1
|
Coavoy-Sanchez SA, da Costa Marques LA, Costa SKP, Muscara MN. Role of Gasotransmitters in Inflammatory Edema. Antioxid Redox Signal 2024; 40:272-291. [PMID: 36974358 DOI: 10.1089/ars.2022.0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Significance: Nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S) are, to date, the identified members of the gasotransmitter family, which consists of gaseous signaling molecules that play central roles in the regulation of a wide variety of physiological and pathophysiological processes, including inflammatory edema. Recent Advances: Recent studies show the potential anti-inflammatory and antiedematogenic effects of NO-, CO-, and H2S-donors in vivo. In general, it has been observed that the therapeutical effects of NO-donors are more relevant when administered at low doses at the onset of the inflammatory process. Regarding CO-donors, their antiedematogenic effects are mainly associated with inhibition of proinflammatory mediators (such as inducible NO synthase [iNOS]-derived NO), and the observed protective effects of H2S-donors seem to be mediated by reducing some proinflammatory enzyme activities. Critical Issues: The most recent investigations focus on the interactions among the gasotransmitters under different pathophysiological conditions. However, the biochemical/pharmacological nature of these interactions is neither general nor fully understood, although specifically dependent on the site where the inflammatory edema occurs. Future Directions: Considering the nature of the involved mechanisms, a deeper knowledge of the interactions among the gasotransmitters is mandatory. In addition, the development of new pharmacological tools, either donors or synthesis inhibitors of the three gasotransmitters, will certainly aid the basic investigations and open new strategies for the therapeutic treatment of inflammatory edema. Antioxid. Redox Signal. 40, 272-291.
Collapse
Affiliation(s)
| | | | - Soraia Katia Pereira Costa
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, Brazil
| | - Marcelo Nicolas Muscara
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, Brazil
| |
Collapse
|
2
|
Dugbartey GJ. Nitric oxide in kidney transplantation. Biomed Pharmacother 2023; 167:115530. [PMID: 37722191 DOI: 10.1016/j.biopha.2023.115530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/05/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023] Open
Abstract
Kidney transplantation is the treatment of choice for patients with kidney failure. Compared to dialysis therapy, it provides better quality of life and confers significant survival advantage at a relatively lower cost. However, the long-term success of this life-saving intervention is severely hampered by an inexorable clinical problem referred to as ischemia-reperfusion injury (IRI), and increases the incidence of post-transplant complications including loss of renal graft function and death of transplant recipients. Burgeoning evidence shows that nitric oxide (NO), a poisonous gas at high concentrations, and with a historic negative public image as an environmental pollutant, has emerged as a potential candidate that holds clinical promise in mitigating IRI and preventing acute and chronic graft rejection when it is added to kidney preservation solutions at low concentrations or when administered to the kidney donor prior to kidney procurement and to the recipient or to the reperfusion circuit at the start and during reperfusion after renal graft preservation. Interestingly, dysregulated or abnormal endogenous production and metabolism of NO is associated with IRI in kidney transplantation. From experimental and clinical perspectives, this review presents endogenous enzymatic production of NO as well as its exogenous sources, and then discusses protective effects of constitutive nitric oxide synthase (NOS)-derived NO against IRI in kidney transplantation via several signaling pathways. The review also highlights a few isolated studies of renal graft protection by NO produced by inducible NOS.
Collapse
Affiliation(s)
- George J Dugbartey
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana; Accra College of Medicine, Magnolia St, JVX5+FX9, East Legon, Accra, Ghana.
