1
|
Han J, Zhuang K, Chen X, Xiao M, Liu Y, Song S, Gao X, Chen H. Connectivity-based neuromarker for children's inhibitory control ability and its relevance to body mass index. Child Neuropsychol 2024:1-18. [PMID: 38375872 DOI: 10.1080/09297049.2024.2314956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 01/11/2024] [Indexed: 02/21/2024]
Abstract
Preserving a normal body mass index (BMI) is crucial for the healthy growth and development of children. As a core aspect of executive functions, inhibitory control plays a pivotal role in maintaining a normal BMI, which is key to preventing issues of childhood obesity. By studying individual variations in inhibitory control performance and its associated connectivity-based neuromarker in a sample of primary school students (N = 64; 9-12 yr), we aimed to unravel the pathway through which inhibitory control impacts children's BMI. Utilizing resting-state functional MRI scans and a connectivity-based psychometric prediction framework, we found that enhanced inhibitory control abilities were primarily associated with increased functional connectivity in brain structures vital to executive functions, such as the superior frontal lobule, superior parietal lobule, and posterior cingulate cortex. Conversely, inhibitory control abilities displayed a negative relationship with functional connectivity originating from reward-related brain structures, such as the orbital frontal and ventral medial prefrontal lobes. Furthermore, we revealed that both inhibitory control and its corresponding neuromarker can moderate the association between food-related delayed gratification and BMI in children. However, only the neuromarker of inhibitory control maintained its moderating effect on children's future BMI, as determined in the follow-up after one year. Overall, our findings shed light on the potential mechanisms of how inhibitory control in children impacts BMI, highlighting the utility of the connectivity-based neuromarker of inhibitory control in the context of childhood obesity.
Collapse
Affiliation(s)
- Jinfeng Han
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Kaixiang Zhuang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Ximei Chen
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Mingyue Xiao
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Yong Liu
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Shiqing Song
- Faculty of Psychology, Shaanxi Normal University, Xi'an, China
| | - Xiao Gao
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Hong Chen
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
- Research Center of Psychology and Social Development, Faculty of Psychology, Southwest University, Chongqing, China
| |
Collapse
|
2
|
Richter M, Widera S, Malz F, Goltermann J, Steinmann L, Kraus A, Enneking V, Meinert S, Repple J, Redlich R, Leehr EJ, Grotegerd D, Dohm K, Kugel H, Bauer J, Arolt V, Dannlowski U, Opel N. Higher body weight-dependent neural activation during reward processing. Brain Imaging Behav 2023; 17:414-424. [PMID: 37012575 PMCID: PMC10435630 DOI: 10.1007/s11682-023-00769-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2023] [Indexed: 04/05/2023]
Abstract
Obesity is associated with alterations in brain structure and function, particularly in areas related to reward processing. Although brain structural investigations have demonstrated a continuous association between higher body weight and reduced gray matter in well-powered samples, functional neuroimaging studies have typically only contrasted individuals from the normal weight and obese body mass index (BMI) ranges with modest sample sizes. It remains unclear, whether the commonly found hyperresponsiveness of the reward circuit can (a) be replicated in well-powered studies and (b) be found as a function of higher body weight even below the threshold of clinical obesity. 383 adults across the weight spectrum underwent functional magnetic resonance imaging during a common card-guessing paradigm simulating monetary reward. Multiple regression was used to investigate the association of BMI and neural activation in the reward circuit. In addition, a one-way ANOVA model comparing three weight groups (normal weight, overweight, obese) was calculated. Higher BMI was associated with higher reward response in the bilateral insula. This association could no longer be found when participants with obesity were excluded from the analysis. The ANOVA revealed higher activation in obese vs. lean, but no difference between lean and overweight participants. The overactivation of reward-related brain areas in obesity is a consistent finding that can be replicated in large samples. In contrast to brain structural aberrations associated with higher body weight, the neurofunctional underpinnings of reward processing in the insula appear to be more pronounced in the higher body weight range.
Collapse
Affiliation(s)
- Maike Richter
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Department of Psychiatry, Jena University Hospital/Friedrich-Schiller-University Jena, Jena, Germany
| | - Sophia Widera
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Franziska Malz
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Janik Goltermann
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Lavinia Steinmann
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Anna Kraus
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Verena Enneking
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Susanne Meinert
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Institute for Translational Neuroscience, University of Münster, Münster, Germany
| | - Jonathan Repple
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Department for Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Ronny Redlich
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Department of Psychology, Martin-Luther University of Halle, Halle, Germany
- German Center for Mental Health (DZPG), Jena-Magdeburg-Halle, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany
| | - Elisabeth J Leehr
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Dominik Grotegerd
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Katharina Dohm
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Harald Kugel
- University Clinic for Radiology, University of Münster, Münster, Germany
| | - Jochen Bauer
- University Clinic for Radiology, University of Münster, Münster, Germany
| | - Volker Arolt
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Nils Opel
- Institute for Translational Psychiatry, University of Münster, Münster, Germany.
- Department of Psychiatry, Jena University Hospital/Friedrich-Schiller-University Jena, Jena, Germany.
- German Center for Mental Health (DZPG), Jena-Magdeburg-Halle, Germany.
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany.
| |
Collapse
|