1
|
Gaillard L, Tjaberinga MC, Dremmen MHG, Mathijssen IMJ, Vrooman HA. Brain volume in infants with metopic synostosis: Less white matter volume with an accelerated growth pattern in early life. J Anat 2024; 245:894-902. [PMID: 38417842 PMCID: PMC11547220 DOI: 10.1111/joa.14028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 03/01/2024] Open
Abstract
Metopic synostosis patients are at risk for neurodevelopmental disorders despite a negligible risk of intracranial hypertension. To gain insight into the underlying pathophysiology of metopic synostosis and associated neurodevelopmental disorders, we aimed to investigate brain volumes of non-syndromic metopic synostosis patients using preoperative MRI brain scans. MRI brain scans were processed with HyperDenseNet to calculate total intracranial volume (TIV), total brain volume (TBV), total grey matter volume (TGMV), total white matter volume (TWMV) and total cerebrospinal fluid volume (TCBFV). We compared global brain volumes of patients with controls corrected for age and sex using linear regression. Lobe-specific grey matter volumes were assessed in secondary analyses. We included 45 metopic synostosis patients and 14 controls (median age at MRI 0.56 years [IQR 0.36] and 1.1 years [IQR 0.47], respectively). We found no significant differences in TIV, TBV, TGMV or TCBFV in patients compared to controls. TWMV was significantly smaller in patients (-62,233 mm3 [95% CI = -96,968; -27,498], Holm-corrected p = 0.004), and raw data show an accelerated growth pattern of white matter in metopic synostosis patients. Grey matter volume analyses per lobe indicated increased cingulate (1378 mm3 [95% CI = 402; 2355]) and temporal grey matter (4747 [95% CI = 178; 9317]) volumes in patients compared to controls. To conclude, we found smaller TWMV with an accelerated white matter growth pattern in metopic synostosis patients, similar to white matter growth patterns seen in autism. TIV, TBV, TGMV and TCBFV were comparable in patients and controls. Secondary analyses suggest larger cingulate and temporal lobe volumes. These findings suggest a generalized intrinsic brain anomaly in the pathophysiology of neurodevelopmental disorders associated with metopic synostosis.
Collapse
Affiliation(s)
- L. Gaillard
- Department of Plastic and Reconstructive Surgery and Hand SurgeryErasmus MC—Sophia Children's Hospital, University Medical Center RotterdamRotterdamThe Netherlands
| | - M. C. Tjaberinga
- Department of Plastic and Reconstructive Surgery and Hand SurgeryErasmus MC—Sophia Children's Hospital, University Medical Center RotterdamRotterdamThe Netherlands
| | - M. H. G. Dremmen
- Department of Radiology and Nuclear MedicineErasmus MC—Sophia Children's Hospital, University Medical Center RotterdamRotterdamThe Netherlands
| | - I. M. J. Mathijssen
- Department of Plastic and Reconstructive Surgery and Hand SurgeryErasmus MC—Sophia Children's Hospital, University Medical Center RotterdamRotterdamThe Netherlands
| | - H. A. Vrooman
- Department of Radiology and Nuclear MedicineErasmus MC—Sophia Children's Hospital, University Medical Center RotterdamRotterdamThe Netherlands
| |
Collapse
|
2
|
Dhar D, Chaturvedi M, Sehwag S, Malhotra C, Udit, Saraf C, Chakrabarty M. Gray Matter Volume Correlates of Co-Occurring Depression in Autism Spectrum Disorder. J Autism Dev Disord 2024:10.1007/s10803-024-06602-0. [PMID: 39441477 DOI: 10.1007/s10803-024-06602-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2024] [Indexed: 10/25/2024]
Abstract
Autism Spectrum Disorder (ASD) involves neurodevelopmental syndromes with significant deficits in communication, motor behaviors, emotional and social comprehension. Often, individuals with ASD exhibit co-occurring depression characterized by a change in mood and diminished interest in previously enjoyable activities. Due to communicative challenges and a lack of appropriate assessments in this cohort, co-occurring depression can often go undiagnosed during routine clinical examinations and, thus, its management neglected. The literature on co-occurring depression in adults with ASD is limited. Therefore, understanding the neural basis of the co-occurring psychopathology of depression in ASD is crucial for identifying brain-based markers for its timely and effective management. Using structural MRI and phenotypic data from the Autism Brain Imaging Data Exchange (ABIDE II) repository, we examined the pattern of relationship regional grey matter volume (rGMV) has with co-occurring depression and autism severity within regions of a priori interest in adults with ASD (n = 44; age = 17-28 years). Further, we performed an exploratory analysis of the rGMV differences between ASD and matched typically developed (TD, n = 39; age = 18-31 years) samples. The severity of co-occurring depression correlated negatively with the rGMV of the right thalamus. Additionally, a significant interaction was evident between the severity of co-occurring depression and core ASD symptoms towards explaining the rGMV in the left cerebellum crus II. The results further the understanding of the neurobiological underpinnings of co-occurring depression in adults with ASD towards exploring neuroimaging-based biomarkers in the same cohort.