| |
Collapse
|
3
|
Kotsiou OS, Gourgoulianis KI, Zarogiannis SG. The role of nitric oxide in pleural disease. Respir Med 2021; 179:106350. [PMID: 33662805 DOI: 10.1016/j.rmed.2021.106350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 11/25/2022]
Abstract
Nitric oxide (NO) regulates various physiological and pathophysiological functions in the lungs. However, there is much less information about the effects of NO in the pleura. The present review aimed to explore the available evidence regarding the role of NO in pleural disease. NO, has a double-edged role in the pleural cavity. It is an essential signaling molecule mediating various physiological cell functions such as lymphatic drainage of the serous cavities, the immune response to intracellular multiplication of pathogens, and downregulation of neutrophil migration, but also induces genocytotoxic and mutagenic effects when present in excess. NO is implicated in the pathogenesis of asbestos-related or exudative pleural disease and mesothelioma. From a clinical point of view, the fraction of exhaled NO has been suggested as a potential non-invasive tool for the diagnosis of benign asbestos-related disorders. Under experimental conditions, NO-mimetics were found to attenuate hypoxia-induced therapy resistance in mesothelioma. Similarly, hybrid agents consisting of an NO donor coupled with a parent anti-inflammatory drug showed an enhancement of the anti-inflammatory activity of anti-inflammatory drugs. However, given the paucity of research work performed over the last years in this area, further research should be undertaken to establish reliable conclusions with respect to the feasibility of determining or targeting the NO signaling pathway for pleural disease diagnosis and therapeutic management.
Collapse
Affiliation(s)
- Ourania S Kotsiou
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41110, Larissa, Greece; Department of Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41500, Larissa, Greece.
| | - Konstantinos I Gourgoulianis
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41110, Larissa, Greece
| | - Sotirios G Zarogiannis
- Department of Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41500, Larissa, Greece
| |
Collapse
|
4
|
Kawamura M, Tada Y, Kadoya Y, Obata S, Harada Y. COX-2 expression in stromal fibroblasts self-limits their numbers in lymph node inflammatory responses. Prostaglandins Other Lipid Mediat 2013; 106:79-90. [PMID: 23587942 DOI: 10.1016/j.prostaglandins.2013.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 03/19/2013] [Accepted: 04/05/2013] [Indexed: 12/16/2022]
Abstract
We previously reported the expression of cyclooxygenase (COX)-2 in draining lymph nodes during carrageenin-induced pleurisy of rats. Here, we analyzed histological and immunohistochemical characteristics of COX-2-expressing cells. After carrageenin administration into the pleural cavity of rats, parathymic lymph nodes were enlarged beginning at 8h and peaking from 24 to 48h. Lymphatic follicles disappeared 16h after injection, and numerous macrophages and fibroblasts were observed in the cortical region. COX-2-expressing cells in the cortical region showed characteristic dendritic processes from 16 to 48h and primarily co-localized with stromal fibroblastic reticular cell markers, α-smooth muscle actin (α-SMA), and desmin. Expression of α-SMA increased following COX-2 expression. Nimesulide, a COX-2 inhibitor, increased the dendritic processes of COX-2-expressing cells as well as expression of both COX-2 and α-SMA. These results suggest that COX-2-expressing cells may be stromal fibroblastic cells, which negatively self-regulate their proliferation and modulate tissue remodeling of draining lymph nodes at inflammatory sites.
Collapse
Affiliation(s)
- Michiko Kawamura
- Department of Molecular Pharmacology, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa, Japan.
| | | | | | | | | |
Collapse
|
5
|
Całkosiński I, Rosińczuk-Tonderys J, Dzierzba K, Bronowicka-Szydełko A, Seweryn E, Majda J, Całkosińska M, Gamian A. Estimation of the action of three different mechlorethamine doses on biochemical parameters during experimentally induced pleuritis in rats. Pharmacol Rep 2011; 63:501-17. [PMID: 21602606 DOI: 10.1016/s1734-1140(11)70517-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 10/20/2010] [Indexed: 10/25/2022]
Abstract
Nitrogranulogen (NTG) may modify the character of inflammatory reactions. These modifications are a result of cytotoxic and mutagenic effects. NTG has high affinity to DNA and causes disorders in the synthesis of acute phase proteins (e.g., haptoglobin, transferrin, fibrinogen, and complement protein C3). Our previous studies have shown that small doses of NTG can enhance immunological defense reactions in the organism. The aim of the current studies was to determine how different NTG doses cause changes in the values of biochemical parameters in pleuritis-induced rats. The animals were randomized into five groups: Group I - control group; Group II - IP (induced pleuritis) group; Group III - NTG5 group; Group IV - NTG50 group; Group V - NTG600 group. Blood was collected from all groups of animals at 24, 48, and 72 h after the initiation of the carrageenin-induced inflammatory reaction. These investigations revealed that a dose of 5 μg NTG/kg b.w. (body weight) can change the character of the inflammation. Our studies also show that a dose of 600 μg NTG/kg b.w. causes a rapid decrease in the level of C3 at the 72 h of the experiment (after 3 applications every 24 h), which indicates a cytotoxic action of such a large NTG dose. NTG used at doses of 50 and 600 μg/kg b.w. causes the opposite metabolism of albumins and other serum proteins. Our studies show that the different doses of NTG have distinct effects on the inflammatory reaction.
