1
|
Simvastatin Posttreatment Controls Inflammation and Improves Bacterial Clearance in Experimental Sepsis. Mediators Inflamm 2020; 2020:1839762. [PMID: 33110395 PMCID: PMC7582071 DOI: 10.1155/2020/1839762] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/30/2020] [Indexed: 11/18/2022] Open
Abstract
Sepsis is characterized by a life-threatening organ dysfunction caused by an unbalanced host response to microbe infection that can lead to death. Besides being currently the leading cause of death in intensive care units worldwide, sepsis can also induce long-term consequences among survivors, such as cognitive impairment. Statins (lipid-lowering drugs widely used to treat dyslipidemia) have been shown to possess pleiotropic anti-inflammatory and antimicrobial effects. These drugs act inhibiting 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, an enzyme that catalyzes the conversion of HMG-CoA to mevalonate, the limiting step in cholesterol biosynthesis. In this work, we evaluated the therapeutic effects of simvastatin in an animal model of sepsis. In previous study from our group, statin pretreatment avoided cognitive damage and neuroinflammation in sepsis survivors. Herein, we focused on acute inflammation where sepsis was induced by cecal ligation and puncture (CLP), and the animals were treated with simvastatin (2 mg/kg) 6 h after surgery. We measured plasma biochemical markers of organ dysfunction, cell migration, cell activation, bacterial elimination, production of nitric oxide 24 h after CLP, survival rate for 7 days, and cognitive impairment 15 days after CLP. One single administration of simvastatin 6 h after CLP was able to prevent both liver and kidney dysfunction. In addition, this drug decreased cell accumulation in the peritoneum as well as the levels of TNF-α, MIF, IL-6, and IL-1β. Simvastatin diminished the number of bacterial colony forming units (CFU) and increased the production of nitric oxide production in the peritoneum. Simvastatin treatment increased survival for the first 24 h, but it did not alter survival rate at the end of 7 days. Our results showed that posttreatment with simvastatin hampered organ dysfunction, increased local production of nitric oxide, improved bacterial clearance, and modulated inflammation in a relevant model of sepsis.
Collapse
|
2
|
Pitavastatin Exerts Potent Anti-Inflammatory and Immunomodulatory Effects via the Suppression of AP-1 Signal Transduction in Human T Cells. Int J Mol Sci 2019; 20:ijms20143534. [PMID: 31330988 PMCID: PMC6678418 DOI: 10.3390/ijms20143534] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/11/2019] [Accepted: 07/17/2019] [Indexed: 01/09/2023] Open
Abstract
Statins inhibiting 3-hydroxy-3-methylglutaryl-CoA reductase are the standard treatment for hypercholesterolemia in atherosclerotic cardiovascular disease (ASCVD), mediated by inflammatory reactions within vessel walls. Several studies highlighted the pleiotropic effects of statins beyond their lipid-lowering properties. However, few studies investigated the effects of statins on T cell activation. This study evaluated the immunomodulatory capacities of three common statins, pitavastatin, atorvastatin, and rosuvastatin, in activated human T cells. The enzyme-linked immunosorbent assay (ELISA) and quantitative real time polymerase chain reaction (qRT-PCR) results demonstrated stronger inhibitory effects of pitavastatin on the cytokine production of T cells activated by phorbol 12-myristate 13-acetate (PMA) plus ionomycin, including interleukin (IL)-2, interferon (IFN)-γ, IL-6, and tumor necrosis factor α (TNF-α). Molecular investigations revealed that pitavastatin reduced both activating protein-1 (AP-1) DNA binding and transcriptional activities. Further exploration showed the selectively inhibitory effect of pitavastatin on the signaling pathways of extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK), but not c-Jun N-terminal kinase (JNK). Our findings suggested that pitavastatin might provide additional benefits for treating hypercholesterolemia and ASCVD through its potent immunomodulatory effects on the suppression of ERK/p38/AP-1 signaling in human T cells.
