1
|
Leehr EJ, Seeger FR, Böhnlein J, Gathmann B, Straube T, Roesmann K, Junghöfer M, Schwarzmeier H, Siminski N, Herrmann MJ, Langhammer T, Goltermann J, Grotegerd D, Meinert S, Winter NR, Dannlowski U, Lueken U. Association between resting-state connectivity patterns in the defensive system network and treatment response in spider phobia-a replication approach. Transl Psychiatry 2024; 14:137. [PMID: 38453896 PMCID: PMC10920691 DOI: 10.1038/s41398-024-02799-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 03/09/2024] Open
Abstract
Although highly effective on average, exposure-based treatments do not work equally well for all patients with anxiety disorders. The identification of pre-treatment response-predicting patient characteristics may enable patient stratification. Preliminary research highlights the relevance of inhibitory fronto-limbic networks as such. We aimed to identify pre-treatment neural signatures differing between exposure treatment responders and non-responders in spider phobia and to validate results through rigorous replication. Data of a bi-centric intervention study comprised clinical phenotyping and pre-treatment resting-state functional connectivity (rsFC) data of n = 79 patients with spider phobia (discovery sample) and n = 69 patients (replication sample). RsFC data analyses were accomplished using the Matlab-based CONN-toolbox with harmonized analyses protocols at both sites. Treatment response was defined by a reduction of >30% symptom severity from pre- to post-treatment (Spider Phobia Questionnaire Score, primary outcome). Secondary outcome was defined by a reduction of >50% in a Behavioral Avoidance Test (BAT). Mean within-session fear reduction functioned as a process measure for exposure. Compared to non-responders and pre-treatment, results in the discovery sample seemed to indicate that responders exhibited stronger negative connectivity between frontal and limbic structures and were characterized by heightened connectivity between the amygdala and ventral visual pathway regions. Patients exhibiting high within-session fear reduction showed stronger excitatory connectivity within the prefrontal cortex than patients with low within-session fear reduction. Whereas these results could be replicated by another team using the same data (cross-team replication), cross-site replication of the discovery sample findings in the independent replication sample was unsuccessful. Results seem to support negative fronto-limbic connectivity as promising ingredient to enhance response rates in specific phobia but lack sufficient replication. Further research is needed to obtain a valid basis for clinical decision-making and the development of individually tailored treatment options. Notably, future studies should regularly include replication approaches in their protocols.
Collapse
Affiliation(s)
- Elisabeth J Leehr
- Institute for Translational Psychiatry, University of Münster, Münster, Germany.
| | - Fabian R Seeger
- Department of Psychiatry, Psychosomatics, and Psychotherapy, Center for Mental Health, University Hospital of Würzburg, Würzburg, Germany
- Department of General Psychiatry, University of Heidelberg, Heidelberg, Germany
| | - Joscha Böhnlein
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Bettina Gathmann
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Münster, Germany
| | - Thomas Straube
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Münster, Germany
- Otto-Creutzfeld Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Kati Roesmann
- Otto-Creutzfeld Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
- Institute for Clinical Psychology and Psychotherapy, University of Siegen, Siegen, Germany
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany
- Institute of Psychology, Unit of Clinical Psychology and Psychotherapy in Childhood and Adolescence, University of Osnabrück, Osnabrück, Germany
| | - Markus Junghöfer
- Otto-Creutzfeld Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany
| | - Hanna Schwarzmeier
- Department of Psychiatry, Psychosomatics, and Psychotherapy, Center for Mental Health, University Hospital of Würzburg, Würzburg, Germany
| | - Niklas Siminski
- Department of Psychiatry, Psychosomatics, and Psychotherapy, Center for Mental Health, University Hospital of Würzburg, Würzburg, Germany
| | - Martin J Herrmann
- Department of Psychiatry, Psychosomatics, and Psychotherapy, Center for Mental Health, University Hospital of Würzburg, Würzburg, Germany
| | - Till Langhammer
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Janik Goltermann
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Dominik Grotegerd
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Susanne Meinert
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Nils R Winter
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Ulrike Lueken
- Department of Psychiatry, Psychosomatics, and Psychotherapy, Center for Mental Health, University Hospital of Würzburg, Würzburg, Germany
