1
|
Xue S, Shen X, Zhang D, Sang Z, Long Q, Song S, Wu J. Unveiling Frequency-Specific Microstate Correlates of Anxiety and Depression Symptoms. Brain Topogr 2024; 38:12. [PMID: 39499403 DOI: 10.1007/s10548-024-01082-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/25/2024] [Indexed: 11/07/2024]
Abstract
Electroencephalography (EEG) microstates are canonical voltage topographies that reflect the temporal dynamics of brain networks on a millisecond time scale. Abnormalities in broadband microstate parameters have been observed in subjects with psychiatric symptoms, indicating their potential as clinical biomarkers. Considering distinct information provided by specific frequency bands of EEG, we hypothesized that microstates in decomposed frequency bands could provide a more detailed depiction of the underlying neuropathological mechanism. In this study, with a large open access resting-state dataset (n = 203), we examined the properties of frequency-specific microstates and their relationship with anxiety and depression symptoms. We conducted clustering on EEG topographies in decomposed frequency bands (delta, theta, alpha and beta), and determined the number of clusters with a meta-criterion. Microstate parameters, including global explained variance (GEV), duration, coverage, occurrence and transition probability, were calculated for eyes-open and eyes-closed states, respectively. Their ability to predict the severity of depression and anxiety symptoms were systematically identified by correlation, regression and classification analyses. Distinct microstate patterns were observed across different frequency bands. Microstate parameters in the alpha band held the best predictive power for emotional symptoms. Microstates B (GEV, coverage) and parieto-central maximum microstate E (coverage, occurrence, transitions from B to E) in the alpha band exhibited significant correlations with depression and anxiety, respectively. Microstate parameters of the alpha band achieved predictive R-square of 0.100 for anxiety scores, which is much higher than those of broadband (R-square = -0.026, p < 0.01). Similar results were found in classification of participants with high and low anxiety symptom scores (68% accuracy in alpha vs. 52% in broadband). These results suggested the value of frequency-specific microstates in predicting emotional symptoms.
Collapse
Affiliation(s)
- Siyang Xue
- School of Clinical Medicine, Tsinghua University, Beijing, 100084, China
- Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, 100084, China
| | - Xinke Shen
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Dan Zhang
- Department of Psychology, Tsinghua University, Beijing, 100084, China
- Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, 100084, China
| | - Zhenhua Sang
- School of Clinical Medicine, Tsinghua University, Beijing, 100084, China
| | - Qiting Long
- Department of Neurology, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China
| | - Sen Song
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China.
- Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, 100084, China.
| | - Jian Wu
- School of Clinical Medicine, Tsinghua University, Beijing, 100084, China.
- Department of Neurology, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China.
| |
Collapse
|
2
|
Teng C, Cong L, Tian Q, Liu K, Cheng S, Zhang T, Dang W, Hou Y, Ma J, Hui D, Hu W. EEG microstate in people with different degrees of fear of heights during virtual high-altitude exposure. Brain Res Bull 2024; 218:111112. [PMID: 39486463 DOI: 10.1016/j.brainresbull.2024.111112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/11/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Previous neuroimaging studies based on electroencephalography (EEG) microstate analysis have identified abnormal neural electric activity in patients with psychiatric diseases. However, the microstate information in individuals with different degrees of fear of heights (FoH) remains unknown so far. The aim of the study was therefore to explore the changes of EEG microstate characteristics in different FoH individuals when exposed to high-altitude stimulated by virtual reality (VR). First, acrophobia questionnaire (AQ) before the experiment and 32-channel EEG signals under the virtual high-altitude exposure were collected from 69 subjects. Second, each subject was divided into one of three levels of FoH including no-FoH, mild or moderate FoH (m-FoH) and severe FoH (s-FoH) groups according to their AQ scores. Third, using microstate analysis, we transformed EEG data into sequences of characteristic topographic maps and computed EEG microstate features including microstate basic parameters, microstate sequences complexity and microstate energy. Finally, the extracted features as inputs were sent to train and test an support vector machine (SVM) for classifying different FoH groups. The results demonstrated that five types of microstates (labeled as A, B, C, D and F) were identified across all subjects, of which microstates A-D resembled the four typical microstate classes and microstate F was a non-canonical microstate. Significantly decreased occurrence, coverage and duration of microstate F and transition probabilities from other microstates to microstate F in m-FoH and s-FoH groups were observed compared to no-FoH group. It was also demonstrated that both m-FoH and s-FoH groups showed a notable reduction in sample entropy and Lempel-Ziv complexity. Moreover, energies of microstate D for m-FoH group and microstate B for s-FoH group in right parietal, parietooccipital and occipital regions exhibited prominent decreases as comparison to people without FoH. But, no significant differences were found between m-FoH and s-FoH groups. Additionally, the results indicated that AQ-anxiety scores were negatively correlated with microstate basic metrics as well as microstate energy. For classification, the performance of SVM reached a relatively high accuracy of 89 % for distinguishing no-FoH from m-FoH. In summary, the findings highlight the alterations of EEG microstates in people with fear of heights induced by virtual high-altitude, reflecting potentially underlying abnormalities in the allocation of neural assemblies. Therefore, the combination of EEG microstate analysis and VR may be a potential valuable approach for the diagnosis of fear of heights.
