrated superior performance over FA, disclosing a 2.1% difference in connectivity between regions closely associated with physical disability in MS. In contrast, FA spotted a few regions, comprising only 0.6% of total connections. In summary, μFA emerged as a more effective tool than FA in predicting MS lesions and identifying structural changes across patients with different degrees of cognitive and global disability, offering deeper insights into the complexities of MS-related impairments.
Collapse
Affiliation(s)
- F. Vivó
- Neuroimmunology and Multiple Sclerosis Unit Laboratory of Advanced Imaging in Neuroimmunological Diseases (ImaginEM), Hospital Clinic BarcelonaFundació de Recerca Clínic Barcelona‐Institut d'Investigacions Biomèdiques August Pi i Sunyer and Universitat de BarcelonaBarcelonaSpain
| | - E. Solana
- Neuroimmunology and Multiple Sclerosis Unit Laboratory of Advanced Imaging in Neuroimmunological Diseases (ImaginEM), Hospital Clinic BarcelonaFundació de Recerca Clínic Barcelona‐Institut d'Investigacions Biomèdiques August Pi i Sunyer and Universitat de BarcelonaBarcelonaSpain
| | - A. Calvi
- Neuroimmunology and Multiple Sclerosis Unit Laboratory of Advanced Imaging in Neuroimmunological Diseases (ImaginEM), Hospital Clinic BarcelonaFundació de Recerca Clínic Barcelona‐Institut d'Investigacions Biomèdiques August Pi i Sunyer and Universitat de BarcelonaBarcelonaSpain
| | - E. Lopez‐Soley
- Neuroimmunology and Multiple Sclerosis Unit Laboratory of Advanced Imaging in Neuroimmunological Diseases (ImaginEM), Hospital Clinic BarcelonaFundació de Recerca Clínic Barcelona‐Institut d'Investigacions Biomèdiques August Pi i Sunyer and Universitat de BarcelonaBarcelonaSpain
| | - L. B. Reid
- Department of PsychiatryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Department of RadiologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - S. Pascual‐Diaz
- Institute of Neurosciences, Department of Medicine, School of Medicine and Health SciencesUniversity of BarcelonaBarcelonaSpain
| | - C. Garrido
- Magnetic Resonance Imaging Core FacilityInstitut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - L. Planas‐Tardido
- Neuroimmunology and Multiple Sclerosis Unit Laboratory of Advanced Imaging in Neuroimmunological Diseases (ImaginEM), Hospital Clinic BarcelonaFundació de Recerca Clínic Barcelona‐Institut d'Investigacions Biomèdiques August Pi i Sunyer and Universitat de BarcelonaBarcelonaSpain
| | - J. M. Cabrera‐Maqueda
- Neuroimmunology and Multiple Sclerosis Unit Laboratory of Advanced Imaging in Neuroimmunological Diseases (ImaginEM), Hospital Clinic BarcelonaFundació de Recerca Clínic Barcelona‐Institut d'Investigacions Biomèdiques August Pi i Sunyer and Universitat de BarcelonaBarcelonaSpain
| | - S. Alba‐Arbalat
- Neuroimmunology and Multiple Sclerosis Unit Laboratory of Advanced Imaging in Neuroimmunological Diseases (ImaginEM), Hospital Clinic BarcelonaFundació de Recerca Clínic Barcelona‐Institut d'Investigacions Biomèdiques August Pi i Sunyer and Universitat de BarcelonaBarcelonaSpain
| | - M. Sepulveda
- Neuroimmunology and Multiple Sclerosis Unit Laboratory of Advanced Imaging in Neuroimmunological Diseases (ImaginEM), Hospital Clinic BarcelonaFundació de Recerca Clínic Barcelona‐Institut d'Investigacions Biomèdiques August Pi i Sunyer and Universitat de BarcelonaBarcelonaSpain
| | - Y. Blanco
- Neuroimmunology and Multiple Sclerosis Unit Laboratory of Advanced Imaging in Neuroimmunological Diseases (ImaginEM), Hospital Clinic BarcelonaFundació de Recerca Clínic Barcelona‐Institut d'Investigacions Biomèdiques August Pi i Sunyer and Universitat de BarcelonaBarcelonaSpain
| | - B. Kanber
- Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain ScienceUniversity College of LondonLondonUK
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and BioengineeringUniversity College LondonLondonUK
| | - F. Prados
- Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain ScienceUniversity College of LondonLondonUK
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and BioengineeringUniversity College LondonLondonUK
- E‐Health CenterUniversitat Oberta de CatalunyaBarcelonaSpain
| | - A. Saiz
- Neuroimmunology and Multiple Sclerosis Unit Laboratory of Advanced Imaging in Neuroimmunological Diseases (ImaginEM), Hospital Clinic BarcelonaFundació de Recerca Clínic Barcelona‐Institut d'Investigacions Biomèdiques August Pi i Sunyer and Universitat de BarcelonaBarcelonaSpain
| | - S. Llufriu
- Neuroimmunology and Multiple Sclerosis Unit Laboratory of Advanced Imaging in Neuroimmunological Diseases (ImaginEM), Hospital Clinic BarcelonaFundació de Recerca Clínic Barcelona‐Institut d'Investigacions Biomèdiques August Pi i Sunyer and Universitat de BarcelonaBarcelonaSpain
| | - E. Martinez‐Heras