Collapse
Affiliation(s)
- Ireneusz Całkosiński
- Department of Medical Biochemistry, Wroclaw Medical University, Chałubińskiego 10, PL 50-368 Wrocław, Poland
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Hebeda CB, Teixeira SA, Tamura EK, Muscará MN, de Mello SBV, Markus RP, Farsky SHP. Nitric oxide modulates lipopolysaccharide-induced endothelial platelet endothelial cell adhesion molecule expression via interleukin-10. Clin Exp Immunol 2011; 165:172-9. [PMID: 21564091 DOI: 10.1111/j.1365-2249.2011.04396.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We have shown previously that nitric oxide (NO) controls platelet endothelial cell adhesion molecule (PECAM-1) expression on both neutrophils and endothelial cells under physiological conditions. Here, the molecular mechanism by which NO regulates lipopolysaccharide (LPS)-induced endothelial PECAM-1 expression and the role of interleukin (IL)-10 on this control was investigated. For this purpose, N-(G)-nitro-L-arginine methyl ester (L-NAME; 20 mg/kg/day for 14 days dissolved in drinking water) was used to inhibit both constitutive (cNOS) and inducible nitric oxide (iNOS) synthase activities in LPS-stimulated Wistar rats (5 mg/kg, intraperitoneally). This treatment resulted in reduced levels of serum NO. Under this condition, circulating levels of IL-10 was enhanced, secreted mainly by circulating lymphocytes, dependent on transcriptional activation, and endothelial PECAM-1 expression was reduced independently on reduced gene synthesis. The connection between NO, IL-10 and PECAM-1 expression was examined by incubating LPS-stimulated (1 µg/ml) cultured endothelial cells obtained from naive rats with supernatant of LPS-stimulated lymphocytes, which were obtained from blood of control or L-NAME-treated rats. Supernatant of LPS-stimulated lymphocytes obtained from L-NAME-treated rats, which contained higher levels of IL-10, reduced LPS-induced PECAM-1 expression by endothelial cells, and this reduction was reversed by adding the anti-IL-10 monoclonal antibody. Therefore, an association between NO, IL-10 and PECAM-1 was found and may represent a novel mechanism by which NO controls endothelial cell functions.
Collapse
Affiliation(s)
- C B Hebeda
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
7
|
Azambuja MS, Lunardelli A, Amaral RH, Nunes FB, Caberlon E, da Costa VL, Donadio MVF, Vitor DN, da Silva Melo Denizar A, Cunha S, de Oliveira JR. Anti-inflammatory and immunomodulatory effects of RDV-8 [C18H22N2O2S (ethyl 1-butyl-6-methyl-2-phenyl-4-thioxo-1,4-dihydropyrimidine-5-carboxylate)] in a rat model of induced pleurisy and in vitro lymphoproliferation. Inflammopharmacology 2010; 19:145-53. [PMID: 20981574 DOI: 10.1007/s10787-010-0063-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2010] [Accepted: 10/06/2010] [Indexed: 10/18/2022]
Abstract
RDV-8 [C(18)H(22)N(2)O(2)S (ethyl 1-butyl-6-methyl-2-phenyl-4-thioxo-1,4-dihydropyrimidine-5-carboxylate)] is derived from the 4-thioxopyrimidine, and presents important clinical effects. The present study explored the RDV-8 effects in the proliferation of human peripheral blood mononuclear cells (PBMCs), as well as in a pleurisy-induced rat model. PBMCs were directly plated in four different RDV-8 concentrations (0.0125, 0.025, 0.05 and 0.1 mg/mL). RDV-8 decreased cell proliferation and monocyte chemotactic protein 1 synthesis. The interleukin 1 levels and the cytotoxic effect were not significantly affected by RDV-8 treatment. In the carrageenan-induced pleurisy model, the RDV-8 (3 mg/kg) treatment induced a significant reduction in the exudate volume, in the polymorphonuclear leukocyte migration and in the pleural exudate NO levels. The results indicate that RDV-8 may have an immunomodulatory effect, as well as anti-inflammatory actions suggesting that it could represent a new strategy in the inflammatory response modulation.