Collapse
|
3
|
Cozma A, Fodor A, Orasan OH, Vulturar R, Samplelean D, Negrean V, Muresan C, Suharoschi R, Sitar-Taut A. Pharmacogenetic Implications of eNOS Polymorphisms ( Glu298Asp, T786C, 4b/4a) in Cardiovascular Drug Therapy. In Vivo 2019; 33:1051-1058. [PMID: 31280192 PMCID: PMC6689342 DOI: 10.21873/invivo.11573] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/09/2019] [Accepted: 06/19/2019] [Indexed: 12/17/2022]
Abstract
Endothelial nitric oxide synthase (NOS3 or eNOS) is the enzyme responsible for the highest production of nitric oxide, with the greatest impact on the cardiovascular system, encoded by the eNOS gene, which presents various polymorphisms. ENOS gene polymorphisms play an important role in the response to drugs affecting nitric oxide (NO) signaling. This review discusses the pharmacogenetic impact of eNOS polymorphisms on the response to drugs affecting NO activity: angiotensin converting enzyme inhibitors, angiotensin II receptor antagonists, calcium blockers, beta-blockers, diuretics, phosphodiesterase inhibitors, and statins. The identification of biomarkers that accurately predict particular phenotypes is a challenge that needs additional large studies, in different populations. Efforts should be oriented towards a more accurate evaluation of the effects of eNOS genetic variants on biochemical parameters reflecting eNOS gene expression and enzymatic activity, in different diseases, as well as following drug treatment. This approach will allow for a better understanding of the role of eNOS genetic variants in cardiovascular disease progression and for cardiovascular drug therapy optimization.
Collapse
Affiliation(s)
- Angela Cozma
- University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
- 4th Internal Medicine Department, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| | - Adriana Fodor
- University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
- Clinical Center of Diabetes, Nutrition and Metabolic Disease, Cluj-Napoca, Romania
| | - Olga Hilda Orasan
- University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
- 4th Internal Medicine Department, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| | - Romana Vulturar
- University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
- Department of Cell Biology, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| | - Dorel Samplelean
- University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
- 4th Internal Medicine Department, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| | - Vasile Negrean
- University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
- 4th Internal Medicine Department, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| | - Crina Muresan
- University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Faculty of Food Science &Technology, Cluj-Napoca, Romania
| | - Ramona Suharoschi
- University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Faculty of Food Science &Technology, Cluj-Napoca, Romania
| | - Adela Sitar-Taut
- University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
- 4th Internal Medicine Department, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| |
Collapse
|
4
|
Cheng BF, Gao YX, Lian JJ, Guo DD, Liu TT, Xie YF, Wang L, Yang HJ, Wang M, Feng ZW. Anti-inflammatory effects of pitavastatin in interleukin-1β-induced SW982 human synovial cells. Int Immunopharmacol 2017; 50:224-229. [DOI: 10.1016/j.intimp.2017.06.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 06/09/2017] [Accepted: 06/28/2017] [Indexed: 02/06/2023]
|
5
|
Sekiya A, Morishita E, Maruyama K, Torishima H, Ohtake S. Fluvastatin Upregulates the Expression of Tissue Factor Pathway Inhibitor in Human Umbilical Vein Endothelial Cells. J Atheroscler Thromb 2015; 22:660-8. [PMID: 25735397 DOI: 10.5551/jat.28175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM 3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) are cholesterol-lowering drugs with a variety of pleiotropic effects including antithrombotic properties. Tissue factor pathway inhibitor (TFPI), which is produced predominantly in endothelial cells and platelets, inhibits the initiating phase of clot formation. We investigated the effect of fluvastatin on TFPI expression in cultured endothelial cells. METHODS Human umbilical vein endothelial cells (HUVECs) were treated with fluvastatin (0-10μM). The expression of TFPI mRNA and antigen were detected by RT-PCR and western blotting, respectively. The effects of mevalonate intermediates, small GTP-binding inhibitors, and signal transduction inhibitors were also evaluated to identify which pathway was involved. A luciferase reporter assay was performed to evaluate the effect of fluvastatin on TFPI transcription. The stability of TFPI mRNA was estimated by quantitating its levels after actinomycin D treatment. RESULTS Fluvastatin increased TFPI mRNA expression and antigen in HUVECs. Fluvastatin-induced TFPI expression was reversed by co-treatment with mevalonate or geranylgeranylpyrophosphate (GGPP). NSC23766 and Y-27632 had no effect on TFPI expression. SB203580, GF109203, and LY294002 reduced fluvastatin-induced TFPI upregulation. Moreover, fluvastatin did not significantly affect TFPI promoter activity. TFPI mRNA degradation in the presence of actinomycin D was delayed by fluvastatin treatment. CONCLUSIONS Fluvastatin increases endothelial TFPI expression through inhibition of mevalonate-, GGPP-, and Cdc42-dependent signaling pathways, and activation of the p38 MAPK, PI3K, and PKC pathways. This study revealed unknown mechanisms of the anticoagulant effect of statins and gave a new insight to its therapeutic potential for the prevention of thrombotic diseases.