Collapse
Affiliation(s)
- Chaolin Teng
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi, China
| | - Lin Cong
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi, China
| | - Qiumei Tian
- Department of Gastroenterology, The First Affiliated Hospital, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Ke Liu
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi, China
| | - Shan Cheng
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi, China
| | - Taihui Zhang
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi, China
| | - Weitao Dang
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi, China
| | - Yajing Hou
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi, China
| | - Jin Ma
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi, China.
| | - Duoduo Hui
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi, China.
| | - Wendong Hu
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
3
|
Deiber MP, Pointet Perizzolo VC, Moser DA, Vital M, Rusconi Serpa S, Ros T, Schechter DS. A biomarker of brain arousal mediates the intergenerational link between maternal and child post-traumatic stress disorder. J Psychiatr Res 2024; 177:305-313. [PMID: 39067254 DOI: 10.1016/j.jpsychires.2024.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/20/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
This study examined whether there is a biological basis in the child's resting brain activity for the intergenerational link between maternal interpersonal violence-related posttraumatic stress disorder (IPV-PTSD) and child subclinical symptoms. We used high-density EEG recordings to investigate the resting brain activity in a sample of 57 children, 34 from mothers with IPV-PTSD, and 23 from mothers without PTSD. These children were part of a prospective, longitudinal study focusing on the offspring of mothers with and without IPV-PTSD, reporting how the severity of a mother's IPV-PTSD can impact her child's emotional regulation and risk for developing mental illness. However, we had not yet looked into potential EEG biomarkers during resting state that might mediate and/or moderate effects of maternal IPV-PTSD severity on child mental health, and in particular the risk for PTSD. The alpha band spectral power as well as the aperiodic exponent of the power spectrum (PLE; power-law exponent) were examined as mediators of maternal IPV-PTSD and child PTSD. While there was no difference in alpha spectral power between the two groups, PLE was significantly reduced in children of mothers with IPV-PTSD compared to control children, indicating cortical hyper-arousal. Interestingly, child PLE was negatively correlated with the severity of maternal IPV-PTSD, suggesting an intergenerational interaction. This interpretation was reinforced by a negative correlation between child PLE and child PTSD symptoms. Finally, causal analyses using structural equation modelling indicated that child PLE mediated the relationship between maternal PTSD severity and child PTSD. Our observations suggest that maternal IPV-PTSD has an intergenerational impact on the child neurobehavioral development through a correlated abnormal marker of brain arousal (i.e. child PLE). These findings are potentially relevant to psychotherapy research and to the development of more effective psycho-neurobehavioral therapies (i.e. neurofeedback) among affected individuals.