- Neuroimmunology and Multiple Sclerosis Unit Laboratory of Advanced Imaging in Neuroimmunological Diseases (ImaginEM), Hospital Clinic BarcelonaFundació de Recerca Clínic Barcelona‐Institut d'Investigacions Biomèdiques August Pi i Sunyer and Universitat de BarcelonaBarcelonaSpain
| |
Collapse
|
4
|
Calvi A, Mendelsohn Z, Hamed W, Chard D, Tur C, Stutters J, MacManus D, Kanber B, Wheeler‐Kingshott CAMG, Barkhof F, Prados F. Treatment reduces the incidence of newly appearing multiple sclerosis lesions evolving into chronic active, slowly expanding lesions: A retrospective analysis. Eur J Neurol 2024; 31:e16092. [PMID: 37823722 PMCID: PMC11236028 DOI: 10.1111/ene.16092] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/05/2023] [Accepted: 09/21/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND AND PURPOSE Newly appearing lesions in multiple sclerosis (MS) may evolve into chronically active, slowly expanding lesions (SELs), leading to sustained disability progression. The aim of this study was to evaluate the incidence of newly appearing lesions developing into SELs, and their correlation to clinical evolution and treatment. METHODS A retrospective analysis of a fingolimod trial in primary progressive MS (PPMS; INFORMS, NCT00731692) was undertaken. Data were available from 324 patients with magnetic resonance imaging scans up to 3 years after screening. New lesions at year 1 were identified with convolutional neural networks, and SELs obtained through a deformation-based method. Clinical disability was assessed annually by Expanded Disability Status Scale (EDSS), Nine-Hole Peg Test, Timed 25-Foot Walk, and Paced Auditory Serial Addition Test. Linear, logistic, and mixed-effect models were used to assess the relationship between the Jacobian expansion in new lesions and SELs, disability scores, and treatment status. RESULTS One hundred seventy patients had ≥1 new lesions at year 1 and had a higher lesion count at screening compared to patients with no new lesions (median = 27 vs. 22, p = 0.007). Among the new lesions (median = 2 per patient), 37% evolved into definite or possible SELs. Higher SEL volume and count were associated with EDSS worsening and confirmed disability progression. Treated patients had lower volume and count of definite SELs (β = -0.04, 95% confidence interval [CI] = -0.07 to -0.01, p = 0.015; β = -0.36, 95% CI = -0.67 to -0.06, p = 0.019, respectively). CONCLUSIONS Incident chronic active lesions are common in PPMS, and fingolimod treatment can reduce their number.
Collapse
Affiliation(s)
- Alberto Calvi
- NMR Research Unit, Institute of NeurologyUniversity College LondonLondonUK
- Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Fundació Clinic per a la Recerca BiomèdicaBarcelonaSpain
| | - Zoe Mendelsohn
- NMR Research Unit, Institute of NeurologyUniversity College LondonLondonUK
- Department of RadiologyCharité School of Medicine and University Hospital BerlinBerlinGermany
| | - Weaam Hamed
- NMR Research Unit, Institute of NeurologyUniversity College LondonLondonUK
- Department of RadiologyMansoura University HospitalMansouraEgypt
| | - Declan Chard
- NMR Research Unit, Institute of NeurologyUniversity College LondonLondonUK
- National Institute for Health Research, Biomedical Research CentreUniversity College London HospitalsLondonUK
| | - Carmen Tur
- NMR Research Unit, Institute of NeurologyUniversity College LondonLondonUK
- Neurology‐Neuroimmunology DepartmentMultiple Sclerosis Centre of Catalonia, Vall d'Hebron Barcelona Hospital CampusBarcelonaSpain
| | - Jon Stutters
- NMR Research Unit, Institute of NeurologyUniversity College LondonLondonUK
| | - David MacManus
- NMR Research Unit, Institute of NeurologyUniversity College LondonLondonUK
| | - Baris Kanber
- National Institute for Health Research, Biomedical Research CentreUniversity College London HospitalsLondonUK
- Department of Medical Physics and Biomedical Engineering, Centre for Medical Image ComputingUniversity College LondonLondonUK
| | | | - Frederik Barkhof
- NMR Research Unit, Institute of NeurologyUniversity College LondonLondonUK
- Department of Medical Physics and Biomedical Engineering, Centre for Medical Image ComputingUniversity College LondonLondonUK
- Radiology and Nuclear Medicine, Amsterdam University Medical Centers (UMC)Vrije UniversiteitAmsterdamthe Netherlands
| | - Ferran Prados
- NMR Research Unit, Institute of NeurologyUniversity College LondonLondonUK
- Department of Medical Physics and Biomedical Engineering, Centre for Medical Image ComputingUniversity College LondonLondonUK
- e‐Health CentreUniversitat Oberta de CatalunyaBarcelonaSpain
| |
Collapse
|
5
|
