1
|
Oxidative Stress Orchestrates MAPK and Nitric-Oxide Synthase Signal. Int J Mol Sci 2020; 21:ijms21228750. [PMID: 33228180 PMCID: PMC7699490 DOI: 10.3390/ijms21228750] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 12/15/2022] Open
Abstract
Reactive oxygen species (ROS) are not only harmful to cell survival but also essential to cell signaling through cysteine-based redox switches. In fact, ROS triggers the potential activation of mitogen-activated protein kinases (MAPKs). The 90 kDa ribosomal S6 kinase 1 (RSK1), one of the downstream mediators of the MAPK pathway, is implicated in various cellular processes through phosphorylating different substrates. As such, RSK1 associates with and phosphorylates neuronal nitric oxide (NO) synthase (nNOS) at Ser847, leading to a decrease in NO generation. In addition, the RSK1 activity is sensitive to inhibition by reversible cysteine-based redox modification of its Cys223 during oxidative stress. Aside from oxidative stress, nitrosative stress also contributes to cysteine-based redox modification. Thus, the protein kinases such as Ca2+/calmodulin (CaM)-dependent protein kinase I (CaMKI) and II (CaMKII) that phosphorylate nNOS could be potentially regulated by cysteine-based redox modification. In this review, we focus on the role of post-translational modifications in regulating nNOS and nNOS-phosphorylating protein kinases and communication among themselves.
Collapse
|
2
|
Kouznetsova VL, Kim E, Romm EL, Zhu A, Tsigelny IF. Recognition of early and late stages of bladder cancer using metabolites and machine learning. Metabolomics 2019; 15:94. [PMID: 31222577 DOI: 10.1007/s11306-019-1555-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 06/10/2019] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Bladder cancer (BCa) is one of the most common and aggressive cancers. It is the sixth most frequently occurring cancer in men and its rate of occurrence increases with age. The current method of BCa diagnosis includes a cystoscopy and biopsy. This process is expensive, unpleasant, and may have severe side effects. Recent growth in the power and accessibility of machine-learning software has allowed for the development of new, non-invasive diagnostic methods whose accuracy and sensitivity are uncompromising to function. OBJECTIVES The goal of this research was to elucidate the biomarkers including metabolites and corresponding genes for different stages of BCa, show their distinguishing and common features, and create a machine-learning model for classification of stages of BCa. METHODS Sets of metabolites for early and late stages, as well as common for both stages were analyzed using MetaboAnalyst and Ingenuity® Pathway Analysis (IPA®) software. Machine-learning methods were utilized in the development of a binary classifier for early- and late-stage metabolites of BCa. Metabolites were quantitatively characterized using EDragon 1.0 software. The two modeling methods used are Multilayer Perceptron (MLP) and Stochastic Gradient Descent (SGD) with a logistic regression loss function. RESULTS We explored metabolic pathways related to early-stage BCa (Galactose metabolism and Starch and sucrose metabolism) and to late-stage BCa (Glycine, serine, and threonine metabolism, Arginine and proline metabolism, Glycerophospholipid metabolism, and Galactose metabolism) as well as those common to both stages pathways. The central metabolite impacting the most cancerogenic genes (AKT, EGFR, MAPK3) in early stage is D-glucose, while late-stage BCa is characterized by significant fold changes in several metabolites: glycerol, choline, 13(S)-hydroxyoctadecadienoic acid, 2'-fucosyllactose. Insulin was also seen to play an important role in late stages of BCa. The best performing model was able to predict metabolite class with an accuracy of 82.54% and the area under precision-recall curve (PRC) of 0.84 on the training set. The same model was applied to three separate sets of metabolites obtained from public sources, one set of the late-stage metabolites and two sets of the early-stage metabolites. The model was better at predicting early-stage metabolites with accuracies of 72% (18/25) and 95% (19/20) on the early sets, and an accuracy of 65.45% (36/55) on the late-stage metabolite set. CONCLUSION By examining the biomarkers present in the urine samples of BCa patients as compared with normal patients, the biomarkers associated with this cancer can be pinpointed and lead to the elucidation of affected metabolic pathways that are specific to different stages of cancer. Development of machine-learning model including metabolites and their chemical descriptors made it possible to achieve considerable accuracy of prediction of stages of BCa.
Collapse
Affiliation(s)
- Valentina L Kouznetsova
- Moores Cancer Center, UC San Diego, San Diego, USA
- San Diego Supercomputer Center, UC San Diego, San Diego, USA
| | - Elliot Kim
- REHS Program UC San Diego, San Diego, USA
| | | | - Alan Zhu
- REHS Program UC San Diego, San Diego, USA
| | - Igor F Tsigelny
- Moores Cancer Center, UC San Diego, San Diego, USA.