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Mental Health (DZPG), partner site Berlin/Potsdam, Berlin, Germany
| |
Collapse
|
2
|
Klein Z, Shner-Livne G, Danon-Kraun S, Ginat-Frolich R, Pine DS, Shechner T. Enhanced late positive potential to conditioned threat cue during delayed extinction in anxious youth. J Child Psychol Psychiatry 2024; 65:215-228. [PMID: 37157184 DOI: 10.1111/jcpp.13814] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/14/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND Deficits in threat learning relate to anxiety symptoms. Since several anxiety disorders arise in adolescence, impaired adolescent threat learning could contribute to adolescent changes in risk for anxiety. This study compared threat learning among anxious and non-anxious youth using self-reports, peripheral psychophysiology measures, and event-related potentials. Because exposure therapy, the first-line treatment for anxiety disorders, is largely based on principles of extinction learning, the study also examined the link between extinction learning and treatment outcomes among anxious youth. METHODS Clinically anxious (n = 28) and non-anxious (n = 33) youth completed differential threat acquisition and immediate extinction. They returned to the lab a week later to complete a threat generalization test and a delayed extinction task. Following these two experimental visits, anxious youth received exposure therapy for 12 weeks. RESULTS Anxious as compared to non-anxious youth demonstrated elevated cognitive and physiological responses across acquisition and immediate extinction learning, as well as greater threat generalization. In addition, anxious youth showed enhanced late positive potential response to the conditioned threat cue compared to the safety cue during delayed extinction. Finally, aberrant neural response during delayed extinction was associated with poorer treatment outcomes. CONCLUSIONS The study emphasizes differences between anxious and non-anxious youth in threat learning processes and provides preliminary support for a link between neural processing during delayed extinction and exposure-based treatment outcome in pediatric anxiety.
Collapse
Affiliation(s)
- Zohar Klein
- School of Psychological Sciences and the Integrated Brain and Behavior Research Center, University of Haifa, Haifa, Israel
| | - Gil Shner-Livne
- School of Psychological Sciences and the Integrated Brain and Behavior Research Center, University of Haifa, Haifa, Israel
| | - Shani Danon-Kraun
- School of Psychological Sciences and the Integrated Brain and Behavior Research Center, University of Haifa, Haifa, Israel
| | - Rivkah Ginat-Frolich
- School of Psychological Sciences and the Integrated Brain and Behavior Research Center, University of Haifa, Haifa, Israel
| | - Daniel S Pine
- National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Tomer Shechner
- School of Psychological Sciences and the Integrated Brain and Behavior Research Center, University of Haifa, Haifa, Israel
| |
Collapse
|
3
|
Roesmann K, Leehr EJ, Böhnlein J, Gathmann B, Herrmann MJ, Junghöfer M, Schwarzmeier H, Seeger FR, Siminski N, Straube T, Dannlowski U, Lueken U. Mechanisms of action underlying virtual reality exposure treatment in spider phobia: Pivotal role of within-session fear reduction. J Anxiety Disord 2023; 100:102790. [PMID: 37879242 DOI: 10.1016/j.janxdis.2023.102790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 09/07/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023]
Abstract
Although virtual-reality exposure treatment (VRET) for anxiety disorders is an efficient treatment option for specific phobia, mechanisms of action for immediate and sustained treatment response need to be elucidated. Towards this aim, core therapy process variables were assessed as predictors for short- and long-term VR treatment outcomes. In a bi-centric study, n = 186 patients with spider phobia completed a baseline-assessment, a one-session VRET, a post-therapy assessment, and a 6-month-follow-up assessment (ClinicalTrials.gov, ID: NCT03208400). Short- and long-term outcomes regarding self-reported symptoms in the spider phobia questionnaire (SPQ) and final patient-spider distance in the behavioral avoidance test (BAT) were predicted via logistic regression models with the corresponding baseline score, age, initial fear activation, within-session fear reduction and fear expectancy violation as predictors. To predict long-term remission status at 6-month-follow-up, dimensional short-term changes in the SPQ and BAT were additionally included. Higher within-session fear reductions predicted better treatment outcomes (long-term SPQ; short- and long-term BAT). Lower initial fear activation tended to be associated with better long-term outcomes (SPQ), while fear expectancy violation was not associated with any outcome measure. Short-term change in the SPQ predicted remission status. Findings highlight that in VRET for spider phobia, the experience of fear reduction is central for short- and long-term treatment success and should be focused by therapists.