Hosseinpour Z, Oladosu O, Liu WQ, Pike GB, Yong VW, Metz LM, Zhang Y. Distinct characteristics and severity of brain magnetic resonance imaging lesions in women and men with multiple sclerosis assessed using verified texture analysis measures. Front Neurol 2023; 14:1213377. [PMID: 37638198 PMCID: PMC10449451 DOI: 10.3389/fneur.2023.1213377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Background and goal In vivo characterization of brain lesion types in multiple sclerosis (MS) has been an ongoing challenge. Based on verified texture analysis measures from clinical magnetic resonance imaging (MRI), this study aimed to develop a method to identify two extremes of brain MS lesions that were approximately severely demyelinated (sDEM) and highly remyelinated (hREM), and compare them in terms of common clinical variables. Method Texture analysis used an optimized gray-level co-occurrence matrix (GLCM) method based on FLAIR MRI from 200 relapsing-remitting MS participants. Two top-performing metrics were calculated: texture contrast and dissimilarity. Lesion identification applied a percentile approach according to texture values calculated: ≤ 25 percentile for hREM and ≥75 percentile for sDEM. Results The sDEM had a greater total normalized volume yet smaller average size, and worse MRI texture than hREM. In lesion distribution mapping, the two lesion types appeared to overlap largely in location and were present the most in the corpus callosum and periventricular regions. Further, in sDEM, the normalized volume was greater and in hREM, the average size was smaller in men than women. There were no other significant results in clinical variable-associated analyses. Conclusion Percentile statistics of competitive MRI texture measures may be a promising method for probing select types of brain MS lesion pathology. Associated findings can provide another useful dimension for improved measurement and monitoring of disease activity in MS. The different characteristics of sDEM and hREM between men and women likely adds new information to the literature, deserving further confirmation.
Collapse
Affiliation(s)
- Zahra Hosseinpour
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
| | - Olayinka Oladosu
- Department of Neuroscience, Faculty of Graduate Studies, University of Calgary, Calgary, AB, Canada
| | - Wei-qiao Liu
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - G. Bruce Pike
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - V. Wee Yong
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Luanne M. Metz
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Yunyan Zhang
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
6
|
Dobrynina LA, Kremneva EI, Shamtieva KV, Geints AA, Filatov AS, Trubitsyna VV, Bitsieva ET, Byrochkina AA, Akhmetshina YI, Maksimov II, Krotenkova MV. [Disruption of corpus callosum microstructural integrity by diffusion MRI as a predictor of progression of cerebral microangiopathy]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:95-104. [PMID: 37994894 DOI: 10.17116/jnevro202312311195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
OBJECTIVE To assess the microstructural integrity of the corpus callosum in patients with cerebral small vessel disease (cSVD) using signal and biophysical diffusion MRI models and to identify the most sensitive markers of disease progression. MATERIAL AND METHODS Diffusion MRI (3 Tesla) was performed in 166 patients (51.8% women; mean age 60.4±7.6) with cSVD and cognitive impairment of varying severity and in 44 healthy volunteers (65.9% women; mean age 59.6±6.8), followed by calculation of signal (diffusion tensor and diffusion kurtosis) and biophysical (WMTI, NODDI, MC-SMT) models, from which profiles of three corpus callosum segments were constructed. RESULTS The best results were obtained for metrics in the forceps minor and body of the corpus callosum. Among the metrics of the signal models in the forceps minor, fraction anisotropy (FA) and mean diffusion (MD), which characterize the overall loss of microstructural integrity and increase in extra-axonal water, as well as indirect markers of demyelination when considering transverse diffusion parameters (radial diffusion and radial kurtosis), had the larger area under the curve according to the ROC analysis. Among the metrics of the biophysical models in the forceps minor, a larger area under the curve was found in the MC-SMT model for extra-axonal transverse diffusion (ETR), mean diffusion (EMD), and intra-axonal water fraction (INTRA), and in the WMTI model for intra-axonal water fraction (AWF). ETR had high inverse correlations with INTRA and AWF, while INTRA and AWF had high direct intercorrelations. CONCLUSION Metrics of signaling (FA, MD, RD, RK) and biophysical patterns (ETR, EMD, INTRA, AWF) in the forceps minor and the corpus callosum body can be considered as indicators of cSVD progression. They indicate disease progression, mainly by an increase in extra-axonal water with the development of demyelination and tissue degeneration in the corpus callosum.
