1
|
Ravan M, Noroozi A, Gediya H, James Basco K, Hasey G. Using deep learning and pretreatment EEG to predict response to sertraline, bupropion, and placebo. Clin Neurophysiol 2024; 167:198-208. [PMID: 39332081 DOI: 10.1016/j.clinph.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/08/2024] [Accepted: 09/04/2024] [Indexed: 09/29/2024]
Abstract
OBJECTIVE Predicting an individual's response to antidepressant medication remains one of the most challenging tasks in the treatment of major depressive disorder (MDD). Our objective was to use the large EMBARC study database to develop an electroencephalography (EEG)-based method to predict response to antidepressant treatment. METHODS Pre-treatment EEG data were collected from study participants treated with either sertraline (N = 105), placebo (N = 119), or bupropion (N = 35). After preprocessing, the robust exact low-resolution electromagnetic tomography (ReLORETA) brain source localization method was used to reconstruct the source signals in 54 brain regions. Connectivity between regions was determined using symbolic transfer entropy (STE). A convolutional neural network (CNN) classified participants as responders or non-responders to each treatment. RESULTS Classification accuracy was 91.0%, 95.4%, and 86.8% for sertraline, placebo, and bupropion, respectively. The most highly predictive features were connectivity between i) the anterior cingulate cortex and superior parietal lobule (alpha frequency), ii) the anterior cingulate cortex and orbitofrontal area (beta frequency), and iii) the orbitofrontal area and anterior cingulate cortex (gamma frequency). CONCLUSION CNN analysis of EEG connectivity may accurately predict response to sertraline, bupropion, and placebo. SIGNIFICANCE The suggested method may offer clinicians an accessible and cost-effective tool for speedy treatment and helps pharmaceutical firms to test new antidepressants efficiently.
Collapse
Affiliation(s)
- Marman Ravan
- Department of Electrical and Computer Engineering, New York Institute of Technology, New York, NY, USA.
| | - Amin Noroozi
- School of Engineering, Computing & Mathematical Sciences, University of Wolverhampton, Wolverhampton, UK
| | - Harshil Gediya
- Department of Computer Science, New York Institute of Technology, New York, NY, USA
| | - Kennette James Basco
- Department of Computer Science, New York Institute of Technology, New York, NY, USA
| | - Gary Hasey
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
2
|
Bracht T, Mertse N, Breit S, Federspiel A, Wiest R, Soravia LM, Walther S, Denier N. Alterations of perfusion and functional connectivity of the cingulate motor area are associated with psychomotor retardation in major depressive disorder. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01896-8. [PMID: 39297976 DOI: 10.1007/s00406-024-01896-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/31/2024] [Indexed: 09/21/2024]
Abstract
Psychomotor retardation, characterized by slowing of speech, thoughts, and a decrease of movements, is frequent in patients with major depressive disorder (MDD). However, its neurobiological correlates are still poorly understood. This study aimed to explore if cerebral blood flow (CBF) and resting state functional connectivity (rs-FC) of the motor network are altered in patients with MDD and if these changes are associated with psychomotor retardation. Thirty-six right-handed patients with depression and 19 right-handed healthy controls (HC) that did not differ regarding age and sex underwent arterial spin labelling (ASL) and resting-state functional MRI (rs-fMRI) scans. Psychomotor retardation was assessed with the motoric items of the core assessment of psychomotor change (CORE) questionnaire. Patients with MDD had more pronounced psychomotor retardation scores than HC. Patients with MDD had reduced CBF in bilateral cingulate motor area (CMA) and increased resting-state functional connectivity (rs-FC) between the cluster in the CMA and a cluster localized in bilateral supplementary motor areas (SMA). Furthermore, increased rs-FC between the CMA and the left SMA was associated with more pronounced psychomotor retardation. Our results suggest that reduced perfusion of the CMA and increased rs-FC between the CMA and the SMA are associated with psychomotor retardation in patients with depression.
Collapse
Affiliation(s)
- Tobias Bracht
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Murtenstrasse 21, Bern, 3008, Switzerland.
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland.