Collapse
Affiliation(s)
- Marie-Pierre Deiber
- Department of Psychiatry, University of Geneva, Geneva, Switzerland; Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
| | | | - Dominik A Moser
- Institute of Psychology, University of Bern, Switzerland; University Service of Child and Adolescent Psychiatry, Lausanne University Medical Center, Switzerland
| | - Marylène Vital
- Child & Adolescent Psychiatry Service, University Hospitals of Geneva, Geneva, Switzerland
| | | | - Tomas Ros
- Department of Psychiatry, University of Geneva, Geneva, Switzerland; Department of Neuroscience, University of Geneva, Switzerland; CIBM, Center for Biomedical Imaging, Lausanne and Geneva, Switzerland
| | - Daniel S Schechter
- University Service of Child and Adolescent Psychiatry, Lausanne University Medical Center, Switzerland; Department of Psychiatry, Faculty of Biology & Medicine, University of Lausanne, Lausanne, Switzerland; Department of Child & Adolescent Psychiatry, Grossman School of Medicine, New York University, USA.
| |
Collapse
|
4
|
Tomescu MI, Papasteri C, Sofonea A, Berceanu AI, Carcea I. Personality Moderates Intra-Individual Variability in EEG Microstates and Spontaneous Thoughts. Brain Topogr 2024; 37:524-535. [PMID: 38038786 PMCID: PMC11199214 DOI: 10.1007/s10548-023-01019-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023]
Abstract
Variability in brain activity that persists after accounting for overt behavioral and physiological states is often considered noise and controlled as a covariate in research. However, studying intra-individual variability in brain function can provide valuable insights into the dynamic nature of the brain. To explore this, we conducted a study on 43 participants analyzing the EEG microstate dynamics and self-reported spontaneous mental activity during five-minute resting-state recordings on two separate days with a twenty days average delay between recordings. Our results showed that the associations between EEG microstates and spontaneous cognition significantly changed from one day to another. Moreover, microstate changes were associated with changes in spontaneous cognition. Specifically, inter-day changes in Verbal thoughts about Others and future Planning were positively related to bottom-up sensory network-related microstate changes and negatively associated with top-down, attention, and salience network-related microstates. In addition, we find that personality traits are related to inter-day changes in microstates and spontaneous thoughts. Specifically, extraversion, neuroticism, agreeableness, and openness to experience moderated the relationship between inter-day changes in EEG microstates and spontaneous thoughts. Our study provides valuable information on the dynamic changes in the EEG microstate-spontaneous cognition organization, which could be essential for developing interventions and treatments for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Miralena I Tomescu
- Department of Psychology, Faculty of Educational Sciences, University "Stefan cel Mare" of Suceava, Suceava, Romania.
- Departement of Research and Development, CINETic Center, National University of Theatre and Film "I.L. Caragiale", Bucharest, Romania.
- Department of Cognitive Sciences, Faculty of Psychology and Educational Sciences, University of Bucharest, Bucharest, Romania.
| | - Claudiu Papasteri
- Departement of Research and Development, CINETic Center, National University of Theatre and Film "I.L. Caragiale", Bucharest, Romania
- Department of Cognitive Sciences, Faculty of Psychology and Educational Sciences, University of Bucharest, Bucharest, Romania
| | - Alexandra Sofonea
- Departement of Research and Development, CINETic Center, National University of Theatre and Film "I.L. Caragiale", Bucharest, Romania
| | - Alexandru I Berceanu
- Departement of Research and Development, CINETic Center, National University of Theatre and Film "I.L. Caragiale", Bucharest, Romania
| | - Ioana Carcea
- Departement of Research and Development, CINETic Center, National University of Theatre and Film "I.L. Caragiale", Bucharest, Romania
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers Brain Health Institute, New Jersey, NJ, USA
| |
Collapse
|
5
|
Nazare K, Tomescu MI. Valence-specific EEG microstate modulations during self-generated affective states. Front Psychol 2024; 15:1300416. [PMID: 38855303 PMCID: PMC11160840 DOI: 10.3389/fpsyg.2024.1300416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 04/26/2024] [Indexed: 06/11/2024] Open
Abstract