Collapse
Affiliation(s)
- Akiko Sekiya
- Department of Clinical Laboratory Science, Kanazawa University Graduate School of Medical Science
| | | | | | | | | |
Collapse
|
6
|
Oishi M, Tokuhara K, Miki H, Tanaka Y, Yamaki S, Kaibori M, Yoshizawa K, Yuri T, Yoshigai E, Nishizawa M, Okumura T, Kwon AH. Temporal and spatial dependence of inflammatory biomarkers and suppression by fluvastatin in dextran sodium sulfate-induced rat colitis model. Dig Dis Sci 2014; 59:2126-35. [PMID: 24781162 DOI: 10.1007/s10620-014-3163-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 04/09/2014] [Indexed: 01/09/2023]
Abstract
BACKGROUND Dextran sodium sulfate (DSS)-induced colitis in rats is widely used as an experimental model for elucidating the etiology of ulcerative colitis (UC) and developing its novel remedy. We investigated the temporal and spatial changes in inflammatory mediators such as tumor necrosis factor (TNF)-α and inducible nitric oxide synthase (iNOS) in the regions of rectum and distal colon and examined whether statins, which were designed to lower plasma cholesterol levels, influenced those mediators. METHODS Colitis was induced in rats by oral administration of 5 % DSS for 5 days, followed by 2 % DSS for 10 days. 5 % DSS rats were treated with fluvastatin (20 mg/kg) concomitantly for 5 days. The expression of inflammatory mediators of a sequence of four regions in rectum (R) and distal colon (D0, D1, and D2) was determined by quantitative RT-PCR. RESULTS The peak of colitic damage, which was confirmed clinically and histopathologically, was found on days 4-6. The expression of TNF-α, iNOS, cytokine-induced neutrophil chemoattractant-1, interleukin (IL)-1β, and IL-6 mRNA increased in R time dependently, showing the peak on days 4-6, and then decreased thereafter. The levels of mRNAs reduced from R to D0, D1, and D2 region dependently. Fluvastatin decreased the expression of these markers in addition to the prevention of DSS-induced damage. CONCLUSIONS Results demonstrated that the expression of inflammatory biomarkers had time and region specificity and was markedly inhibited by fluvastatin. To obtain a precise drug effect for UC, it is important to elucidate the temporal and spatial dependence of inflammatory biomarkers in DSS colitis model.