Collapse
Affiliation(s)
| | | | | | - A A Geints
- Lomonosov Moscow State University, Moscow, Russia
| | - A S Filatov
- Research Center of Neurology, Moscow, Russia
| | | | | | | | | | - I I Maksimov
- West Norwegian University of Applied Sciences (HVL), Bergen, Norway
| | | |
Collapse
|
7
|
Jamee F, Khayati RM, Guttmann CRG, Cotton F, Nabavi SM. Prediction of Multiple Sclerosis Lesion Evolution Patterns in Brain MR Images Using Weekly Time Series Analysis. J Med Biol Eng 2022. [DOI: 10.1007/s40846-022-00756-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
La Rosa F, Wynen M, Al-Louzi O, Beck ES, Huelnhagen T, Maggi P, Thiran JP, Kober T, Shinohara RT, Sati P, Reich DS, Granziera C, Absinta M, Bach Cuadra M. Cortical lesions, central vein sign, and paramagnetic rim lesions in multiple sclerosis: Emerging machine learning techniques and future avenues. Neuroimage Clin 2022; 36:103205. [PMID: 36201950 PMCID: PMC9668629 DOI: 10.1016/j.nicl.2022.103205] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 09/09/2022] [Accepted: 09/16/2022] [Indexed: 12/14/2022]
Abstract
The current diagnostic criteria for multiple sclerosis (MS) lack specificity, and this may lead to misdiagnosis, which remains an issue in present-day clinical practice. In addition, conventional biomarkers only moderately correlate with MS disease progression. Recently, some MS lesional imaging biomarkers such as cortical lesions (CL), the central vein sign (CVS), and paramagnetic rim lesions (PRL), visible in specialized magnetic resonance imaging (MRI) sequences, have shown higher specificity in differential diagnosis. Moreover, studies have shown that CL and PRL are potential prognostic biomarkers, the former correlating with cognitive impairments and the latter with early disability progression. As machine learning-based methods have achieved extraordinary performance in the assessment of conventional imaging biomarkers, such as white matter lesion segmentation, several automated or semi-automated methods have been proposed as well for CL, PRL, and CVS. In the present review, we first introduce these MS biomarkers and their imaging methods. Subsequently, we describe the corresponding machine learning-based methods that were proposed to tackle these clinical questions, putting them into context with respect to the challenges they are facing, including non-standardized MRI protocols, limited datasets, and moderate inter-rater variability. We conclude by presenting the current limitations that prevent their broader deployment and suggesting future research directions.
Collapse
Key Words
- ms, multiple sclerosis
- mri, magnetic resonance imaging
- dl, deep learning
- ml, machine learning
- cl, cortical lesions
- prl, paramagnetic rim lesions
- cvs, central vein sign
- wml, white matter lesions
- flair, fluid-attenuated inversion recovery
- mprage, magnetization prepared rapid gradient-echo
- gm, gray matter
- wm, white matter
- psir, phase-sensitive inversion recovery
- dir, double inversion recovery
- mp2rage, magnetization-prepared 2 rapid gradient echoes
- sels, slowly evolving/expanding lesions
- cnn, convolutional neural network
- xai, explainable ai
- pv, partial volume
Collapse
Affiliation(s)
- Francesco La Rosa
- Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; CIBM Center for Biomedical Imaging, Switzerland; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Maxence Wynen
- CIBM Center for Biomedical Imaging, Switzerland; ICTeam, UCLouvain, Louvain-la-Neuve, Belgium; Louvain Inflammation Imaging Lab (NIL), Institute of Neuroscience (IoNS), UCLouvain, Brussels, Belgium; Radiology Department, Lausanne University and University Hospital, Switzerland
| | - Omar Al-Louzi
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA; Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Erin S Beck
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Till Huelnhagen
- Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; Radiology Department, Lausanne University and University Hospital, Switzerland; Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
| | - Pietro Maggi
- Louvain Inflammation Imaging Lab (NIL), Institute of Neuroscience (IoNS), UCLouvain, Brussels, Belgium; Department of Neurology, Cliniques universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium; Department of Neurology, CHUV, Lausanne, Switzerland
| | - Jean-Philippe Thiran
- Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; CIBM Center for Biomedical Imaging, Switzerland; Radiology Department, Lausanne University and University Hospital, Switzerland
| | - Tobias Kober
- Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; Radiology Department, Lausanne University and University Hospital, Switzerland; Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
| | - Russell T Shinohara
- Center for Biomedical Image Computing and Analysis (CBICA), Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA; Penn Statistics in Imaging and Visualization Endeavor (PennSIVE), Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, PA, USA; Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Pascal Sati
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA; Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Cristina Granziera
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Switzerland; Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Martina Absinta
- IRCCS San Raffaele Hospital and Vita-Salute San Raffaele University, Milan, Italy; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Meritxell Bach Cuadra
- CIBM Center for Biomedical Imaging, Switzerland; Radiology Department, Lausanne University and University Hospital, Switzerland