Introduction This study aims to explore the temporal dynamics of brain networks involved in self-generated affective states, specifically focusing on modulating these states in both positive and negative valences. The overarching goal is to contribute to a deeper understanding of the neurodynamic patterns associated with affective regulation, potentially informing the development of biomarkers for therapeutic interventions in mood and anxiety disorders. Methods Utilizing EEG microstate analysis during self-generated affective states, we investigated the temporal dynamics of five distinct microstates across different conditions, including baseline resting state and self-generated states of positive valence (e.g., awe, contentment) and negative valence (e.g., anger, fear). Results The study revealed noteworthy modulations in microstate dynamics during affective states. Additionally, valence-specific mechanisms of spontaneous affective regulation were identified. Negative valence affective states were characterized by the heightened presence of attention-associated microstates and reduced occurrence of salience-related microstates during negative valence states. In contrast, positive valence affective states manifested a prevalence of microstates related to visual/autobiographical memory and a reduced presence of auditory/language-associated microstates compared to both baseline and negative valence states. Discussion This study contributes to the field by employing EEG microstate analysis to discern the temporal dynamics of brain networks involved in self-generated affective states. Insights from this research carry significant implications for understanding neurodynamic patterns in affective regulation. The identification of valence-specific modulations and mechanisms has potential applications in developing biomarkers for mood and anxiety disorders, offering novel avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Karina Nazare
- CINETic Center, Department of Research and Development, National University of Theatre and Film “I.L. Caragiale”, Bucharest, Romania
- Faculty of Automatic Control and Computers, POLITEHNICA University of Bucharest, Bucharest, Romania
| | - Miralena I. Tomescu
- CINETic Center, Department of Research and Development, National University of Theatre and Film “I.L. Caragiale”, Bucharest, Romania
- Department of Psychology, Faculty of Educational Sciences, University “Stefan cel Mare” of Suceava, Suceava, Romania
| |
Collapse
|
6
|
Carbone GA, Michel CM, Farina B, Adenzato M, Ardito RB, Imperatori C, Artoni F. Altered EEG Patterns in Individuals with Disorganized Attachment: An EEG Microstates Study. Brain Topogr 2024; 37:420-431. [PMID: 38416284 DOI: 10.1007/s10548-024-01038-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 02/01/2024] [Indexed: 02/29/2024]
Abstract
Over the past years, different studies provided preliminary evidence that Disorganized Attachment (DA) may have dysregulatory and disintegrative effects on both autonomic arousal regulation and brain connectivity. However, despite the clinical relevance of this construct, few studies have investigated the specific alterations underlying DA using electroencephalography (EEG). Thus, the main aim of the current study was to investigate EEG microstate parameters of DA in a non-clinical sample (N = 50) before (pre) and after (post) the administration of the Adult Attachment Interview (AAI). Two EEG eyes-closed Resting State (RS) recordings were performed before and after the AAI, which was used for classifying the participants [i.e., Disorganized/Unresolved (D/U) or Organized/Resolved (O/R) individuals] and to trigger the attachment system. Microstates parameters (i.e., Mean Duration, Time Coverage and Occurrence) were extracted from each recording using Cartool software. EEG microstates clustering analysis revealed 6 different maps (labeled A, B, C, D, E, F) in both groups (i.e., D/U and O/R individuals) and in both conditions (i.e., pre-AAI and post-AAI). In the pre-AAI condition, compared to O/R individuals, D/U participants showed a shorter Mean Duration and Time Coverage of Map F; in the post-AAI condition, a significant reduction in the Mean Duration of Map E was also observed in D/U individuals. Finally, in the "within" statistical analysis (i.e., pre-AAI vs. post-AAI), only the D/U group exhibited a significant increase in Time Coverage of Map F after the AAI. Since these maps are associated with brain networks involved in emotional information processing and mentalization (i.e., Salience Network and Default Mode Network), our result might reflect the deficit in the ability to mentalize caregiver's interaction as well as the increased sensitivity to attachment-related stimuli typically observed in individuals with a D/U state of mind.