Collapse
Affiliation(s)
- Masaharu Oishi
- Department of Surgery, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka, 573-1010, Japan,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Yoshigai E, Hara T, Inaba H, Hashimoto I, Tanaka Y, Kaibori M, Kimura T, Okumura T, Kwon AH, Nishizawa M. Interleukin-1β induces tumor necrosis factor-α secretion from rat hepatocytes. Hepatol Res 2014; 44:571-83. [PMID: 23647831 DOI: 10.1111/hepr.12157] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 04/30/2013] [Accepted: 04/30/2013] [Indexed: 02/08/2023]
Abstract
AIM Tumor necrosis factor-α (TNF-α) is a pleiotropic cytokine involved in various inflammatory diseases. The only production of TNF-α in the liver is thought to be from hepatic macrophages known as Kupffer cells, predominantly in response to bacterial lipopolysaccharide (LPS). METHODS Primary cultured rat hepatocytes were used to analyze TNF-α expression in response to the pro-inflammatory cytokine, interleukin-1β (IL-1β). Livers of rats subjected to LPS-induced endotoxemia were analyzed. RESULTS Immunocytochemistry and enzyme-linked immunosorbent assays demonstrated that IL-1β-treated rat hepatocytes secreted TNF-α, and RNA analyses indicated that TNF-α mRNA was induced specifically by IL-1β. Northern blot analysis showed that not only mRNA, but also a natural antisense transcript (asRNA), was transcribed from the rat Tnf gene in IL-1β-treated hepatocytes. TNF-α was detected in the hepatocytes of LPS-treated rats. Both TNF-α mRNA and asRNA were expressed in the hepatocytes of LPS-treated rats, human hepatocellular carcinoma and human monocyte/macrophage cells. To disrupt the interaction between TNF-α asRNA and TNF-α mRNA, sense oligonucleotides corresponding to TNF-α mRNA were introduced into rat hepatocytes resulting in significantly increased levels of TNF-α mRNA. One of these sense oligonucleotides increased a half-life of TNF-α mRNA, suggesting that the TNF-α asRNA may reduce the stability of TNF-α mRNA. CONCLUSION IL-1β-stimulated rat hepatocytes are a newly identified source of TNF-α in the liver. TNF-α mRNA and asRNA are expressed in rats and humans, and the TNF-α asRNA reduces the stability of the TNF-α mRNA. Hepatocytes and TNF-α asRNA may be therapeutic targets to regulate levels of TNF-α mRNA.
Collapse
Affiliation(s)
- Emi Yoshigai
- Department of Biomedical Sciences, College of Life Sciences, Shiga, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Tokuhara K, Habara K, Oishi M, Miki H, Tanaka Y, Kaibori M, Nishizawa M, Okumura T, Kwon AH. Fluvastatin inhibits the induction of inducible nitric oxide synthase, an inflammatory biomarker, in hepatocytes. Hepatol Res 2013. [PMID: 23198837 DOI: 10.1111/hepr.12017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
AIM Statins (3-hydroxy-3-methylglutaryl coenzyme A [HMG-CoA] reductase inhibitors), which were originally designed to lower plasma cholesterol levels, are increasingly recognized as anti-inflammatory agents. In the inflamed liver, pro-inflammatory cytokines stimulate the induction of inducible nitric oxide synthase (iNOS). Overproduction of NO by iNOS has been implicated as a factor in liver injury. We examined pro-inflammatory cytokine-stimulated hepatocytes as a simple in vitro injury model to determine liver-protective effects of statins. We hypothesized that statins are involved in the downregulation of iNOS, resulting in decreased hepatic inflammation. METHODS Hepatocytes were isolated from rats by collagenase perfusion and centrifugation. Primary cultured hepatocytes were treated with interleukin (IL)-1β in the presence or absence of fluvastatin. The induction of iNOS and its signaling pathway were analyzed. RESULTS IL-1β produced increased levels of NO. This effect was inhibited by fluvastatin, which exerted its maximal effects at 100 μM. Fluvastatin decreased the levels of iNOS protein and its mRNA expression. Fluvastatin had no effects on IκB degradation and nuclear factor-κB activation. However, fluvastatin inhibited the upregulation of type I IL-1 receptor mRNA and protein expression. Transfection experiments demonstrated that fluvastatin suppressed iNOS induction by the inhibition of promoter transactivation and mRNA stabilization. Fluvastatin reduced the expression of an iNOS gene antisense-transcript, which is involved in iNOS mRNA stability. CONCLUSION Results indicate that fluvastatin inhibits the induction of iNOS at both transcriptional and post-transcriptional steps, leading to the prevention of NO production. Fluvastatin may provide therapeutic potential in iNOS induction involved in various liver injuries.