| |
Collapse
|
9
|
Oladosu O, Liu WQ, Brown L, Pike BG, Metz LM, Zhang Y. Advanced diffusion MRI and image texture analysis detect widespread brain structural differences between relapsing-remitting and secondary progressive multiple sclerosis. Front Hum Neurosci 2022; 16:944908. [PMID: 36034111 PMCID: PMC9413838 DOI: 10.3389/fnhum.2022.944908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022] Open
Abstract
Introduction Disease development in multiple sclerosis (MS) causes dramatic structural changes, but the exact changing patterns are unclear. Our objective is to investigate the differences in brain structure locally and spatially between relapsing-remitting MS (RRMS) and its advanced form, secondary progressive MS (SPMS), through advanced analysis of diffusion magnetic resonance imaging (MRI) and image texture. Methods A total of 20 patients with RRMS and nine patients with SPMS from two datasets underwent 3T anatomical and diffusion tensor imaging (DTI). The DTI was harmonized, augmented, and then modeled, which generated six voxel- and sub-voxel-scale measures. Texture analysis focused on T2 and FLAIR MRI, which produced two phase-based measures, namely, phase congruency and weighted mean phase. Data analysis was 3-fold, i.e., histogram analysis of whole-brain normal appearing white matter (NAWM); region of interest (ROI) analysis of NAWM and lesions within three critical white matter tracts, namely, corpus callosum, corticospinal tract, and optic radiation; and along-tract statistics. Furthermore, by calculating the z-score of core-rim pathology within lesions based on diffusion measures, we developed a novel method to define chronic active lesions and compared them between cohorts. Results Histogram features from diffusion and all but one texture measure differentiated between RRMS and SPMS. Within-tract ROI analysis detected cohort differences in both NAWM and lesions of the corpus callosum body in three measures of neurite orientation and anisotropy. Along-tract statistics detected cohort differences from multiple measures, particularly lesion extent, which increased significantly in SPMS in posterior corpus callosum and optic radiations. The number of chronic active lesions were also significantly higher (by 5-20% over z-scores 0.5 and 1.0) in SPMS than RRMS based on diffusion anisotropy, neurite content, and diameter. Conclusion Advanced diffusion MRI and texture analysis may be promising approaches for thorough understanding of brain structural changes from RRMS to SPMS, thereby providing new insight into disease development mechanisms in MS.
Collapse
Affiliation(s)
- Olayinka Oladosu
- Department of Neuroscience, Faculty of Graduate Studies, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Wei-Qiao Liu
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Lenora Brown
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Bruce G. Pike
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Luanne M. Metz
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Yunyan Zhang
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
10
|
Efficacy of Transcranial Direct Current Stimulation (tDCS) on Balance and Gait in Multiple Sclerosis Patients: A Machine Learning Approach. J Clin Med 2022; 11:jcm11123505. [PMID: 35743575 PMCID: PMC9224780 DOI: 10.3390/jcm11123505] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/05/2022] [Accepted: 06/15/2022] [Indexed: 02/06/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) has emerged as an appealing rehabilitative approach to improve brain function, with promising data on gait and balance in people with multiple sclerosis (MS). However, single variable weights have not yet been adequately assessed. Hence, the aim of this pilot randomized controlled trial was to evaluate the tDCS effects on balance and gait in patients with MS through a machine learning approach. In this pilot randomized controlled trial (RCT), we included people with relapsing−remitting MS and an Expanded Disability Status Scale >1 and <5 that were randomly allocated to two groups—a study group, undergoing a 10-session anodal motor cortex tDCS, and a control group, undergoing a sham treatment. Both groups underwent a specific balance and gait rehabilitative program. We assessed as outcome measures the Berg Balance Scale (BBS), Fall Risk Index and timed up-and-go and 6-min-walking tests at baseline (T0), the end of intervention (T1) and 4 (T2) and 6 weeks after the intervention (T3) with an inertial motion unit. At each time point, we performed a multiple factor analysis through a machine learning approach to allow the analysis of the influence of the balance and gait variables, grouping the participants based on the results. Seventeen MS patients (aged 40.6 ± 14.4 years), 9 in the study group and 8 in the sham group, were included. We reported a significant repeated measures difference between groups for distances covered (6MWT (meters), p < 0.03). At T1, we showed a significant increase in distance (m) with a mean difference (MD) of 37.0 [−59.0, 17.0] (p = 0.003), and in BBS with a MD of 2.0 [−4.0, 3.0] (p = 0.03). At T2, these improvements did not seem to be significantly maintained; however, considering the machine learning analysis, the Silhouette Index of 0.34, with a low cluster overlap trend, confirmed the possible short-term effects (T2), even at 6 weeks. Therefore, this pilot RCT showed that tDCS may provide non-sustained improvements in gait and balance in MS patients. In this scenario, machine learning could suggest evidence of prolonged beneficial effects.