Collapse
Affiliation(s)
| | - Christoph M Michel
- Functional Brain Mapping Laboratory, Department of Basic Neurosciences, University of Geneva, Campus Biotech, Geneva, Switzerland
- Center for Biomedical Imaging (CIBM), Lausanne, Geneva, Switzerland
| | - Benedetto Farina
- Experimental and Applied Psychology Laboratory, Department of Human Sciences, European University of Rome, Rome, Italy
| | - Mauro Adenzato
- Department of Psychology, University of Turin, Turin, Italy
| | - Rita B Ardito
- Department of Psychology, University of Turin, Turin, Italy
| | - Claudio Imperatori
- Experimental and Applied Psychology Laboratory, Department of Human Sciences, European University of Rome, Rome, Italy.
| | - Fiorenzo Artoni
- Functional Brain Mapping Laboratory, Department of Basic Neurosciences, University of Geneva, Campus Biotech, Geneva, Switzerland
| |
Collapse
|
7
|
Deiber MP, Piguet C, Berchio C, Michel CM, Perroud N, Ros T. Resting-State EEG Microstates and Power Spectrum in Borderline Personality Disorder: A High-Density EEG Study. Brain Topogr 2024; 37:397-409. [PMID: 37776472 PMCID: PMC11026215 DOI: 10.1007/s10548-023-01005-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 08/30/2023] [Indexed: 10/02/2023]
Abstract
Borderline personality disorder (BPD) is a debilitating psychiatric condition characterized by emotional dysregulation, unstable sense of self, and impulsive, potentially self-harming behavior. In order to provide new neurophysiological insights on BPD, we complemented resting-state EEG frequency spectrum analysis with EEG microstates (MS) analysis to capture the spatiotemporal dynamics of large-scale neural networks. High-density EEG was recorded at rest in 16 BPD patients and 16 age-matched neurotypical controls. The relative power spectrum and broadband MS spatiotemporal parameters were compared between groups and their inter-correlations were examined. Compared to controls, BPD patients showed similar global spectral power, but exploratory univariate analyses on single channels indicated reduced relative alpha power and enhanced relative delta power at parietal electrodes. In terms of EEG MS, BPD patients displayed similar MS topographies as controls, indicating comparable neural generators. However, the MS temporal dynamics were significantly altered in BPD patients, who demonstrated opposite prevalence of MS C (lower than controls) and MS E (higher than controls). Interestingly, MS C prevalence correlated positively with global alpha power and negatively with global delta power, while MS E did not correlate with any measures of spectral power. Taken together, these observations suggest that BPD patients exhibit a state of cortical hyperactivation, represented by decreased posterior alpha power, together with an elevated presence of MS E, consistent with symptoms of elevated arousal and/or vigilance. This is the first study to investigate resting-state MS patterns in BPD, with findings of elevated MS E and the suggestion of reduced posterior alpha power indicating a disorder-specific neurophysiological signature previously unreported in a psychiatric population.
Collapse
Affiliation(s)
- Marie-Pierre Deiber
- Department of Psychiatry, University Hospitals of Geneva, Chemin du Petit-Bel-Air 2, 1226 Thônex, Geneva, Switzerland.
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| | - Camille Piguet
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pediatrics, University Hospitals of Geneva, Geneva, Switzerland
| | - Cristina Berchio
- Department of Pediatrics, University of Geneva, Geneva, Switzerland
| | - Christoph M Michel
- Functional Brain Mapping Laboratory, Department of Fundamental Neuroscience, University of Geneva, Geneva, Switzerland
- Center for Biomedical Imaging, CIBM, Lausanne, Switzerland
| | - Nader Perroud
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Psychiatric Specialties, Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
| | - Tomas Ros
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Center for Biomedical Imaging, CIBM, Lausanne, Switzerland
- Department of Neuroscience, University of Geneva, Geneva, Switzerland
| |
Collapse
|
8
|
Chivu A, Pascal SA, Damborská A, Tomescu MI. EEG Microstates in Mood and Anxiety Disorders: A Meta-analysis. Brain Topogr 2024; 37:357-368. [PMID: 37615799 PMCID: PMC11026263 DOI: 10.1007/s10548-023-00999-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/06/2023] [Indexed: 08/25/2023]
Abstract
To reduce the psycho-social burden increasing attention has focused on brain abnormalities in the most prevalent and highly co-occurring neuropsychiatric disorders, such as mood and anxiety. However, high inter-study variability in these patients results in inconsistent and contradictory alterations in the fast temporal dynamics of large-scale networks as measured by EEG microstates. Thus, in this meta-analysis, we aim to investigate the consistency of these changes to better understand possible common neuro-dynamical mechanisms of these disorders.In the systematic search, twelve studies investigating EEG microstate changes in participants with mood and anxiety disorders and individuals with subclinical depression were included in this meta-analysis, adding up to 787 participants.The results suggest that EEG microstates consistently discriminate mood and anxiety impairments from the general population in patients and subclinical states. Specifically, we found a small significant effect size for B microstates in patients compared to healthy controls, with larger effect sizes for increased B presence in unmedicated patients with comorbidity. In a subgroup meta-analysis of ten mood disorder studies, microstate D showed a significant effect size for decreased presence. When investigating only the two anxiety disorder studies, we found a significantly small effect size for the increased microstate A and a medium effect size for decreased microstate E (one study). However, more studies are needed to elucidate whether these findings are diagnostic-specific markers.Results are discussed in relation to the functional meaning of microstates and possible contribution to an explanatory mechanism of overlapping symptomatology of mood and anxiety disorders.