| | - Nicolas Mertse
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Murtenstrasse 21, Bern, 3008, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Sigrid Breit
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Murtenstrasse 21, Bern, 3008, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Andrea Federspiel
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Murtenstrasse 21, Bern, 3008, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Roland Wiest
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
- Institute of Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland
| | - Leila M Soravia
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Murtenstrasse 21, Bern, 3008, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Murtenstrasse 21, Bern, 3008, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
| | - Niklaus Denier
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Murtenstrasse 21, Bern, 3008, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| |
Collapse
|
3
|
Denier N, Grieder M, Jann K, Breit S, Mertse N, Walther S, Soravia LM, Meyer A, Federspiel A, Wiest R, Bracht T. Analyzing fractal dimension in electroconvulsive therapy: Unraveling complexity in structural and functional neuroimaging. Neuroimage 2024; 297:120671. [PMID: 38901774 DOI: 10.1016/j.neuroimage.2024.120671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/21/2024] [Accepted: 06/06/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Numerous studies show that electroconvulsive therapy (ECT) induces hippocampal neuroplasticity, but findings are inconsistent regarding its clinical relevance. This study aims to investigate ECT-induced plasticity of anterior and posterior hippocampi using mathematical complexity measures in neuroimaging, namely Higuchi's fractal dimension (HFD) for fMRI time series and the fractal dimension of cortical morphology (FD-CM). Furthermore, we explore the potential of these complexity measures to predict ECT treatment response. METHODS Twenty patients with a current depressive episode (16 with major depressive disorder and 4 with bipolar disorder) underwent MRI-scans before and after an ECT-series. Twenty healthy controls matched for age and sex were also scanned twice for comparison purposes. Resting-state fMRI data were processed, and HFD was computed for anterior and posterior hippocampi. Group-by-time effects for HFD in anterior and posterior hippocampi were calculated and correlations between HFD changes and improvement in depression severity were examined. For FD-CM analyses, we preprocessed structural MRI with CAT12's surface-based methods. We explored group-by-time effects for FD-CM and the predictive value of baseline HFD and FD-CM for treatment outcome. RESULTS Patients exhibited a significant increase in bilateral hippocampal HFD from baseline to follow-up scans. Right anterior hippocampal HFD increase was associated with reductions in depression severity. We found no group differences and group-by-time effects in FD-CM. After applying a whole-brain regression analysis, we found that baseline FD-CM in the left temporal pole predicted reduction of overall depression severity after ECT. Baseline hippocampal HFD did not predict treatment outcome. CONCLUSION This study suggests that HFD and FD-CM are promising imaging markers to investigate ECT-induced neuroplasticity associated with treatment response.
Collapse
Affiliation(s)
- Niklaus Denier
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland.
| | - Matthias Grieder
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Kay Jann
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Sigrid Breit
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Nicolas Mertse
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Leila M Soravia
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Agnes Meyer
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Andrea Federspiel
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland; Institute of Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland
| | - Roland Wiest
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland; Institute of Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland
| | - Tobias Bracht
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| |
Collapse
|
4
|
Gbyl K, Labanauskas V, Lundsgaard CC, Mathiassen A, Ryszczuk A, Siebner HR, Rostrup E, Madsen K, Videbech P. Electroconvulsive therapy disrupts functional connectivity between hippocampus and posterior default mode network. Prog Neuropsychopharmacol Biol Psychiatry 2024; 132:110981. [PMID: 38373628 DOI: 10.1016/j.pnpbp.2024.110981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND The mechanisms underlying memory deficits after electroconvulsive therapy (ECT) remain unclear but altered functional interactions between hippocampus and neocortex may play a role. OBJECTIVES To test whether ECT reduces functional connectivity between hippocampus and posterior regions of the default mode network (DMN) and to examine whether altered hippocampal-neocortical functional connectivity correlates with memory impairment. A secondary aim was to explore if these connectivity changes are present 6 months after ECT. METHODS In-patients with severe depression (n = 35) received bitemporal ECT. Functional connectivity of the hippocampus was probed with resting-state fMRI before the first ECT-session, after the end of ECT, and at a six-month follow-up. Memory was assessed with the Verbal Learning Test - Delayed Recall. Seed-based connectivity analyses established connectivity of four hippocampal seeds, covering the anterior and posterior parts of the right and left hippocampus. RESULTS Compared to baseline, three of four hippocampal seeds became less connected to the core nodes of the posterior DMN in the week after ECT with Cohen's d ranging from -0.9 to -1.1. At the group level, patients showed post-ECT memory impairment, but individual changes in delayed recall were not correlated with the reduction in hippocampus-DMN connectivity. At six-month follow-up, no significant hippocampus-DMN reductions in connectivity were evident relative to pre-ECT, and memory scores had returned to baseline. CONCLUSION ECT leads to a temporary disruption of functional hippocampus-DMN connectivity in patients with severe depression, but the change in connectivity strength is not related to the individual memory impairment.
Collapse
Affiliation(s)
- Krzysztof Gbyl
- Center for Neuropsychiatric Depression Research, Mental Health Center Glostrup, Mental Health Services of the Capital Region of Denmark, Copenhagen University Hospital, Glostrup, Denmark; Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| | - Vytautas Labanauskas
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Denmark
| | - Christoffer Cramer Lundsgaard
- Center for Neuropsychiatric Depression Research, Mental Health Center Glostrup, Mental Health Services of the Capital Region of Denmark, Copenhagen University Hospital, Glostrup, Denmark; Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - André Mathiassen
- Center for Neuropsychiatric Depression Research, Mental Health Center Glostrup, Mental Health Services of the Capital Region of Denmark, Copenhagen University Hospital, Glostrup, Denmark; Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Adam Ryszczuk
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Denmark
| | - Hartwig Roman Siebner
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Egill Rostrup
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Center for Neuropsychiatric Schizophrenia Research, Mental Health Center Glostrup, Glostrup, Denmark
| | - Kristoffer Madsen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Denmark; Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Poul Videbech
- Center for Neuropsychiatric Depression Research, Mental Health Center Glostrup, Mental Health Services of the Capital Region of Denmark, Copenhagen University Hospital, Glostrup, Denmark; Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|