Collapse
|
11
|
Bao J, Tu H, Li Y, Sun J, Hu Z, Zhang F, Li J. Diffusion Tensor Imaging Revealed Microstructural Changes in Normal-Appearing White Matter Regions in Relapsing–Remitting Multiple Sclerosis. Front Neurosci 2022; 16:837452. [PMID: 35310094 PMCID: PMC8924457 DOI: 10.3389/fnins.2022.837452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/27/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundAxons and myelin sheaths are the physical foundation for white matter (WM) to perform normal functions. Our previous study found the metabolite abnormalities in frontal, parietal, and occipital normal-appearing white matter (NAWM) regions in relapsing–remitting multiple sclerosis (RRMS) patients by applying a 2D 1H magnetic resonance spectroscopic imaging method. Since the metabolite changes may associate with the microstructure changes, we used the diffusion tensor imaging (DTI) method to assess the integrity of NAWM in this study.MethodDiffusion tensor imaging scan was performed on 17 clinically definite RRMS patients and 21 age-matched healthy controls on a 3.0-T scanner. DTI metrics including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) were extracted from 19 predefined regions of interest (ROIs), which were generated by removing a mask of manually drawn probabilistic lesion map from the Johns Hopkins University white-matter atlas. The mean values of FA, MD, AD, and RD were compared between different groups in the same ROIs.ResultsA probabilistic lesion map was successfully generated, and the lesion regions were eliminated from the WM atlas. We found that the RRMS patients had significantly lower FA in the entire corpus callosum (CC), bilateral of anterior corona radiata, and right posterior thalamic radiation (PTR). At the same time, RRMS patients showed significantly higher MD in the bilateral anterior corona radiata and superior corona radiata. Moreover, all AD values increased, and the bilateral external capsule, PTR, and left tapetum NAWM show statistical significance. What is more, all NAWM tracts showed increasing RD values in RRMS patients, and the bilateral superior corona radiata, the anterior corona radiata, right PTR, and the genu CC reach statistical significance.ConclusionOur study revealed widespread microstructure changes in NAWM in RRMS patients through a ready-made WM atlas and probabilistic lesion map. These findings support the hypothesis of demyelination, accumulation of inflammatory cells, and axonal injury in NAWM for RRMS. The DTI-based metrics could be considered as potential non-invasive biomarkers of disease severity.
Collapse
Affiliation(s)
- Jianfeng Bao
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Hui Tu
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Yijia Li
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Jubao Sun
- MRI Center, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Zhigang Hu
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Fengshou Zhang
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
- *Correspondence: Fengshou Zhang,
| | - Jinghua Li
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
- Jinghua Li,
| |
Collapse
|
12
|
Guo X, Yan T, Chen M, Ma X, Li R, Li B, Yang A, Chen Y, Fang T, Yu H, Tian H, Chen G, Zhuo C. Differential effects of alcohol-drinking patterns on the structure and function of the brain and cognitive performance in young adult drinkers: A pilot study. Brain Behav 2022; 12:e2427. [PMID: 34808037 PMCID: PMC8785638 DOI: 10.1002/brb3.2427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION This study was aimed to determine how different patterns of alcohol consumption drive changes to brain structure and function and their correlation with cognitive impairments in young adult alcohol drinkers. METHODS In this study, we enrolled five groups participants and defined as: long-term abstinence from alcohol (LA), binge drinking (BD), long-term low dosage alcohol consumption but exceeding the safety drinking dosage (LD), long-term alcohol consumption of damaging dosage (LDD), and long-term heavy drinking (HD). All participants underwent magnetic resonance imaging (MRI) and functional MRI (fMRI) to acquire data on brain structure and function, including gray matter volume (GMV), fractional amplitude of low-frequency fluctuation (fALFF), regional homogeneity (ReHo), functional connectivity (FC), and brain network properties. The cognitive ability was evaluated with the California Verbal Learning Test (CVLT), intelligence quotient (IQ), and short delay free recall (SDFR). RESULTS Compared to LA, GMV significantly decreased in the brain regions in VN, SMN, and VAN in the alcohol-drinking groups (BD, LD, LDD, and HD). ReHo was significantly enhanced in the brain regions in VN, SMN, and VAN, while fALFF significantly increased in the brain regions in VN and SMN. The number of intra- and inter-modular connections within networks (VN, SMN, sensory control network [SCN], and VAN) and their connections to other modules were abnormally changed. These changes adversely affected cognition (e.g., IQ, CVLT, SDFR). CONCLUSION Despite the small sample size, this study provides new evidence supporting the need for young people to abstain from alcohol to protect their brains. These findings present strong reasoning for updating anti-alcohol slogans and guidelines for young people in the future.