Collapse
Affiliation(s)
- Marcos Schuch Azambuja
- Laboratório de Pesquisa em Biofísica Celular e Inflamação, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Moriyama Y, Nguyen J, Akens M, Moriyama EH, Lilge L. In vivo effects of low level laser therapy on inducible nitric oxide synthase. Lasers Surg Med 2009; 41:227-31. [PMID: 19291752 DOI: 10.1002/lsm.20745] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND AND OBJECTIVE Low level laser therapy (LLLT) has been demonstrated to modulate inflammatory processes with evidence suggesting that treatment protocol, such as wavelength, total energy, and number of treatments determine the clinical efficacy. In this study, the effects of LLLT mediated by different wavelengths and continuous versus pulsed delivery mode were quantified in a transgenic murine model with the luciferase gene under control of the inducible nitric oxide synthase (iNOS) expression. STUDY DESIGN/MATERIALS AND METHODS LLLT modulated iNOS gene expressed in the acute Zymosan-induced inflammation model is quantified using transgenic mice (FVB/N-Tg(iNOS-luc)). Here an energy density of 5 J cm(-2) at either 635, 660, 690, and 905 nm in continuous wave mode and at 905 nm for short pulse delivery were evaluated. Age of the animals was determined as additional modulating the inflammatory response and the LLLT efficacy for some treatment protocols. RESULTS Animals younger than 15 weeks showed mostly reduction of iNOS expression, while older animals showed increased iNOS expression for some LLLT protocols. Intensity and time course of inducible nitric oxide expression was found to not only depend on wavelength, but also on the mode of delivery, continuous, or pulsed irradiation. CONCLUSION LLLT exhibit different effects in induced inflammatory process according to different wavelengths and wave mode. Upregulation of iNOS gene following 905 nm pulsed wave suggests a different mechanism in activating the inflammatory pathway response when compared to the continuous wave.
Collapse
Affiliation(s)
- Yumi Moriyama
- Ontario Cancer Institute, Princess Margaret Hospital, Toronto, Ontario, Canada M5G 2M9
| | | | | | | | | |
Collapse
|
9
|
Boschi ES, Leite CE, Saciura VC, Caberlon E, Lunardelli A, Bitencourt S, Melo DAS, Oliveira JR. Anti-Inflammatory effects of low-level laser therapy (660 nm) in the early phase in carrageenan-induced pleurisy in rat. Lasers Surg Med 2009; 40:500-8. [PMID: 18727002 DOI: 10.1002/lsm.20658] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND AND OBJECTIVE In the classic model of pleurisy there is little evidence about the anti-inflammatory effects of low-level laser therapy (LLLT) as well the dosage characteristics, such as wavelength, total energy, number and pattern of treatment. In this study we investigated the potential effects of LLLT on modulating the pro-inflammatory and anti-inflammatory mediators of acute inflammation in a rat pleurisy model. STUDY DESIGN/MATERIALS AND METHODS A sample of 48 female Wistar rats were divided into control and experiential groups. An inflammation was induced by carrageenan (0.2 ml) injected into the pleural cavity. At 1, 2, and 3 hours after induction a continuous wave (20 mW) diode laser of the InGaAlP (660 nm) type was used in the four laser groups with different doses and treatment patterns. One group received a single dose of 2.1 J and the other three groups received a total energy of 0.9, 2.1, and 4.2 J. Four hours later the exudate volume, total and differential leukocytes, protein concentration, NO, IL-6, IL-10, TNF-alpha, and MCP-1 were measured from the aspirated liquid. RESULTS All the treatment patterns and quantity of energy studied show significant reduction of the exudate volume (P<0.05). Using energy of 0.9 J only NO, IL-6, MCP-1 and IL-10 are significantly reduced (P<0.05). On the other hand, higher energies (2.1 and 4.2 J) significantly reduce all variables independently of the treatment pattern. The neutrophil migration has a straight correlation with the TNF-alpha (r = 0.551) and NO (r = 0.549) concentration. CONCLUSIONS LLLT-660 nm induced an anti-inflammatory effect characterized by inhibition of either total or differential leukocyte influx, exudation, total protein, NO, IL-6, MCP-1, IL-10, and TNF-alpha, in a dose-dependent manner. Under these conditions, laser treatment with 2.1 J was more effective than 0.9 and 4.2 J.