Collapse
Affiliation(s)
- Katsuji Tokuhara
- Department of Surgery, Kansai Medical University, Moriguchi, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Natural antisense transcript-targeted regulation of inducible nitric oxide synthase mRNA levels. Nitric Oxide 2013; 30:9-16. [DOI: 10.1016/j.niox.2013.01.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 12/26/2012] [Accepted: 01/14/2013] [Indexed: 12/27/2022]
|
10
|
Yoshigai E, Hara T, Okuyama T, Okumura T, Kaibori M, Kwon AH, Nishizawa M. Characterization of natural antisense transcripts expressed from interleukin 1β-inducible genes in rat hepatocytes. ACTA ACUST UNITED AC 2012. [DOI: 10.7243/2050-0874-1-10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Matsui K, Ozaki T, Oishi M, Tanaka Y, Kaibori M, Nishizawa M, Okumura T, Kwon AH. Active hexose correlated compound inhibits the expression of proinflammatory biomarker iNOS in hepatocytes. Eur Surg Res 2011; 47:274-83. [PMID: 22076046 DOI: 10.1159/000333833] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 09/20/2011] [Indexed: 01/31/2023]
Abstract
BACKGROUND/AIMS Excess production of nitric oxide (NO) by inducible nitric oxide synthase (iNOS) has been implicated as proinflammatory biomarker in liver injury. The application of active hexose correlated compound (AHCC) as a functional food in complementary and alternative medicine has increased. The possibility that AHCC might inhibit iNOS induction was investigated as a potential liver-protective effect. METHODS Hepatocytes were isolated from rats by collagenase perfusion and cultured. Primary cultured hepatocytes were treated with interleukin-1β in the presence or absence of AHCC-sugar fraction (AHCC-SF). RESULTS AND CONCLUSION AHCC-SF inhibited the production of NO and reduced expressions of iNOS mRNA and its protein. AHCC-SF had no effects on either IκB degradation or nuclear factor-κB (NF-κB) activation. In contrast, AHCC-SF inhibited the upregulation of type I interleukin-1 receptor (IL-1RI) through the inhibition of Akt phosphorylation. Transfection experiments with iNOS promoter-luciferase constructs revealed that AHCC-SF reduced the levels of iNOS mRNA at both promoter transactivation and mRNA stabilization steps. AHCC-SF inhibited the expression of iNOS gene antisense transcript, which is involved in iNOS mRNA stabilization. These findings demonstrate that AHCC-SF suppresses iNOS gene expression through a IκB/NF-κB-independent but Akt/IL-1RI-dependent pathway, resulting in the reduction of NO production. AHCC-SF may have therapeutic potential for various liver injuries.
Collapse
Affiliation(s)
- K Matsui
- Department of Surgery, Kansai Medical University, Moriguchi, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Liu MC, Lin TH, Wu TS, Yu FY, Lu CC, Liu BH. Aristolochic acid I suppressed iNOS gene expression and NF-κB activation in stimulated macrophage cells. Toxicol Lett 2011; 202:93-9. [PMID: 21291967 DOI: 10.1016/j.toxlet.2011.01.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 12/15/2010] [Accepted: 01/25/2011] [Indexed: 11/25/2022]
Abstract
Aristolochic acid I (AAI) is a phytotoxin that has been found in various herbal remedies and linked to the development of human carcinogenesis. To investigate the playing role of AAI in the function of macrophages, lipopolysaccharide (LPS)-stimulated macrophage cells RAW264.7 were employed as a model to examine the effect of AAI on the expression of the inducible nitric oxide synthase (iNOS) gene. AAI reduced the expression of iNOS mRNA and protein, as well as the production of NO in LPS-stimulated macrophages. Treatment of transfected macrophages with AAI effectively suppressed the luciferase activities of the iNOS promoter which is activated by LPS. The results of promoter deletion and electrophoretic gel mobility shift assay (EMSA) indicated that the NF-κB binding site at nucleotides -86 to -76 was the major site that was most responsible for the inhibitory effect of AAI. Moreover, the presence of AAI substantially reduced the phosphorylation of the inhibitory κBα (IκBα) protein in LPS-stimulated cultures. AAI also down-regulated the LPS-induction of TNF-α, a NF-κB regulated gene. On the other hand, AAI did not modulate the luciferase activities of reporter construct that contained iNOS mRNA 3'-UTR. Taken together, the data herein suggest that in activated macrophages, AAI effectively down-regulated the expression of iNOS gene by interfering with the activation of NF-κB at the transcription level. The stability of iNOS mRNA was not the target of AAI inhibition.
