1
|
Akentieva NP, Sanina NA, Gizatullin AR, Shkondina NI, Prikhodchenko TR, Shram SI, Zhelev N, Aldoshin SM. Cytoprotective Effects of Dinitrosyl Iron Complexes on Viability of Human Fibroblasts and Cardiomyocytes. Front Pharmacol 2019; 10:1277. [PMID: 31780929 PMCID: PMC6859909 DOI: 10.3389/fphar.2019.01277] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/07/2019] [Indexed: 12/29/2022] Open
Abstract
Nitric oxide (NO) is an important signaling molecule that plays a key role in maintaining vascular homeostasis. Dinitrosyl iron complexes (DNICs) generating NO are widely used to treat cardiovascular diseases. However, the involvement of DNICs in the metabolic processes of the cell, their protective properties in doxorubicin-induced toxicity remain to be clarified. Here, we found that novel class of mononuclear DNICs with functional sulfur-containing ligands enhanced the cell viability of human lung fibroblasts and rat cardiomyocytes. Moreover, DNICs demonstrated remarkable protection against doxorubicin-induced toxicity in fibroblasts and in rat cardiomyocytes (H9c2 cells). Data revealed that the DNICs compounds modulate the mitochondria function by decreasing the mitochondrial membrane potential (ΔΨm). Results of flow cytometry showed that DNICs were not affected the proliferation, growth of fibroblasts. In addition, this study showed that DNICs did not affect glutathione levels and the formation of reactive oxygen species in cells. Moreover, results indicated that DNICs maintained the ATP equilibrium in cells. Taken together, these findings show that DNICs have protective properties in vitro. It was further suggested that DNICs may be uncouplers of oxidative phosphorylation in mitochondria and protective mechanism is mainly provided by the leakage of excess charge through the mitochondrial membrane. It is assumed that the DNICs have the therapeutic potential for treating cardiovascular diseases and for decreasing of chemotherapy-induced cardiotoxicity in cancer survivors.
Collapse
Affiliation(s)
- Natalia Pavlovna Akentieva
- Laboratory Biochemical and Cellular Studies, Department of Kinetics of Chemical and Biological Processes, Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
- Laboratory of Toxicology and Experimental Chemotherapy, Moscow State Regional University, Moscow, Russia
- Faculty of Medicine, Karabük University, Karabük, Turkey
| | - Natalia Alekseevna Sanina
- Laboratory of Structural Chemistry, Department of Structure of Matter, Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
- Faculty of fundamental physical and chemical engineering, Lomonosov Moscow State University, Moscow, Russia
| | - Artur Rasimovich Gizatullin
- Laboratory Biochemical and Cellular Studies, Department of Kinetics of Chemical and Biological Processes, Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
| | - Natalia Ivanovna Shkondina
- Laboratory Biochemical and Cellular Studies, Department of Kinetics of Chemical and Biological Processes, Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
| | - Tatyana Romanovna Prikhodchenko
- Laboratory Biochemical and Cellular Studies, Department of Kinetics of Chemical and Biological Processes, Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
| | - Stanislav Ivanovich Shram
- Neuropharmacology Sector, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Nikolai Zhelev
- School of Medicine, University of Dundee, Dundee, United Kingdom
- Medical University Plovdiv, Plovdiv, Bulgaria
| | - Sergei Michailovich Aldoshin
- Laboratory of Structural Chemistry, Department of Structure of Matter, Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia
- Faculty of fundamental physical and chemical engineering, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
2
|
Pastore V, Wasowski C, Higgs J, Mangialavori IC, Bruno-Blanch LE, Marder M. A synthetic bioisoster of trimethadione and phenytoin elicits anticonvulsant effect, protects the brain oxidative damage produced by seizures and exerts antidepressant action in mice. Eur Neuropsychopharmacol 2014; 24:1405-14. [PMID: 24846538 DOI: 10.1016/j.euroneuro.2014.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/08/2014] [Accepted: 04/27/2014] [Indexed: 12/22/2022]
Abstract