- San Diego Supercomputer Center, UC San Diego, San Diego, USA.
- Department of Neurosciences, UC San Diego, San Diego, USA.
- CureMatch Inc., San Diego, USA.
| |
Collapse
|
3
|
Song Q, Fan C, Wang P, Li Y, Yang M, Yu SY. Hippocampal CA1 βCaMKII mediates neuroinflammatory responses via COX-2/PGE2 signaling pathways in depression. J Neuroinflammation 2018; 15:338. [PMID: 30526621 PMCID: PMC6286788 DOI: 10.1186/s12974-018-1377-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/26/2018] [Indexed: 02/07/2023] Open
Abstract
Background Neuroinflammation has recently emerged as a critical risk factor in the pathophysiology of depression. However, the underlying molecular mechanisms and the development of novel therapeutic strategies as means to target these inflammatory pathways for use in the treatment of depression remain unresolved. In the present study, we aimed to investigate the molecular events of neuroinflammation as related to its induction of depression-like behaviors. Methods Chronic unpredictable mild stress (CUMS) or lipopolysaccharide (LPS) was used to induce depression-like behaviors in rats. The inflammatory factors and related proteins were verified by RT-PCR, immunoblotting, and immunofluorescence assay. In vivo intracerebral injection of adenovirus-associated virus (AAV) in rats was used to overexpress or block the function of the β form of the calcium/calmodulin-dependent protein kinase type II (βCaMKII). In vivo intracerebroventricular injection of SB203580 was used to block p38 mitogen-activated protein kinase (MAPK). Finally, the prostaglandin E2 (PGE2) concentration was verified by using enzyme-linked assay kit. Results The expression of cyclo-oxygenase (COX)-2, which is responsible for production of the pro-inflammatory factor PGE2 and thus glial activation, was increased in the CA1 hippocampus in a rat model of depression. Further, the βCaMKII in CA1 was significantly upregulated in depressed rats, while antidepressant treatment downregulated this kinase. Overexpression of βCaMKII via infusion of a constructed AAV-βCaMKII into the CA1 region resulted in phosphorylation of the p38 MAPK and the activating transcription factor 2 (ATF2). These effects were accompanied by an enhanced activity of the COX-2/PGE2 pathway and effectively induced core symptoms of depression. Conversely, knockdown of βCaMKII within the CA1 region reversed these inflammation-related biochemical parameters and significantly rescued depression symptoms. Conclusion These results demonstrate that βCaMKII can act as a critical regulator in depression via activating neuroinflammatory pathways within the CA1 region. Moreover, this study provides new perspectives on molecular targets and drug therapies for future investigation in the treatment of depression. Electronic supplementary material The online version of this article (10.1186/s12974-018-1377-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qiqi Song
- Department of Physiology, School of Basic Medical Sciences, Shandong University, 44 Wenhuaxilu Road, Jinan, 250012, Shandong Province, People's Republic of China
| | - Cuiqin Fan
- Department of Physiology, School of Basic Medical Sciences, Shandong University, 44 Wenhuaxilu Road, Jinan, 250012, Shandong Province, People's Republic of China
| | - Peng Wang
- Department of Physiology, School of Basic Medical Sciences, Shandong University, 44 Wenhuaxilu Road, Jinan, 250012, Shandong Province, People's Republic of China
| | - Ye Li
- Department of Physiology, School of Basic Medical Sciences, Shandong University, 44 Wenhuaxilu Road, Jinan, 250012, Shandong Province, People's Republic of China
| | - Mu Yang
- Department of Physiology, School of Basic Medical Sciences, Shandong University, 44 Wenhuaxilu Road, Jinan, 250012, Shandong Province, People's Republic of China
| | - Shu Yan Yu
- Department of Physiology, School of Basic Medical Sciences, Shandong University, 44 Wenhuaxilu Road, Jinan, 250012, Shandong Province, People's Republic of China. .,Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, 44 Wenhuaxilu Road, Jinan, 250012, Shandong Province, People's Republic of China.