Collapse
Affiliation(s)
- Ming-Chao Liu
- Department of Biomedical Sciences, Chung Shan Medical University, No. 110, Chien-Kuo N. Road, Section 1, Taichung 40203, Taiwan
| | | | | | | | | | | |
Collapse
|
13
|
Simvastatin-dependent up-regulation of heme oxygenase-1 via mRNA stabilization in human endothelial cells. Eur J Pharm Sci 2010; 41:118-24. [DOI: 10.1016/j.ejps.2010.05.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2010] [Revised: 05/14/2010] [Accepted: 05/31/2010] [Indexed: 11/22/2022]
|
14
|
Pautz A, Art J, Hahn S, Nowag S, Voss C, Kleinert H. Regulation of the expression of inducible nitric oxide synthase. Nitric Oxide 2010; 23:75-93. [PMID: 20438856 DOI: 10.1016/j.niox.2010.04.007] [Citation(s) in RCA: 383] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Accepted: 04/23/2010] [Indexed: 12/13/2022]
Abstract
Nitric oxide (NO) generated by the inducible isoform of nitric oxide synthase (iNOS) is involved in complex immunomodulatory and antitumoral mechanisms and has been described to have multiple beneficial microbicidal, antiviral and antiparasital effects. However, dysfunctional induction of iNOS expression seems to be involved in the pathophysiology of several human diseases. Therefore iNOS has to be regulated very tightly. Modulation of expression, on both the transcriptional and post-transcriptional level, is the major regulation mechanism for iNOS. Pathways resulting in the induction of iNOS expression vary in different cells or species. Activation of the transcription factors NF-kappaB and STAT-1alpha and thereby activation of the iNOS promoter seems to be an essential step for the iNOS induction in most human cells. However, at least in the human system, also post-transcriptional mechanisms involving a complex network of RNA-binding proteins build up by AUF1, HuR, KSRP, PTB and TTP is critically involved in the regulation of iNOS expression. Recent data also implicate regulation of iNOS expression by non-coding RNAs (ncRNAs).