Collapse
Affiliation(s)
- Dolcy Dhar
- Department of Social Sciences and Humanities, Indraprastha Institute of Information Technology Delhi, New Delhi, 110020, India
| | - Manasi Chaturvedi
- Department of Social Sciences and Humanities, Indraprastha Institute of Information Technology Delhi, New Delhi, 110020, India
- Centre for Design and New Media, Indraprastha Institute of Information Technology Delhi, New Delhi, 110020, India
- School of Information, University of Texas at Austin, Texas 78712, USA
| | - Saanvi Sehwag
- Department of Social Sciences and Humanities, Indraprastha Institute of Information Technology Delhi, New Delhi, 110020, India
| | - Chehak Malhotra
- Department of Mathematics, Indraprastha Institute of Information Technology Delhi, New Delhi, 110020, India
| | - Udit
- Department of Computational Biology, Indraprastha Institute of Information Technology Delhi, New Delhi, 110020, India
| | - Chetan Saraf
- Department of Computer Science and Engineering, Indraprastha Institute of Information Technology Delhi, New Delhi, 110020, India
| | - Mrinmoy Chakrabarty
- Department of Social Sciences and Humanities, Indraprastha Institute of Information Technology Delhi, New Delhi, 110020, India.
- Centre for Design and New Media, Indraprastha Institute of Information Technology Delhi, New Delhi, 110020, India.
| |
Collapse
|
3
|
Wang Z, Zheng L, Yang L, Yin S, Yu S, Chen K, Zhang T, Wang H, Zhang T, Zhang Y. Structural and functional whole brain changes in autism spectrum disorder at different age stages. Eur Child Adolesc Psychiatry 2024:10.1007/s00787-024-02585-6. [PMID: 39382650 DOI: 10.1007/s00787-024-02585-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/28/2024] [Indexed: 10/10/2024]
Abstract
Autism spectrum disorder (ASD) is a developmental disorder involving regional changes and local neural disturbances. However, few studies have investigated the dysfunctional phenomenon across different age stages. This study explores the structural and functional brain changes across different developmental stages in individuals with ASD, focusing on childhood (6-12 years), adolescence (12-18 years), and adulthood (18 + years). Using a comprehensive set of neuroimaging metrics, including modulated and non-modulated voxel-based morphometry (VBM), regional homogeneity (ReHo), amplitude of low-frequency fluctuation (ALFF), and fractional ALFF (fALFF), we identified significant stage-specific alterations in both VBM and functional measurements. Our results reveal that ASD is associated with progressive and stage-specific abnormalities in brain structure and function, with distinct patterns emerging at each developmental stage. Specifically, we observed significant modulated VBM reductions in the precuneus, lentiform nucleus, and inferior parietal lobule, accompanied by increases in the midbrain and sub-gyral regions. Moreover, we observed unmodulated VBM increment in regions including lentiform nucleus and thalamus. Functionally, ReHo analyses demonstrated disrupted local synchronization in the medial frontal gyrus, while ALFF and fALFF metrics highlighted altered spontaneous brain activity in the sub-gyral and sub-lobar. Finally, correlation analyses revealed that stage-specific findings are closely linked to clinical social- and behavior-related scores, with VBM in the inferior parietal lobule and putamen as well as ReHo in supplemental motor area being significantly associated with restrictive repetitive behaviors in childhood. These findings underscore the importance of considering age-specific brain changes when studying ASD and suggest that targeted interventions may be necessary at different developmental stages.