Collapse
Affiliation(s)
- Emerson S Boschi
- Laboratório de Pesquisa em Biofísica Celular e Inflamação, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av. Ipiranga 6681 prédio 12C sala 263, CEP 90619-900 Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Klinger MB, Dattilio A, Vizzard MA. Expression of cyclooxygenase-2 in urinary bladder in rats with cyclophosphamide-induced cystitis. Am J Physiol Regul Integr Comp Physiol 2007; 293:R677-85. [PMID: 17537839 DOI: 10.1152/ajpregu.00305.2007] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
These studies examined the expression of cyclooxygenase-2 (COX-2) expression in the urothelium and suburothelial space and detrusor from rats treated with cyclophosphamide (CYP) to induce acute (4 h), intermediate (48 h), or chronic (10-day) cystitis. Western blot analysis and immunohistochemistry were used to demonstrate COX-2 expression. In whole mount preparations of urinary bladder, nerve fibers in the suburothelial plexus, and inflammatory cell infiltrates were characterized for COX-2 expression after CYP-induced cystitis. COX-2 expression significantly (P <or= 0.01) increased in the urothelium + suburothelium and detrusor smooth muscle with acute, intermediate, and chronic (10-day) CYP-induced cystitis, but expression in urothelium + suburothelium was significantly greater. CYP-induced upregulation of COX-2 showed by immunostaining in the urothelium + suburothelium was similar to that observed with Western blot analysis and also demonstrated COX-2 inflammatory cell infiltrates (CD86+) and nerve fibers (PGP+) in the suburothelial plexus. Although COX-2 expression was significantly (P <or= 0.01) increased in detrusor smooth muscle, immunohistochemistry failed to demonstrate an obvious change in COX-2-immunoreactivity (IR) in detrusor muscle, but COX-2 inflammatory infiltrates were present throughout the detrusor. COX-2-IR nerve fibers exhibited increased density in the suburothelial plexus with acute or chronic CYP-induced cystitis. COX-2-IR macrophages (CD86+) were present throughout the urinary bladder with acute and chronic CYP-induced cystitis. These studies demonstrate cellular targets in the urinary bladder where COX-2 inhibitors may act.