Collapse
Affiliation(s)
- Andrea Pautz
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, D-55101 Mainz, Germany
| | | | | | | | | | | |
Collapse
|
15
|
Toyoda T, Tsukamoto T, Takasu S, Hirano N, Ban H, Shi L, Kumagai T, Tanaka T, Tatematsu M. Pitavastatin fails to lower serum lipid levels or inhibit gastric carcinogenesis in helicobacter pylori-infected rodent models. Cancer Prev Res (Phila) 2009; 2:751-8. [PMID: 19622613 DOI: 10.1158/1940-6207.capr-09-0082] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Statins are commonly used lipid-lowering drugs that reduce the risk of cardiovascular morbidity and mortality. Although recent studies have pointed to chemopreventive effects of statins against various cancers, their efficacy for gastric cancer is unclear. Here, we examined the effects of pitavastatin, a lipophilic statin, on Helicobacter pylori (H. pylori)-associated stomach carcinogenesis and gastritis using Mongolian gerbil and mouse models. The animals were allocated to H. pylori + N-methyl-N-nitrosourea administration (gerbils, 52 weeks) or H. pylori infection alone groups (gerbils and mice, 12 weeks). After H. pylori infection, they were fed basal diets containing 0 to 10 ppm of pitavastatin. The incidences of H. pylori-associated gastric adenocarcinomas and degrees of chronic gastritis were not decreased by pitavastatin compared with those of control values. Expression of interleukin-1beta and tumor necrosis factor-alpha mRNAs in the pyloric mucosa was markedly up-regulated in pitavastatin-treated animals. Furthermore, in the H. pylori-infected groups, serum total cholesterol, triglyceride, and low-density lipoprotein levels were significantly increased by pitavastatin treatment, contrary to expectation. In the short-term study, H. pylori-infected gerbils and mice also showed significant up-regulation of serum triglyceride levels by pitavastatin, whereas total cholesterol was markedly reduced and low-density lipoprotein exhibited a tendency for decrease in noninfected animals. These findings indicate pitavastatin to be ineffective for suppressing gastritis and chemoprevention of gastric carcinogenesis in H. pylori-infected gerbils. Our serologic results also suggest that the H. pylori infection and consequent severe chronic gastritis interfere with the cholesterol-lowering effects of pitavastatin.
Collapse
Affiliation(s)
- Takeshi Toyoda
- Division of Oncological Pathology, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya 464-8681, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Malaguarnera M, Di Rosa M, Nicoletti F, Malaguarnera L. Molecular mechanisms involved in NAFLD progression. J Mol Med (Berl) 2009; 87:679-95. [PMID: 19352614 DOI: 10.1007/s00109-009-0464-1] [Citation(s) in RCA: 214] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 02/26/2009] [Accepted: 03/18/2009] [Indexed: 02/06/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is an emerging metabolic-related disorder characterized by fatty infiltration of the liver in the absence of alcohol consumption. NAFLD ranges from simple steatosis to non-alcoholic steatohepatitis (NASH), which might progress to end-stage liver disease. This progression is related to the insulin resistance, which is strongly linked to the metabolic syndrome consisting of central obesity, diabetes mellitus, and hypertension. Earlier, the increased concentration of intracellular fatty acids within hepatocytes leads to steatosis. Subsequently, multifactorial complex interactions between nutritional factors, lifestyle, and genetic determinants promote necrosis, inflammation, fibrosis, and hepatocellular damage. Up to now, many studies have revealed the mechanism associated with insulin resistance, whereas the mechanisms related to the molecular components have been incompletely characterized. This review aims to assess the potential molecular mediators initiating and supporting the progression of NASH to establish precocious diagnosis and to plan more specific treatment for this disease.
Collapse
|
17
|
Cobalt protoporphyrin inhibition of lipopolysaccharide or lipoteichoic acid-induced nitric oxide production via blocking c-Jun N-terminal kinase activation and nitric oxide enzyme activity. Chem Biol Interact 2009; 180:202-10. [PMID: 19497418 DOI: 10.1016/j.cbi.2009.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 12/26/2008] [Accepted: 01/14/2009] [Indexed: 11/23/2022]
Abstract