Collapse
Affiliation(s)
- Zedong Wang
- Microecology Research Center, Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou, China
- School of Life Science and Technology, High Field Magnetic Resonance Brain Imaging Laboratory of Sichuan and Key Laboratory for Neuro Information, Ministry of Education, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Liqin Zheng
- School of Life Science and Technology, High Field Magnetic Resonance Brain Imaging Laboratory of Sichuan and Key Laboratory for Neuro Information, Ministry of Education, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Lijuan Yang
- Department of Paediatrics, Zhejiang Provincial People's Hospital Bijie Hospital (The First people's Hospital of Bijie), Bijie, Guizhou, China
| | - Shunjie Yin
- Mental Health Education Center, School of Science, Xihua University, Chengdu, China
| | - Shiqi Yu
- Mental Health Education Center, School of Science, Xihua University, Chengdu, China
| | - Kai Chen
- Microecology Research Center, Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Mental Health Education Center, School of Science, Xihua University, Chengdu, China
| | - Tao Zhang
- School of Life Science and Technology, High Field Magnetic Resonance Brain Imaging Laboratory of Sichuan and Key Laboratory for Neuro Information, Ministry of Education, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Hesong Wang
- Microecology Research Center, Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tao Zhang
- Microecology Research Center, Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Mental Health Education Center, School of Science, Xihua University, Chengdu, China.
| | - Yong Zhang
- Microecology Research Center, Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
4
|
Zhou D, Hua T, Tang H, Yang R, Huang L, Gong Y, Zhang L, Tang G. Gender and age related brain structural and functional alterations in children with autism spectrum disorder. Cereb Cortex 2024; 34:bhae283. [PMID: 38997211 DOI: 10.1093/cercor/bhae283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 06/10/2024] [Indexed: 07/14/2024] Open
Abstract
To explore the effects of age and gender on the brain in children with autism spectrum disorder using magnetic resonance imaging. 185 patients with autism spectrum disorder and 110 typically developing children were enrolled. In terms of gender, boys with autism spectrum disorder had increased gray matter volumes in the insula and superior frontal gyrus and decreased gray matter volumes in the inferior frontal gyrus and thalamus. The brain regions with functional alterations are mainly distributed in the cerebellum, anterior cingulate gyrus, postcentral gyrus, and putamen. Girls with autism spectrum disorder only had increased gray matter volumes in the right cuneus and showed higher amplitude of low-frequency fluctuation in the paracentral lobule, higher regional homogeneity and degree centrality in the calcarine fissure, and greater right frontoparietal network-default mode network connectivity. In terms of age, preschool-aged children with autism spectrum disorder exhibited hypo-connectivity between and within auditory network, somatomotor network, and visual network. School-aged children with autism spectrum disorder showed increased gray matter volumes in the rectus gyrus, superior temporal gyrus, insula, and suboccipital gyrus, as well as increased amplitude of low-frequency fluctuation and regional homogeneity in the calcarine fissure and precentral gyrus and decreased in the cerebellum and anterior cingulate gyrus. The hyper-connectivity between somatomotor network and left frontoparietal network and within visual network was found. It is essential to consider the impact of age and gender on the neurophysiological alterations in autism spectrum disorder children when analyzing changes in brain structure and function.
Collapse
Affiliation(s)
- Di Zhou
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Ting Hua
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Huan Tang
- Department of Radiology, Huadong Hospital of Fudan University, Shanghai 200040, China
| | - Rong Yang
- Department of Pediatrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Linsheng Huang
- Department of Pediatrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yujiao Gong
- Department of Pediatrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Lin Zhang
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Guangyu Tang
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
- Department of Radiology, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai 201103, China
| |
Collapse
|
5
|
Duan K, Eyler L, Pierce K, Lombardo MV, Datko M, Hagler DJ, Taluja V, Zahiri J, Campbell K, Barnes CC, Arias S, Nalabolu S, Troxel J, Ji P, Courchesne E. Differences in regional brain structure in toddlers with autism are related to future language outcomes. Nat Commun 2024; 15:5075. [PMID: 38871689 PMCID: PMC11176156 DOI: 10.1038/s41467-024-48952-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/20/2024] [Indexed: 06/15/2024] Open
Abstract
Language and social symptoms improve with age in some autistic toddlers, but not in others, and such outcome differences are not clearly predictable from clinical scores alone. Here we aim to identify early-age brain alterations in autism that are prognostic of future language ability. Leveraging 372 longitudinal structural MRI scans from 166 autistic toddlers and 109 typical toddlers and controlling for brain size, we find that, compared to typical toddlers, autistic toddlers show differentially larger or thicker temporal and fusiform regions; smaller or thinner inferior frontal lobe and midline structures; larger callosal subregion volume; and smaller cerebellum. Most differences are replicated in an independent cohort of 75 toddlers. These brain alterations improve accuracy for predicting language outcome at 6-month follow-up beyond intake clinical and demographic variables. Temporal, fusiform, and inferior frontal alterations are related to autism symptom severity and cognitive impairments at early intake ages. Among autistic toddlers, brain alterations in social, language and face processing areas enhance the prediction of the child's future language ability.
