1
|
Unadkat P, Vo A, Ma Y, Peng S, Nguyen N, Niethammer M, Tang CC, Dhawan V, Ramdhani R, Fenoy A, Caminiti SP, Perani D, Eidelberg D. Deep brain stimulation of the subthalamic nucleus for Parkinson's disease: A network imaging marker of the treatment response. RESEARCH SQUARE 2024:rs.3.rs-4178280. [PMID: 38766007 PMCID: PMC11100869 DOI: 10.21203/rs.3.rs-4178280/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Subthalamic nucleus deep brain stimulation (STN-DBS) alleviates motor symptoms of Parkinson's disease (PD), thereby improving quality of life. However, quantitative brain markers to evaluate DBS responses and select suitable patients for surgery are lacking. Here, we used metabolic brain imaging to identify a reproducible STN-DBS network for which individual expression levels increased with stimulation in proportion to motor benefit. Of note, measurements of network expression from metabolic and BOLD imaging obtained preoperatively predicted motor outcomes determined after DBS surgery. Based on these findings, we computed network expression in 175 PD patients, with time from diagnosis ranging from 0 to 21 years, and used the resulting data to predict the outcome of a potential STN-DBS procedure. While minimal benefit was predicted for patients with early disease, the proportion of potential responders increased after 4 years. Clinically meaningful improvement with stimulation was predicted in 18.9 - 27.3% of patients depending on disease duration.
Collapse
Affiliation(s)
| | - An Vo
- The Feinstein Institutes for Medical Research
| | - Yilong Ma
- Center for Neurosciences, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Shichun Peng
- Center for Neurosciences, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | | | | | | | | | - Ritesh Ramdhani
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell
| | | | | | | | | |
Collapse
|
2
|
Tassan Mazzocco M, Serra M, Maspero M, Coliva A, Presotto L, Casu MA, Morelli M, Moresco RM, Belloli S, Pinna A. Positive relation between dopamine neuron degeneration and metabolic connectivity disruption in the MPTP plus probenecid mouse model of Parkinson's disease. Exp Neurol 2024; 374:114704. [PMID: 38281587 DOI: 10.1016/j.expneurol.2024.114704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/15/2024] [Accepted: 01/25/2024] [Indexed: 01/30/2024]
Abstract
The clinical manifestation of Parkinson's disease (PD) appears when neurodegeneration is already advanced, compromising the efficacy of disease-modifying treatment approaches. Biomarkers to identify the early stages of PD are therefore of paramount importance for the advancement of the therapy of PD. In the present study, by using a mouse model of PD obtained by subchronic treatment with the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and the clearance inhibitor probenecid (MPTPp), we identified prodromal markers of PD by combining in vivo positron emission tomography (PET) imaging and ex vivo immunohistochemistry. Longitudinal PET imaging of the dopamine transporter (DAT) by [18F]-N-(3-fluoropropyl)-2β-carboxymethoxy-3β-(4-iodophenyl) nortropane ([18F]-FP-CIT), and brain glucose metabolism by 2-deoxy-2-[18F]-fluoroglucose ([18F]-FDG) were performed before MPTPp treatment and after 1, 3, and 10 MPTPp administrations, in order to assess relation between dopamine neuron integrity and brain connectivity. The results show that in vivo [18F]-FP-CIT in the dorsal striatum was not modified after the first administration of MPTPp, tended to decrease after 3 administrations, and significantly decreased after 10 MPTPp administrations. Post-mortem immunohistochemical analyses of DAT and tyrosine hydroxylase (TH) in the striatum showed a positive correlation with [18F]-FP-CIT, confirming the validity of repeated MPTPp-treated mice as a model that can reproduce the progressive pathological changes in the early phases of PD. Analysis of [18F]-FDG uptake in several brain areas connected to the striatum showed that metabolic connectivity was progressively disrupted, starting from the first MPTPp administration, and that significant connections between cortical and subcortical regions were lost after 10 MPTPp administrations, suggesting an association between dopamine neuron degeneration and connectivity disruption in this PD model. The results of this study provide a relevant model, where new drugs that can alleviate neurodegeneration in PD could be evaluated preclinically.
Collapse
Affiliation(s)
- Margherita Tassan Mazzocco
- PhD Program in Neuroscience, Medicine and Surgery Department, University of Milano-Bicocca, Monza, Italy; Nuclear Medicine Department, San Raffaele Scientific Institute (IRCCS), Milan, Italy
| | - Marcello Serra
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy
| | - Marco Maspero
- Nuclear Medicine Department, San Raffaele Scientific Institute (IRCCS), Milan, Italy; National Research Council of Italy, Institute of Molecular Bioimaging and Physiology, UOS of Segrate, Italy
| | - Angela Coliva
- Nuclear Medicine Department, San Raffaele Scientific Institute (IRCCS), Milan, Italy
| | - Luca Presotto
- Nuclear Medicine Department, San Raffaele Scientific Institute (IRCCS), Milan, Italy; Department of Physics "G. Occhialini", University of Milano - Bicocca, Milan, Italy
| | - Maria Antonietta Casu
- National Research Council of Italy, Institute of Translational Pharmacology, UOS of Cagliari, Scientific and Technological Park of Sardinia POLARIS, Pula, Italy
| | - Micaela Morelli
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy; National Research Council of Italy, Neuroscience Institute, UOS of Cagliari, Italy
| | - Rosa Maria Moresco
- Nuclear Medicine Department, San Raffaele Scientific Institute (IRCCS), Milan, Italy; National Research Council of Italy, Institute of Molecular Bioimaging and Physiology, UOS of Segrate, Italy; School of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy.
| | - Sara Belloli
- Nuclear Medicine Department, San Raffaele Scientific Institute (IRCCS), Milan, Italy; National Research Council of Italy, Institute of Molecular Bioimaging and Physiology, UOS of Segrate, Italy
| | - Annalisa Pinna
- National Research Council of Italy, Neuroscience Institute, UOS of Cagliari, Italy
| |
Collapse
|