Collapse
Affiliation(s)
- Mary Beth Klinger
- Univ. of Vermont College of Medicine, Dept. of Neurology, D415A Given Research Bldg., Burlington, VT 05405. )
| | | | | |
Collapse
|
11
|
Guerra Dore CMP, Azevedo TCG, de Souza MCR, Rego LA, de Dantas JCM, Silva FRF, Rocha HAO, Baseia IG, Leite EL. Antiinflammatory, antioxidant and cytotoxic actions of beta-glucan-rich extract from Geastrum saccatum mushroom. Int Immunopharmacol 2007; 7:1160-9. [PMID: 17630194 DOI: 10.1016/j.intimp.2007.04.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Revised: 04/25/2007] [Accepted: 04/25/2007] [Indexed: 11/25/2022]
Abstract
The Geastrum saccatum a mushroom, native to Brazil, is produced under natural conditions in the unexplored reserve of Mata da Estrela-RN. This species has curative properties for eye infections and diseases such as asthma. The tissues of this mushroom contain carbohydrates, proteins, lipids, moisture and ashes in amounts of 42.3%, 37.05%, 9.01, 1.4% and 10.2%, respectively. An extract from this mushroom was characterized by chemical analyses and (13)C and (1)H NMR spectroscopy. It contains high amount of glucose and traces of galactose. The signal appearing at 103.5 ppm was assigned to C1 of beta-glucose. The signals observed between 20 and 40 ppm suggest the presence of a glucan-protein compound. This glucan inhibited the lipid peroxidation at the dose of 0.27 mg/mL (59.1%) and it can protect cells against oxidative stress by scavenging of the hydroxyl (77%) and superoxide (88.4%) radicals at 0.27 mg/mL. The glucan (30 mg/kg) reduces the polymorphonuclear cell migration (57.6%). The ear edema induced by croton oil was inhibited by glucan (60.4% at 10 mg/kg) and by its association with diclofenac (5 mg/kg) (89.2%) or L-NAME (60 mg/kg) (86.23%). Histological analyses of the ear edema induced by croton oil in the presence of glucan (10, 30 or 50 mg/kg) showed a reduced degree of the polymorphonuclear cell migration. We concluded that the glucan has antioxidant, and antiinflammatory properties as well as its antiinflammatory effect are mediated by inhibition of both nitric oxide synthase (NOS) and cyclooxygenase (COX).
Collapse
Affiliation(s)
- Celina M P Guerra Dore
- Laboratório de Glicobiologia, Departamento de Bioquímica, Universidade Federal do Rio Grande do Norte-UFRN, Natal-RN, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Nakano M, Denda N, Matsumoto M, Kawamura M, Kawakubo Y, Hatanaka K, Hiramoto Y, Sato YI, Noshiro M, Harada Y. Interaction between cyclooxygenase (COX)-1- and COX-2-products modulates COX-2 expression in the late phase of acute inflammation. Eur J Pharmacol 2007; 559:210-8. [PMID: 17258197 DOI: 10.1016/j.ejphar.2006.11.080] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Revised: 11/30/2006] [Accepted: 11/30/2006] [Indexed: 12/30/2022]
Abstract
Prostanoid production depends on the activity of two cyclooxygenase (COX) isoforms. It is appreciated that COX-1 plays a role in physiological processes, whereas COX-2 acts in pathological conditions. However their roles, particularly roles of COX-1, have not yet been fully established in inflammation. Here, we examined the effects of COX inhibitors, having differential isoform selectivity, on the late phase of rat carrageenin-induced pleurisy to elucidate the role of COX-2 expressed in the draining lymph nodes and found substantial contribution of COX-1-product(s). Protein and mRNA of COX-2 were detectable with Western blotting analysis and reverse-transcription polymerase chain reaction (RT-PCR) analysis in parathymic lymph nodes, peaking at 48 h after induction of pleurisy. Microsomal prostaglandin E synthase (mPGES)-1 was detectable by immunohistochemical analysis in cells with dendritic processes, a morphological characteristic similar to that of COX-2 expressing cells. Although aspirin, indomethacin and a COX-1 inhibitor, ketorolac, significantly decreased the volume of pleural exudate, they did not affect the levels of COX-2 and mPGES-1 in the lymph node 24 h after induction of pleurisy. In contrast, COX-2 inhibitors, nimesulide and NS-398, had no effect on the exudate volume, but they increased the number of COX-2- and mPGES-1-expressing cells and extension of their dendritic processes with significant increase in the COX-2 level, which were antagonised by ketorolac. These results suggest that COX-2-expressing cells may negatively self-regulate their functions by producing PGE2 via mPGES-1: migration into the draining lymph node and their differentiation. Moreover, COX-1- and COX-2-derived prostanoids may play differential or sometimes antagonistic roles in the late phase of acute inflammation.
Collapse
Affiliation(s)
- Masashi Nakano
- Department of Mediator and Signal Transduction Pharmacology, Kitasato University Graduate School of Medical Sciences, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|