Collapse
Affiliation(s)
- Alina Chivu
- CINETic Center, National University of Theatre and Film "I.L. Caragiale" Bucharest, Bucharest, Romania
- Faculty of Psychology and Educational Sciences, Department of Applied Psychology and Psychotherapy, University of Bucharest, Bucharest, Romania
| | - Simona A Pascal
- Faculty of Psychology and Educational Sciences, Department of Applied Psychology and Psychotherapy, University of Bucharest, Bucharest, Romania
| | - Alena Damborská
- Department of Psychiatry, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
- Multimodal and Functional Neuroimaging Research Group, CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Miralena I Tomescu
- CINETic Center, National University of Theatre and Film "I.L. Caragiale" Bucharest, Bucharest, Romania.
- Faculty of Educational Sciences, Department of Psychology, University "Stefan cel Mare" of Suceava, Suceava, Romania.
- Faculty of Psychology and Educational Sciences, Department of Cognitive Sciences, University of Bucharest, Bucharest, Romania.
| |
Collapse
|
9
|
Tarailis P, Koenig T, Michel CM, Griškova-Bulanova I. The Functional Aspects of Resting EEG Microstates: A Systematic Review. Brain Topogr 2024; 37:181-217. [PMID: 37162601 DOI: 10.1007/s10548-023-00958-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/11/2023] [Indexed: 05/11/2023]
Abstract
A growing body of clinical and cognitive neuroscience studies have adapted a broadband EEG microstate approach to evaluate the electrical activity of large-scale cortical networks. However, the functional aspects of these microstates have not yet been systematically reviewed. Here, we present an overview of the existing literature and systematize the results to provide hints on the functional role of electrical brain microstates. Studies that evaluated and manipulated the temporal properties of resting-state microstates and utilized questionnaires, task-initiated thoughts, specific tasks before or between EEG session(s), pharmacological interventions, neuromodulation approaches, or localized sources of the extracted microstates were selected. Fifty studies that met the inclusion criteria were included. A new microstate labeling system has been proposed for a comprehensible comparison between the studies, where four classical microstates are referred to as A-D, and the others are labeled by the frequency of their appearance. Microstate A was associated with both auditory and visual processing and links to subjects' arousal/arousability. Microstate B showed associations with visual processing related to self, self-visualization, and autobiographical memory. Microstate C was related to processing personally significant information, self-reflection, and self-referential internal mentation rather than autonomic information processing. In contrast, microstate E was related to processing interoceptive and emotional information and to the salience network. Microstate D was associated with executive functioning. Microstate F is suggested to be a part of the Default Mode Network and plays a role in personally significant information processing, mental simulations, and theory of mind. Microstate G is potentially linked to the somatosensory network.