Collapse
Affiliation(s)
- Kuaikuai Duan
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92037, USA.
| | - Lisa Eyler
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, 92093, USA
- VISN 22 Mental Illness Research, Education, and Clinical Center, VA San Diego Healthcare System, San Diego, CA, 92161, USA
| | - Karen Pierce
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Michael V Lombardo
- Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, 38068, Italy
| | - Michael Datko
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Donald J Hagler
- Center for Multimodal Imaging and Genetics, Department of Radiology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Vani Taluja
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Javad Zahiri
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Kathleen Campbell
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Cynthia Carter Barnes
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Steven Arias
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Srinivasa Nalabolu
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Jaden Troxel
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Peng Ji
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Eric Courchesne
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92037, USA.
| |
Collapse
|
6
|
Otsuka Y, Nakai R, Shizawa M, Itakura S, Sato A, Abe N. Brain structure variation and individual differences in theory of mind among older adults. AGING BRAIN 2024; 5:100115. [PMID: 38596457 PMCID: PMC11002304 DOI: 10.1016/j.nbas.2024.100115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/12/2024] [Accepted: 03/28/2024] [Indexed: 04/11/2024] Open
Abstract
The theory of mind (ToM) is not substantially influenced by aging, suggesting the emergence of various compensatory mechanisms. To identify brain regions subserving ToM in older adults, we investigated the associations of individual differences in brain structure with performance on the Reading the Mind in the Eyes Test (RMET), a widely used measure of ToM, using voxel-based morphometry (VBM) and tract-based spatial statistics (TBSS). In contrast to findings obtained from young adults, where multiple cortical regions are implicated in ToM, VBM analysis revealed a significant positive correlation between RMET score and gray matter (GM) volume only in the right middle temporal gyrus, a region implicated in social cognition. Alternatively, TBSS revealed significant positive correlations between RMET score and the fractional anisotropy (FA) values in widespread white matter (WM) tracts, including the bilateral uncinate fasciculus, a region previously linked to RMET performance in young adults. We speculate that individual differences in WM integrity are strong influences on ToM among older adults, whereas the impact of individual differences in GM volumes is relatively limited.
Collapse
Affiliation(s)
- Yuki Otsuka
- Faculty of Psychology, Otemon Gakuin University, Ibaraki 567-8502, Japan
- Center for Baby Science, Doshisha University, Kizugawa 619-0225, Japan
| | - Ryusuke Nakai
- Institute for the Future of Human Society, Kyoto University, Kyoto 606-8501, Japan
| | - Miho Shizawa
- School of Nursing, Kyoto Prefectural University of Medicine, Kyoto 602-0857, Japan
| | - Shoji Itakura
- Center for Baby Science, Doshisha University, Kizugawa 619-0225, Japan
| | - Ayumi Sato
- Faculty of Human Sciences, Shimane University, Matsue 690-8504, Japan
| | - Nobuhito Abe
- Institute for the Future of Human Society, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
7
|
Li L, Jiang J, Wu B, Lin J, Roberts N, Sweeney JA, Gong Q, Jia Z. Distinct gray matter abnormalities in children/adolescents and adults with history of childhood maltreatment. Neurosci Biobehav Rev 2023; 153:105376. [PMID: 37643682 DOI: 10.1016/j.neubiorev.2023.105376] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 07/20/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023]
Abstract
Gray matter (GM) abnormalities have been reported in both adults and children/adolescents with histories of childhood maltreatment (CM). A comparison of effects in youth and adulthood may be informative regarding life-span effects of CM. Voxel-wise meta-analyses of whole-brain voxel-based morphometry studies were conducted in all datasets and age-based subgroups respectively, followed by a quantitative comparison of the subgroups. Thirty VBM studies (31 datasets) were included. The pooled meta-analysis revealed increased GM in left supplementary motor area, and reduced GM in bilateral cingulate/paracingulate gyri, left occipital lobe, and right middle frontal gyrus in maltreated individuals compared to the controls. Maltreatment-exposed youth showed less GM in the cerebellum, and greater GM in bilateral middle cingulate/paracingulate gyri and bilateral visual cortex than maltreated adults. Opposite GM alterations in bilateral middle cingulate/paracingulate gyri were found in maltreatment-exposed adults (decreased) and children/adolescents (increased). Our findings demonstrate different patterns of GM changes in youth closer to maltreatment events than those seen later in life, suggesting detrimental effects of CM on the developmental trajectory of brain structure.