Collapse
Affiliation(s)
- Xiaobing Guo
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Tongjun Yan
- Department of Psychiatry, 904th Hospital of PLA, Changzhou, Jiangsu, China
| | - Min Chen
- Institute of Mental Health, Jining Medical University, Jining, China
| | - Xiaoyan Ma
- Department of Alcohol Dependence Management, Tianjin Anding Hospital, Tianjin Medical University Clinical Hospital of Mental Health, Tianjin, China.,Tianjin Anding Hospital, Tianjin Mental Health Center, Key Laboratory of Psychiatry Neuroimaging-Genetics and Co-morbidity (PNGC_Lab) of Tianjin Medical University Clinical Hospital of Mental Health, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, China
| | - Ranli Li
- Department of Alcohol Dependence Management, Tianjin Anding Hospital, Tianjin Medical University Clinical Hospital of Mental Health, Tianjin, China.,Tianjin Anding Hospital, Tianjin Mental Health Center, Key Laboratory of Psychiatry Neuroimaging-Genetics and Co-morbidity (PNGC_Lab) of Tianjin Medical University Clinical Hospital of Mental Health, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, China
| | - Bo Li
- Department of Psychiatry, Tianjin Kangtai Mental Health Hospital, Tianjin, China
| | - Anqu Yang
- Department of Psychiatry, Tianjin Kangtai Mental Health Hospital, Tianjin, China
| | - Yuhui Chen
- Department of Psychiatry, Tianjin Kangtai Mental Health Hospital, Tianjin, China
| | - Tao Fang
- Key Laboratory of Real Time Brain Circuits Tracing of Neurology and Psychiatry (RTBNB_Lab), Tianjin Fourth Center Hospital, Tianjin Medical Affiliated Tianjin Fourth Central Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin, China
| | - Haiping Yu
- Department of Alcohol Dependence Management, Wenzhou Seventh Peoples Hospital, Wenzhou, China
| | - Hongjun Tian
- Key Laboratory of Real Time Brain Circuits Tracing of Neurology and Psychiatry (RTBNB_Lab), Tianjin Fourth Center Hospital, Tianjin Medical Affiliated Tianjin Fourth Central Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin, China
| | - Guangdong Chen
- Department of Alcohol Dependence Management, Wenzhou Seventh Peoples Hospital, Wenzhou, China
| | - Chuanjun Zhuo
- Key Laboratory of Real Time Brain Circuits Tracing of Neurology and Psychiatry (RTBNB_Lab), Tianjin Fourth Center Hospital, Tianjin Medical Affiliated Tianjin Fourth Central Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin, China.,Department of Alcohol Dependence Management, Wenzhou Seventh Peoples Hospital, Wenzhou, China
| |
Collapse
|
13
|
Gu XQ, Liu Y, Gu JB, Li LF, Fu LL, Han XM. Correlations between hippocampal functional connectivity, structural changes, and clinical data in patients with relapsing-remitting multiple sclerosis: a case-control study using multimodal magnetic resonance imaging. Neural Regen Res 2021; 17:1115-1124. [PMID: 34558540 PMCID: PMC8552851 DOI: 10.4103/1673-5374.324855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Multiple sclerosis is associated with structural and functional brain alterations leading to cognitive impairments across multiple domains including attention, memory, and the speed of information processing. The hippocampus, which is a brain important structure involved in memory, undergoes microstructural changes in the early stage of multiple sclerosis. In this study, we analyzed hippocampal function and structure in patients with relapsing-remitting multiple sclerosis and explored correlations between the functional connectivity of the hippocampus to the whole brain, changes in local brain function and microstructure, and cognitive function at rest. We retrospectively analyzed data from 20 relapsing-remitting multiple sclerosis patients admitted to the Department of Neurology at the China-Japan Union Hospital of Jilin University, China, from April 2015 to November 2019. Sixteen healthy volunteers were recruited as the healthy control group. All participants were evaluated using a scale of extended disability status and the Montreal cognitive assessment within 1 week before and after head diffusion tensor imaging and functional magnetic resonance imaging. Compared with the healthy control group, the patients with relapsing-remitting multiple sclerosis had lower Montreal cognitive assessment scores and regions of simultaneously enhanced and attenuated whole-brain functional connectivity and local functional connectivity in the bilateral hippocampus. Hippocampal diffusion tensor imaging data showed that, compared with the healthy control group, patients with relapsing-remitting multiple sclerosis had lower hippocampal fractional anisotropy values and higher mean diffusivity values, suggesting abnormal hippocampal structure. The