Anju BS, Nair NR, Kundu S. Nitrite and Nitric Oxide Interconversion at Mononuclear Copper(II): Insight into the Role of the Red Copper Site in Denitrification.
Angew Chem Int Ed Engl 2023;
62:e202311523. [PMID:
37800603 DOI:
10.1002/anie.202311523]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/07/2023]
Abstract
Nitrite (NO2 - ) and nitric oxide (NO) interconversion is crucial for maintaining optimum NO flux in mammalian physiology. Herein we demonstrate that [L2 CuII (nitrite)]+ moieties (in 2 a and 2 b; where, L = Me2 PzPy and Me2 PzQu) with distorted octahedral geometry undergo facile reduction to provide tetrahedral [L2 CuI ]+ (in 3 a and 3 b) and NO in the presence of biologically relevant reductants, such as 4-methoxy-2,6-di-tert-butylphenol (4-MeO-2,6-DTBP, a tyrosine model) and N-benzyl-1,4-dihydronicotinamide (BNAH, a NAD(P)H model). Interestingly, the reaction of excess NO gas with [L2 CuII (MeCN)2 ]2+ (in 1 a) provides a putative {CuNO}10 species, which is effective in mediating the nitrosation of various nucleophiles, such as thiol and amine. Generation of the transient {CuNO}10 species in wet acetonitrile leads to NO2 - as assessed by Griess assay and 14 N/15 N-FTIR analyses. A detailed study reveals that the bidirectional NOx -reactivity, namely, nitrite reductase (NIR) and NO oxidase (NOO), at a common CuII site, is governed by the geometric-preference-driven facile CuII /CuI redox process. Of broader interest, this study not only highlights potential strategies for the design of copper-based catalysts for nitrite reduction, but also strengthens the previous postulates regarding the involvement of red copper proteins in denitrification.
Collapse