| |
Collapse
|
4
|
Redox signal regulation via nNOS phosphorylation at Ser847 in PC12 cells and rat cerebellar granule neurons. Biochem J 2014; 459:251-63. [PMID: 24499461 DOI: 10.1042/bj20131262] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Phosphorylation is considered a main mechanism modulating nNOS (neuronal nitric oxide synthase) function to reduce NO production. In the present study, the effects of nNOS phosphorylation on redox signalling, including that of NO, ROS (reactive oxygen species), and 8-nitro-cGMP (8-nitroguanosine 3',5'-cyclic monophosphate), a downstream messenger of redox signalling, were investigated. In vitro experiments revealed that a phosphorylation-mimic mutant of nNOS (Ser847 replaced with aspartic acid, 847D) increased uncoupling to produce a superoxide. In addition, nicotine, which triggers an influx of Ca2+, induced more ROS and 8-nitro-cGMP production in 847D-expressing PC12 cells than WT (wild-type)-expressing cells. Additionally, nicotine-induced phosphorylation of nNOS at Ser847 and increased ROS and 8-nitro-cGMP production in rat CGNs (cerebellar granule neurons). In CGNs, the NOS (nitric oxide synthase) inhibitor L-NAME (NG-nitro-L-arginine methyl ester) and superoxide dismutase completely inhibited ROS and 8-nitro-cGMP production, whereas the CaMK (Ca2+/calmodulin-dependent protein kinase) inhibitor KN93 mildly reduced this effect. Nicotine induced HO-1 (haem oxygenase 1) expression in CGNs and showed cytoprotective effects against apoptosis. Moreover, 8-nitro-cGMP treatment showed identical effects that were attenuated by KN93 pre-treatment. The present paper provides the first substantial corroboration for the biological effects of nNOS phosphorylation at Ser847 on redox signalling, including ROS and intracellular 8-nitro-cGMP generation in neurons, which possibly play roles in neuroprotection.
Collapse
|
5
|
Cossenza M, Socodato R, Portugal CC, Domith ICL, Gladulich LFH, Encarnação TG, Calaza KC, Mendonça HR, Campello-Costa P, Paes-de-Carvalho R. Nitric oxide in the nervous system: biochemical, developmental, and neurobiological aspects. VITAMINS AND HORMONES 2014; 96:79-125. [PMID: 25189385 DOI: 10.1016/b978-0-12-800254-4.00005-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nitric oxide (NO) is a very reactive molecule, and its short half-life would make it virtually invisible until its discovery. NO activates soluble guanylyl cyclase (sGC), increasing 3',5'-cyclic guanosine monophosphate levels to activate PKGs. Although NO triggers several phosphorylation cascades due to its ability to react with Fe II in heme-containing proteins such as sGC, it also promotes a selective posttranslational modification in cysteine residues by S-nitrosylation, impacting on protein function, stability, and allocation. In the central nervous system (CNS), NO synthesis usually requires a functional coupling of nitric oxide synthase I (NOS I) and proteins such as NMDA receptors or carboxyl-terminal PDZ ligand of NOS (CAPON), which is critical for specificity and triggering of selected pathways. NO also modulates CREB (cAMP-responsive element-binding protein), ERK, AKT, and Src, with important implications for nerve cell survival and differentiation. Differences in the regulation of neuronal death or survival by NO may be explained by several mechanisms involving localization of NOS isoforms, amount of NO being produced or protein sets being modulated. A number of studies show that NO regulates neurotransmitter release and different aspects of synaptic dynamics, such as differentiation of synaptic specializations, microtubule dynamics, architecture of synaptic protein organization, and modulation of synaptic efficacy. NO has also been associated with synaptogenesis or synapse elimination, and it is required for long-term synaptic modifications taking place in axons or dendrites. In spite of tremendous advances in the knowledge of NO biological effects, a full description of its role in the CNS is far from being completely elucidated.
Collapse
Affiliation(s)
- Marcelo Cossenza
- Programa de Neurociências, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil; Departamento de Fisiologia e Farmacologia, Instituto Biomédico, Universidade Federal Fluminense, Rio de Janeiro, Brazil
| | - Renato Socodato
- Programa de Neurociências, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Camila C Portugal
- Programa de Neurociências, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Ivan C L Domith
- Programa de Neurociências, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Luis F H Gladulich
- Programa de Neurociências, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Thaísa G Encarnação
- Programa de Neurociências, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Karin C Calaza
- Programa de Neurociências, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil; Departamento de Neurobiologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Henrique R Mendonça
- Programa de Neurociências, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Paula Campello-Costa
- Programa de Neurociências, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil; Departamento de Neurobiologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Roberto Paes-de-Carvalho
- Programa de Neurociências, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil; Departamento de Neurobiologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil.
| |
Collapse
|