Collapse
Affiliation(s)
- Lei Li
- Huaxi MR Research Center (HMRRC), Departments of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Jing Jiang
- Huaxi MR Research Center (HMRRC), Departments of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Functional and Molecular Imaging Key Laboratory of Sichuan University, Chengdu, China; Department of Radiology, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, China
| | - Baolin Wu
- Huaxi MR Research Center (HMRRC), Departments of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Jinping Lin
- Huaxi MR Research Center (HMRRC), Departments of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Neil Roberts
- The Queens Medical Research Institute (QMRI), School of Clinical Sciences, University of Edinburgh, Edinburgh, UK
| | - John A Sweeney
- Huaxi MR Research Center (HMRRC), Departments of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Departments of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China.
| | - Zhiyun Jia
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China; Functional and Molecular Imaging Key Laboratory of Sichuan University, Chengdu, China; Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
8
|
O’Hearn K, Lynn A. Age differences and brain maturation provide insight into heterogeneous results in autism spectrum disorder. Front Hum Neurosci 2023; 16:957375. [PMID: 36819297 PMCID: PMC9934814 DOI: 10.3389/fnhum.2022.957375] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/07/2022] [Indexed: 02/05/2023] Open
Abstract
Studies comparing individuals with autism spectrum disorder (ASD) to typically developing (TD) individuals have yielded inconsistent results. These inconsistencies reflect, in part, atypical trajectories of development in children and young adults with ASD compared to TD peers. These different trajectories alter group differences between children with and without ASD as they age. This paper first summarizes the disparate trajectories evident in our studies and, upon further investigation, laboratories using the same recruiting source. These studies indicated that cognition improves into adulthood typically, and is associated with the maturation of striatal, frontal, and temporal lobes, but these age-related improvements did not emerge in the young adults with ASD. This pattern - of improvement into adulthood in the TD group but not in the group with ASD - occurred in both social and non-social tasks. However, the difference between TD and ASD trajectories was most robust on a social task, face recognition. While tempting to ascribe this uneven deficit to the social differences in ASD, it may also reflect the prolonged typical development of social cognitive tasks such as face recognition into adulthood. This paper then reviews the evidence on age-related and developmental changes from other studies on ASD. The broader literature also suggests that individuals with ASD do not exhibit the typical improvements during adolescence on skills important for navigating the transition to adulthood. These skills include execution function, social cognition and communication, and emotional recognition and self-awareness. Relatedly, neuroimaging studies indicate arrested or atypical brain maturation in striatal, frontal, and temporal regions during adolescence in ASD. This review not only highlights the importance of a developmental framework and explicit consideration of age and/or stage when studying ASD, but also the potential importance of adolescence on outcomes in ASD.