In the present study, low doses (0.5, 1, and 2 microM) of cobalt protoporphyrin (CoPP), but not ferric protoporphyrin (FePP) or tin protoporphyrin (SnPP), significantly inhibited lipopolysaccharide (LPS) or lipoteichoic acid (LTA)-induced inducible nitric oxide (iNOS) and nitric oxide (NO) production with an increase in heme oxygenase 1 (HO-1) protein in RAW264.7 macrophages under serum-free conditions. IC(50) values of CoPP inhibition of NO and iNOS protein individually induced by LPS and LTA were around 0.25 and 1.7 microM, respectively. This suggests that CoPP is more sensitive at inhibiting NO production than iNOS protein in response to separate LPS and LTA stimulation. NO inhibition and HO-1 induction by CoPP were blocked by the separate addition of fetal bovine serum (FBS) and bovine serum albumin (BSA). Decreasing iNOS/NO production and increasing HO-1 protein by CoPP were observed with CoPP pretreatment, CoPP co-treatment, and CoPP post-treatment with LPS and LTA stimulation. LPS- and LTA-induced NOS/NO productions were significantly suppressed by the JNK inhibitor, SP600125, but not by the ERK inhibitor, PD98059, through a reduction in JNK protein phosphorylation. Transfection of a dominant negative JNK plasmid inhibited LPS- and LTA-induced iNOS/NO production and JNK protein phosphorylation, suggesting that JNK activation is involved in LPS- and LTA-induced iNOS/NO production. Additionally, CoPP inhibition of LPS- and LTA-induced JNK, but not ERK, protein phosphorylation was identified in RAW264.7 cells. Furthermore, CoPP significantly reduced NO production in a cell-mediated, but not cell-free, iNOS enzyme activity assay accompanied by HO-1 induction. However, attenuation of HO-1 protein stimulated by CoPP via transfection of HO-1 siRNA did not affect NO's inhibition of CoPP against LPS stimulation. CoPP effectively suppressing LPS- and LTA-induced iNOS/NO production through blocking JNK activation and iNOS enzyme activity via a HO-1 independent manner is first demonstrated herein.
Collapse
|
18
|
Mikael LG, Rozen R. Homocysteine modulates the effect of simvastatin on expression of ApoA-I and NF-kappaB/iNOS. Cardiovasc Res 2008; 80:151-8. [PMID: 18540024 DOI: 10.1093/cvr/cvn157] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AIMS Statins can ameliorate atherosclerosis by inhibition of cholesterol biosynthesis or by modulation of inflammation. In earlier work, we showed that homocysteine (Hcy) reduced synthesis of apolipoprotein A-I (ApoA-I). Our goal in this study was to determine whether Hcy could interfere with the ability of simvastatin to increase ApoA-I synthesis or to modify statin-dependent regulation of inflammatory factors. METHODS AND RESULTS Human HepG2 hepatocarcinoma cells and murine RAW264.7 macrophages were treated with simvastatin, with and without Hcy, to examine the expression of ApoA-I and nuclear factor-kappaB (NF-kappaB) or the NF-kappaB target, inducible nitric-oxide synthase (iNOS), respectively. Mice with methylenetetrahydrofolate reductase (Mthfr) deficiency, an animal model of hyperhomocysteinemia, were administered simvastatin (in diets or by injection) for in vivo assessment of these interactions. In HepG2 cells, Hcy reduced the statin-dependent increases in ApoA-I protein, mRNA, and ApoA-I promoter activity. In RAW264.7 macrophages, simvastatin decreased, whereas Hcy increased, the expression of pro-inflammatory NF-kappaB protein; in the presence of both Hcy and simvastatin, the pro-inflammatory effect of Hcy prevailed. Hcy increased mRNA levels of iNOS in the macrophage line; the combination of Hcy and simvastatin resulted in a trend towards greater induction. In mouse studies, simvastatin decreased cholesterol levels, but levels of ApoA-I in Mthfr-deficient mice remained lower than those in Mthfr(+/+) mice. Simvastatin injection increased iNOS protein and mRNA levels in peripheral blood of hyperhomocysteinemic Mthfr-deficient mice, but not in Mthfr(+/+) mice. The drug also increased MTHFR protein in cells and mouse liver, an effect that was modified by Hcy. CONCLUSION These findings provide a link between statins and folate-dependent Hcy metabolism, and suggest that Hcy interferes with some anti-atherogenic and anti-inflammatory properties of simvastatin. Our work may have clinical relevance for hyperhomocysteinemic individuals on statin therapy.
Collapse
Affiliation(s)
- Leonie G Mikael
- Department of Human Genetics, McGill University, Montreal Children's Hospital Research Institute, 4060 Ste. Catherine West, Suite 241, Montréal, Quebec, Canada H3Z 2Z3
| | | |
Collapse
|