left hippocampus whole-brain functional connectivity was negatively correlated with the Montreal cognitive assessment score (r = −0.698, P = 0.025), and whole-brain functional connectivity of the right hippocampus was negatively correlated with extended disability status scale score (r = −0.649, P = 0.042). The mean diffusivity value of the left hippocampus was negatively correlated with the Montreal cognitive assessment score (r = −0.729, P = 0.017) and positively correlated with the extended disability status scale score (r = 0.653, P = 0.041). The right hippocampal mean diffusivity value was positively correlated with the extended disability status scale score (r = 0.684, P = 0.029). These data suggest that the functional connectivity and presence of structural abnormalities in the hippocampus in patients with relapse-remission multiple sclerosis are correlated with the degree of cognitive function and extent of disability. This study was approved by the Ethics Committee of China-Japan Union Hospital of Jilin University, China (approval No. 201702202) on February 22, 2017.
Collapse
Affiliation(s)
- Xin-Quan Gu
- China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Ying Liu
- Cardre's Ward, Changchun Central hospital, Changchun, Jilin Province, China
| | - Jie-Bing Gu
- First Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Lin-Fang Li
- First Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Ling-Ling Fu
- First Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xue-Mei Han
- First Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
14
|
Martinez-Heras E, Grussu F, Prados F, Solana E, Llufriu S. Diffusion-Weighted Imaging: Recent Advances and Applications. Semin Ultrasound CT MR 2021; 42:490-506. [PMID: 34537117 DOI: 10.1053/j.sult.2021.07.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Quantitative diffusion imaging techniques enable the characterization of tissue microstructural properties of the human brain "in vivo", and are widely used in neuroscientific and clinical contexts. In this review, we present the basic physical principles behind diffusion imaging and provide an overview of the current diffusion techniques, including standard and advanced techniques as well as their main clinical applications. Standard diffusion tensor imaging (DTI) offers sensitivity to changes in microstructure due to diseases and enables the characterization of single fiber distributions within a voxel as well as diffusion anisotropy. Nonetheless, its inability to represent complex intravoxel fiber topologies and the limited biological specificity of its metrics motivated the development of several advanced diffusion MRI techniques. For example, high-angular resolution diffusion imaging (HARDI) techniques enabled the characterization of fiber crossing areas and other complex fiber topologies in a single voxel and supported the development of higher-order signal representations aiming to decompose the diffusion MRI signal into distinct microstructure compartments. Biophysical models, often known by their acronym (e.g., CHARMED, WMTI, NODDI, DBSI, DIAMOND) contributed to capture the diffusion properties from each of such tissue compartments, enabling the computation of voxel-wise maps of axonal density and/or morphology that hold promise as clinically viable biomarkers in several neurological and neuroscientific applications; for example, to quantify tissue alterations due to disease or healthy processes. Current challenges and limitations of state-of-the-art models are discussed, including validation efforts. Finally, novel diffusion encoding approaches (e.g., b-tensor or double diffusion encoding) may increase the biological specificity of diffusion metrics towards intra-voxel diffusion heterogeneity in clinical settings, holding promise in neurological applications.
Collapse
Affiliation(s)
- Eloy Martinez-Heras
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Universitat de Barcelona. Barcelona. Spain.
| | - Francesco Grussu
- Radiomics Group, Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Queen Square MS Center, Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Ferran Prados
- Queen Square MS Center, Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK; Center for Medical Image Computing (CMIC), Department of Medical Physics and Bioengineering, University College London, London, UK; E-health Center, Universitat Oberta de Catalunya. Barcelona. Spain
| | - Elisabeth Solana
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Universitat de Barcelona. Barcelona. Spain
| | - Sara Llufriu
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Universitat de Barcelona. Barcelona. Spain
| |
Collapse
|