Collapse
Affiliation(s)
- Povilas Tarailis
- Life Sciences Centre, Institute of Biosciences, Vilnius University, Vilnius, Lithuania
| | - Thomas Koenig
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Christoph M Michel
- Functional Brain Mapping Laboratory, Department of Fundamental Neuroscience, University of Geneva, Geneva, Switzerland
- Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
| | | |
Collapse
|
10
|
Yu F, Gao Y, Li F, Zhang X, Hu F, Jia W, Li X. Resting-state EEG microstates as electrophysiological biomarkers in post-stroke disorder of consciousness. Front Neurosci 2023; 17:1257511. [PMID: 37849891 PMCID: PMC10577186 DOI: 10.3389/fnins.2023.1257511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/18/2023] [Indexed: 10/19/2023] Open
Abstract
Introduction Ischemic stroke patients commonly experience disorder of consciousness (DOC), leading to poorer discharge outcomes and higher mortality risks. Therefore, the identification of applicable electrophysiological biomarkers is crucial for the rapid diagnosis and evaluation of post-stroke disorder of consciousness (PS-DOC), while providing supportive evidence for cerebral neurology. Methods In our study, we conduct microstate analysis on resting-state electroencephalography (EEG) of 28 post-stroke patients with awake consciousness and 28 patients with PS-DOC, calculating the temporal features of microstates. Furthermore, we extract the Lempel-Ziv complexity of microstate sequences and the delta/alpha power ratio of EEG on spectral. Statistical analysis is performed to examine the distinctions in features between the two groups, followed by inputting the distinctive features into a support vector machine for the classification of PS-DOC. Results Both groups obtain four optimal topographies of EEG microstates, but notable distinctions are observed in microstate C. Within the PS-DOC group, there is a significant increase in the mean duration and coverage of microstates B and C, whereas microstate D displays a contrasting trend. Additionally, noteworthy variations are found in the delta/alpha ratio and Lempel-Ziv complexity between the two groups. The integration of the delta/alpha ratio with microstates' temporal and Lempel-Ziv complexity features demonstrates the highest performance in the classifier (Accuracy = 91.07%). Discussion Our results suggest that EEG microstates can provide insights into the abnormal brain network dynamics in DOC patients post-stroke. Integrating the temporal and Lempel-Ziv complexity microstate features with spectral features offers a deeper understanding of the neuro mechanisms underlying brain damage in patients with DOC, holding promise as effective electrophysiological biomarkers for diagnosing PS-DOC.
Collapse
Affiliation(s)
- Fang Yu
- College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Yanzhe Gao
- College of Life Sciences, Nankai University, Tianjin, China
| | - Fenglian Li
- College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Xueying Zhang
- College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Fengyun Hu
- The Fifth Clinical Medical College of Shanxi Medical University, Department of Neurology, Shanxi Provincial People’s Hospital, Taiyuan, China
| | - Wenhui Jia
- The Fifth Clinical Medical College of Shanxi Medical University, Department of Neurology, Shanxi Provincial People’s Hospital, Taiyuan, China
| | - Xiaohui Li
- College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan, China
| |
Collapse
|
11
|
Wu Y, Mao K, Dennett L, Zhang Y, Chen J. Systematic review of machine learning in PTSD studies for automated diagnosis evaluation. NPJ MENTAL HEALTH RESEARCH 2023; 2:16. [PMID: 38609504 PMCID: PMC10955977 DOI: 10.1038/s44184-023-00035-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/18/2023] [Indexed: 04/14/2024]
Abstract
Post-traumatic stress disorder (PTSD) is frequently underdiagnosed due to its clinical and biological heterogeneity. Worldwide, many people face barriers to accessing accurate and timely diagnoses. Machine learning (ML) techniques have been utilized for early assessments and outcome prediction to address these challenges. This paper aims to conduct a systematic review to investigate if ML is a promising approach for PTSD diagnosis. In this review, statistical methods were employed to synthesize the outcomes of the included research and provide guidance on critical considerations for ML task implementation. These included (a) selection of the most appropriate ML model for the available dataset, (b) identification of optimal ML features based on the chosen diagnostic method, (c) determination of appropriate sample size based on the distribution of the data, and (d) implementation of suitable validation tools to assess the performance of the selected ML models. We screened 3186 studies and included 41 articles based on eligibility criteria in the final synthesis. Here we report that the analysis of the included studies highlights the potential of artificial intelligence (AI) in PTSD diagnosis. However, implementing AI-based diagnostic systems in real clinical settings requires addressing several limitations, including appropriate regulation, ethical considerations, and protection of patient privacy.