Collapse
Affiliation(s)
- Kati Roesmann
- Institute for Clinical Psychology and Psychotherapy, University of Siegen, Germany; Institute for Biomagnetism and Biosignalanalysis, University of Münster, Germany; Institute for Psychology, Unit for Clinical Psychology and Psychotherapy in Childhood and Adolescence, University of Osnabrück, Germany
| | - Elisabeth J Leehr
- Institute for Translational Psychiatry, University of Münster, Germany.
| | - Joscha Böhnlein
- Institute for Translational Psychiatry, University of Münster, Germany
| | - Bettina Gathmann
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Germany
| | - Martin J Herrmann
- Department of Psychiatry, Psychosomatics, and Psychotherapy, Center for Mental Health, University Hospital of Würzburg, Germany
| | - Markus Junghöfer
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Germany; Otto-Creutzfeld Center for Cognitive and Behavioral Neuroscience, University of Münster, Germany
| | - Hanna Schwarzmeier
- Department of Psychiatry, Psychosomatics, and Psychotherapy, Center for Mental Health, University Hospital of Würzburg, Germany
| | - Fabian R Seeger
- Department of Psychiatry, Psychosomatics, and Psychotherapy, Center for Mental Health, University Hospital of Würzburg, Germany; Department of General Psychiatry, Centre for Psychosocial Medicine, University of Heidelberg, Heidelberg, Germany
| | - Niklas Siminski
- Department of Psychiatry, Psychosomatics, and Psychotherapy, Center for Mental Health, University Hospital of Würzburg, Germany
| | - Thomas Straube
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Germany
| | - Ulrike Lueken
- Department of Psychiatry, Psychosomatics, and Psychotherapy, Center for Mental Health, University Hospital of Würzburg, Germany; Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
4
|
Roesmann K, Wessing I, Kraß S, Leehr EJ, Klucken T, Straube T, Junghöfer M. Developmental aspects of fear generalization - A MEG study on neurocognitive correlates in adolescents versus adults. Dev Cogn Neurosci 2022; 58:101169. [PMID: 36356485 PMCID: PMC9649997 DOI: 10.1016/j.dcn.2022.101169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 10/16/2022] [Accepted: 10/27/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Fear generalization is pivotal for the survival-promoting avoidance of potential danger, but, if too pronounced, it promotes pathological anxiety. Similar to adult patients with anxiety disorders, healthy children tend to show overgeneralized fear responses. OBJECTIVE This study aims to investigate neuro-developmental aspects of fear generalization in adolescence - a critical age for the development of anxiety disorders. METHODS We compared healthy adolescents (14-17 years) with healthy adults (19-34 years) regarding their fear responses towards tilted Gabor gratings (conditioned stimuli, CS; and slightly differently titled generalization stimuli, GS). In the conditioning phase, CS were paired (CS+) or remained unpaired (CS-) with an aversive stimulus (unconditioned stimuli, US). In the test phase, behavioral, peripheral and neural responses to CS and GS were captured by fear- and UCS expectancy ratings, a perceptual discrimination task, pupil dilation and source estimations of event-related magnetic fields. RESULTS Closely resembling adults, adolescents showed robust generalization gradients of fear ratings, pupil dilation, and estimated neural source activity. However, in the UCS expectancy ratings, adolescents revealed shallower generalization gradients indicating overgeneralization. Moreover, adolescents showed stronger visual cortical activity after as compared to before conditioning to all stimuli. CONCLUSION Various aspects of fear learning and generalization appear to be mature in healthy adolescents. Yet, cognitive aspects might show a slower course of development.
Collapse
Affiliation(s)
- Kati Roesmann
- Institute for Clinical Psychology and Psychotherapy, University of Siegen, Obergraben 23, 57072 Siegen, Germany; Institute for Biomagnetism and Biosignalanalysis, University Hospital Münster, Malmedyweg 15, 48149 Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Fliednerstr. 21, 48149 Muenster, Germany.
| | - Ida Wessing
- Institute for Biomagnetism and Biosignalanalysis, University Hospital Münster, Malmedyweg 15, 48149 Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Fliednerstr. 21, 48149 Muenster, Germany; Department of Child and Adolescent Psychiatry, University Hospital Muenster, Schmeddingstraße 50, 48149 Muenster, Germany
| | - Sophia Kraß
- Institute for Biomagnetism and Biosignalanalysis, University Hospital Münster, Malmedyweg 15, 48149 Münster, Germany
| | - Elisabeth J Leehr
- Institute for Translational Psychiatry, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A9a, 48149 Münster, Germany
| | - Tim Klucken
- Institute for Clinical Psychology and Psychotherapy, University of Siegen, Obergraben 23, 57072 Siegen, Germany
| | - Thomas Straube
- Institute of Medical Psychology and Systems Neuroscience, University Hospital Münster, Von-Esmarch-Str. 52, 48149 Münster, Germany
| | - Markus Junghöfer
- Institute for Biomagnetism and Biosignalanalysis, University Hospital Münster, Malmedyweg 15, 48149 Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Fliednerstr. 21, 48149 Muenster, Germany
| |
Collapse
|