Collapse
Affiliation(s)
- Kirsten O’Hearn
- Department of Physiology and Pharmacology, Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, NC, United States,*Correspondence: Kirsten O’Hearn,
| | - Andrew Lynn
- Department of Special Education, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
9
|
Duan K, Eyler L, Pierce K, Lombardo M, Datko M, Hagler D, Taluja V, Zahiri J, Campbell K, Barnes C, Arias S, Nalabolu S, Troxel J, Courchesne E. Language, Social, and Face Regions Are Affected in Toddlers with Autism and Predictive of Language Outcome. RESEARCH SQUARE 2023:rs.3.rs-2451837. [PMID: 36778379 PMCID: PMC9915795 DOI: 10.21203/rs.3.rs-2451837/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Identifying prognostic early brain alterations is crucial for autism spectrum disorder (ASD). Leveraging structural MRI data from 166 ASD and 109 typical developing (TD) toddlers and controlling for brain size, we found that, compared to TD, ASD toddlers showed larger or thicker lateral temporal regions; smaller or thinner frontal lobe and midline structures; larger callosal subregion volume; and smaller cerebellum. Most of these differences were replicated in an independent cohort of 38 ASD and 37 TD toddlers. Moreover, the identified brain alterations were related to ASD symptom severity and cognitive impairments at intake, and, remarkably, they improved the accuracy for predicting later language outcome beyond intake clinical and demographic variables. In summary, brain regions involved in language, social, and face processing were altered in ASD toddlers. These early-age brain alterations may be the result of dysregulation in multiple neural processes and stages and are promising prognostic biomarkers for future language ability.
Collapse
Affiliation(s)
- Kuaikuai Duan
- Georgia Institute of Technology, Emory University, Georgia State University
| | | | | | | | | | - Donald Hagler
- Department of Radiology, School of Medicine, University of California San Diego, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Vandiver MS, Roy B, Mahmud F, Lavretsky H, Kumar R. Functional comorbidities and brain tissue changes before and after lung transplant in adults. Front Cell Neurosci 2022; 16:1015568. [PMID: 36531134 PMCID: PMC9755201 DOI: 10.3389/fncel.2022.1015568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2024] Open
Abstract
Background Adults undergoing lung transplant, as a lifesaving treatment for end stage lung disease, exhibit high levels of peri-operative neurocognitive dysfunction in multiple domains, including delirium, cognition, and autonomic deficits. These complications impact healthcare costs, quality of life, and patient outcomes. Post-operative symptoms likely result from loss of brain tissue integrity in sites mediating such regulatory functions. Our aim in this study was to examine peri-operative neurocognitive dysfunction and brain tissue changes after lung transplant in adults. Methods We retrospectively examined the UCLA lung transplant database to identify 114 lung transplant patients with pre-operative clinical and neurocognitive data. Of 114 patients, 9 lung transplant patients had pre- and post-transplant brain magnetic resonance imaging. Clinical and neurocognitive data were summarized for all subjects, and brain tissue volume changes, using T1-weighted images, before and after transplant were examined. T1-weighted images were partitioned into gray matter (GM)-tissue type, normalized to a common space, smoothed, and the smoothed GM-volume maps were compared between pre- and post-transplant (paired t-tests; covariate, age; SPM12, p < 0.005). Results Increased comorbidities, including the diabetes mellitus (DM), hypertension, kidney disease, and sleep disordered breathing, as well as higher rates of neurocognitive dysfunction were observed in the lung transplant patients, with 41% experiencing post-operative delirium, 49% diagnosed with a mood disorder, and 25% of patients diagnosed with cognitive deficits, despite incomplete documentation. Similarly, high levels of delirium, cognitive dysfunction, and mood disorder were noted in a subset of patients used for brain MRI evaluation. Significantly decreased GM volumes emerged in multiple brain regions, including the frontal and prefrontal, parietal, temporal, bilateral anterior cingulate and insula, putamen, and cerebellar cortices. Conclusion Adults undergoing lung transplant often show significant pre-operative comorbidities, including diabetes mellitus, hypertension, and chronic kidney disease, as well as neurocognitive dysfunction. In addition, patients with lung transplant show significant brain tissue changes in regions that mediate cognition, autonomic, and mood functions. The findings indicate a brain structural basis for many enhanced post-operative symptoms and suggest a need for brain tissue protection in adults undergoing lung transplant to improve health outcomes.
Collapse
Affiliation(s)
- Matthew Scott Vandiver
- Department of Anesthesiology and Perioperative Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Bhaswati Roy
- Department of Anesthesiology and Perioperative Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Fahim Mahmud
- Department of Anesthesiology and Perioperative Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Helen Lavretsky
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
| | - Rajesh Kumar
- Department of Anesthesiology and Perioperative Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Radiological Sciences, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States
- David Geffen School of Medicine, Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|