Epilepsy is recognized as one of the most common and serious neurological disorder affecting 1-2% of the world׳s population. The present study demonstrates that systemic administration of 3-butyl-5,5-dimethyl-1,2,3-oxathiazolidine-4-one-2,2-dioxide (DIOXIDE), a synthetic compound bioisoster of trimethadione and phenytoin (classical anticonvulsants), elicits a dose dependent anticonvulsant response in mice submitted to the subcutaneous pentylenetetrazole seizure test (scPTZ). Among various factors supposed to play role in epilepsy, oxidative stress and reactive species have strongly emerged. The protection exerted by DIOXIDE over the extent of brain oxidative damage produced by PTZ was determined, by measuring the levels of lipid peroxidation and reduced glutathione and the activity of Na(+)/K(+)-ATPase. Psychiatric disorders represent frequent comorbidities in persons with epilepsy. In this report, the potential anxiolytic and antidepressant activities of DIOXIDE were evaluated in several widely used models for assessing anxiolytic and antidepressant activities in rodents. Although DIOXIDE did not evidence anxiolytic activity at the doses tested, it revealed a significant antidepressant-like effect. Preliminary studies of its mechanism of action, by means of its capacity to act via the GABAA receptor (using the [(3)H]flunitrazepam binding assay in vitro and the picrotoxin test in vivo) and the Na(+) channel (using the alkaloid veratrine, a voltage-Na(+) channel agonist) demonstrated that the anticonvulsant effect is not likely related to the GABAergic pathway and the antidepressant-like effect could be due to its Na(+) channel blocking properties. The results for DIOXIDE suggested it as a new anticonvulsant-antioxidant and antidepressant compound that deserves further development.
Collapse
Affiliation(s)
- Valentina Pastore
- Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini", Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956 (C1113AAD), Buenos Aires, Argentina.
| | - Cristina Wasowski
- Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini", Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956 (C1113AAD), Buenos Aires, Argentina.
| | - Josefina Higgs
- Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini", Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956 (C1113AAD), Buenos Aires, Argentina.
| | - Irene C Mangialavori
- Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini", Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956 (C1113AAD), Buenos Aires, Argentina.
| | - Luis E Bruno-Blanch
- Química Medicinal, Departamento de Ciencias Biológicas, UNLP, calle 47 y 115 (B1900BJW), La Plata, Argentina.
| | - Mariel Marder
- Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini", Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956 (C1113AAD), Buenos Aires, Argentina.
| |
Collapse
|
3
|
Elsasser TH, Kahl S, Capuco AV, Schmidt W. Effects of stress on endocrine and metabolic processes and redirection: cross talk between subcellular compartments. Domest Anim Endocrinol 2012; 43:132-45. [PMID: 22608769 DOI: 10.1016/j.domaniend.2012.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 04/16/2012] [Accepted: 04/16/2012] [Indexed: 11/15/2022]
Abstract
Recent advances in genome analysis and biochemical pathway mapping have advanced our understanding of how biological systems have evolved over time. Protein and DNA marker comparisons suggest that several of these systems are both ancient in origin but highly conserved into today's evolved species. However, remnants of some of the more ancient functions of these chemical systems can run in conflict with the functions that those same pathways serve in complex organisms and tissue systems today. Relevant to the present topic, nitric oxide (NO) and superoxide anion (O(2)(•-)), ancient cellular molecules in evolutionary terms, are recognized today as both necessary for the well-being and stable health of cells but also injurious to cells as elaborated in conjunction with the cellular stress response. Why the dichotomy? This question underlies one of the basic issues challenging researchers as well as practitioners in their approach to disease management. The fundamental proinflammatory response of the innate immune system of the host is needed for pathogen control but can be injurious to tissues from "collateral damage" from NO- and O(2)(•-)-derived reactive molecules capable of affecting protein function via post-translational chemical modification. This review highlights newer aspects of the biochemistry of the NO- and O(2)(•-)-mediated innate proinflammatory response and further show how protein and tissue damage via overproduction of reactive nitrogen and oxygen intermediary molecules such as peroxynitrite (ONOO(-)) might be targeted to specific epitopes of proteins. Changes in the regulation of metabolism in response to proinflammatory disease states are discussed for GH signal transduction and tissue specificity.
Collapse
Affiliation(s)
- T H Elsasser
- United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA.
| | | | | | | |
Collapse
|
4
|
The involvement of Na+, K+-ATPase activity and free radical generation in the susceptibility to pentylenetetrazol-induced seizures after experimental traumatic brain injury. J Neurol Sci 2011; 308:35-40. [DOI: 10.1016/j.jns.2011.06.030] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 06/10/2011] [Accepted: 06/16/2011] [Indexed: 01/25/2023]
|