Collapse
Affiliation(s)
- Yuqi Wu
- Electrical & Computer Engineering Department, Faculty of Engineering, University of Alberta, Edmonton, AB, Canada
| | - Kaining Mao
- Electrical & Computer Engineering Department, Faculty of Engineering, University of Alberta, Edmonton, AB, Canada
| | - Liz Dennett
- Scott Health Sciences Library, University of Alberta, Edmonton, AB, Canada
| | - Yanbo Zhang
- Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
| | - Jie Chen
- Electrical & Computer Engineering Department, Faculty of Engineering, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
12
|
Li Q, Coulson Theodorsen M, Konvalinka I, Eskelund K, Karstoft KI, Bo Andersen S, Andersen TS. Resting-state EEG functional connectivity predicts post-traumatic stress disorder subtypes in veterans. J Neural Eng 2022; 19. [PMID: 36250685 DOI: 10.1088/1741-2552/ac9aaf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/13/2022] [Indexed: 01/11/2023]
Abstract
Objective. Post-traumatic stress disorder (PTSD) is highly heterogeneous, and identification of quantifiable biomarkers that could pave the way for targeted treatment remains a challenge. Most previous electroencephalography (EEG) studies on PTSD have been limited to specific handpicked features, and their findings have been highly variable and inconsistent. Therefore, to disentangle the role of promising EEG biomarkers, we developed a machine learning framework to investigate a wide range of commonly used EEG biomarkers in order to identify which features or combinations of features are capable of characterizing PTSD and potential subtypes.Approach. We recorded 5 min of eyes-closed and 5 min of eyes-open resting-state EEG from 202 combat-exposed veterans (53% with probable PTSD and 47% combat-exposed controls). Multiple spectral, temporal, and connectivity features were computed and logistic regression, random forest, and support vector machines with feature selection methods were employed to classify PTSD. To obtain robust results, we performed repeated two-layer cross-validation to test on an entirely unseen test set.Main results. Our classifiers obtained a balanced test accuracy of up to 62.9% for predicting PTSD patients. In addition, we identified two subtypes within PTSD: one where EEG patterns were similar to those of the combat-exposed controls, and another that were characterized by increased global functional connectivity. Our classifier obtained a balanced test accuracy of 79.4% when classifying this PTSD subtype from controls, a clear improvement compared to predicting the whole PTSD group. Interestingly, alpha connectivity in the dorsal and ventral attention network was particularly important for the prediction, and these connections were positively correlated with arousal symptom scores, a central symptom cluster of PTSD.Significance. Taken together, the novel framework presented here demonstrates how unsupervised subtyping can delineate heterogeneity and improve machine learning prediction of PTSD, and may pave the way for better identification of quantifiable biomarkers.
Collapse
Affiliation(s)
- Qianliang Li
- Section for Cognitive Systems, DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Maya Coulson Theodorsen
- Section for Cognitive Systems, DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark.,Department of Military Psychology, Danish Veteran Centre, Danish Defence, Copenhagen, Denmark.,Research and Knowledge Centre, Danish Veteran Centre, Danish Defence, Ringsted, Denmark
| | - Ivana Konvalinka
- Section for Cognitive Systems, DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Kasper Eskelund
- Department of Military Psychology, Danish Veteran Centre, Danish Defence, Copenhagen, Denmark.,Research and Knowledge Centre, Danish Veteran Centre, Danish Defence, Ringsted, Denmark
| | - Karen-Inge Karstoft
- Research and Knowledge Centre, Danish Veteran Centre, Danish Defence, Ringsted, Denmark.,Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Søren Bo Andersen
- Research and Knowledge Centre, Danish Veteran Centre, Danish Defence, Ringsted, Denmark
| | - Tobias S Andersen
- Section for Cognitive Systems, DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|