1
|
Wang L, Lu D, Wang X, Wang Z, Li W, Chen G. The effects of nitric oxide in Alzheimer's disease. Med Gas Res 2024; 14:186-191. [PMID: 39073326 DOI: 10.4103/2045-9912.385939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/30/2023] [Indexed: 07/30/2024] Open
Abstract
Alzheimer's disease (AD), the most prevalent cause of dementia, is a progressive neurodegenerative condition that commences subtly and inexorably worsens over time. Despite considerable research, a specific drug that can fully cure or effectively halt the progression of AD remains elusive. Nitric oxide (NO), a crucial signaling molecule in the nervous system, is intimately associated with hallmark pathological changes in AD, such as amyloid-beta deposition and tau phosphorylation. Several therapeutic strategies for AD operate through the nitric oxide synthase/NO system. However, the potential neurotoxicity of NO introduces an element of controversy regarding its therapeutic utility in AD. This review focuses on research findings concerning NO's role in experimental AD and its underlying mechanisms. Furthermore, we have proposed directions for future research based on our current comprehension of this critical area.
Collapse
Affiliation(s)
- Lingling Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu Province, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| | - Dengfeng Lu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu Province, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| | - Xiaodong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu Province, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| | - Zongqi Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu Province, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| | - Wen Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu Province, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu Province, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
2
|
Li N, Mao J, Wang M, Qi J, Jiang Z, Li Y, Yan G, Hu Y, Li S, Sun H, Ding L. Transplantation of human endometrial perivascular stem cells with hydroxy saffron yellow A promotes uterine repair in rats. Stem Cell Res Ther 2024; 15:217. [PMID: 39020406 PMCID: PMC11256499 DOI: 10.1186/s13287-024-03821-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/27/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND Intrauterine adhesions (IUAs) jeopardise uterine function in women, which is a great challenge in the clinic. Previous studies have shown that endometrial perivascular cells (En-PSCs) can improve the healing of scarred uteri and that hydroxysafflor yellow A (HSYA) promotes angiogenesis. The purpose of this study was to observe whether the combination of En-PSCs with HSYA could improve the blood supply and fertility in the rat uterus after full-thickness injury. METHODS En-PSCs were sorted by flow cytometry, and the effect of HSYA on the proliferation and angiogenesis of the En-PSCs was detected using CCK-8 and tube formation assays. Based on a previously reported rat IUA model, the rat uteri were sham-operated, spontaneously regenerated, or treated with collagen-loaded PBS, collagen-loaded HSYA, collagen-loaded En-PSCs, or collagen-loaded En-PSCs with HSYA, and then collected at both 30 and 90 days postsurgery. HE staining and Masson staining were used to evaluate uterine structure and collagen fibre deposition, and immunohistochemical staining for α-SMA and vWF was used to evaluate myometrial regeneration and neovascularization in each group. A fertility assay was performed to detect the recovery of pregnancy function in each group. RNA-seq was performed to determine the potential mechanism underlying En-PSCs/HSYA treatment. Immunofluorescence, tube formation assays, and Western blot were used to validate the molecular mechanism involved. RESULTS The transplantation of Collagen/En-PSCs/HSYA markedly promoted uterine repair in rats with full-thickness injury by reducing fibrosis, increasing endometrial thickness, regenerating myometrium, promoting angiogenesis, and facilitated live births. RNA sequencing results suggested that En-PSCs/HSYA activated the NRG1/ErbB4 signaling pathway. In vitro tube formation experiments revealed that the addition of an ErbB inhibitor diminished the tube formation ability of cocultured En-PSCs and HUVECs. Western blot results further showed that elevated levels of NRG1 and ErbB4 proteins were detected in the Collagen/En-PSCs/HSYA group compared to the Collagen/En-PSCs group. These collective results suggested that the beneficial effects of the transplantation of Collagen/En-PSCs/HSYA might be attributed to the modulation of the NRG1/ErbB4 signaling pathway. CONCLUSIONS The combination of En-PSCs/HSYA facilitated morphological and functional repair in rats with full-thickness uterine injury and may promote endometrial angiogenesis by regulating the NRG1/ErbB4 signaling pathway.
Collapse
Affiliation(s)
- Ning Li
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, China
| | - Jialian Mao
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, China
| | - Miaomiao Wang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, China
| | - Jiahui Qi
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210008, China
| | - Zhiwei Jiang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, China
| | - Yifan Li
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Guijun Yan
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Yali Hu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Shiyuan Li
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
| | - Haixiang Sun
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China.
| | - Lijun Ding
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, China.
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210008, China.
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China.
- Clinical Center for Stem Cell Research, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| |
Collapse
|
3
|
Li X, Yang Y, Feng P, Wang H, Zheng M, Zhu Y, Zhong K, Hu J, Ye Y, Lu L, Zhao Q. Quercetin improves the protection of hydroxysafflor yellow a against cerebral ischemic injury by modulating of blood-brain barrier and src-p-gp-mmp-9 signalling. Heliyon 2024; 10:e31002. [PMID: 38803916 PMCID: PMC11128878 DOI: 10.1016/j.heliyon.2024.e31002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/05/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024] Open
Abstract
Protection of the structural and functional integrity of the blood-brain barrier (BBB) is crucial for treating ischemic stroke (IS). Hydroxysafflor yellow A (HSYA) and quercetin (Quer), two main active components in the edible and medicinal plant Carthamus tinctorius L., have been reported to exhibit neuroprotective effects. We investigated the anti-IS and BBB-protective properties of HSYA and Quer and the underlying mechanisms. They decreased neurological deficits in middle cerebral artery occlusion (MCAO) mice, while their combination showed better effects. Importantly, HSYA and Quer ameliorated BBB permeability. Their effects on reduction of both EB leakage and infarct volume were similar, which may contribute to improved locomotor activities. Moreover, HSYA and Quer showed protective effects for hCMEC/D3 monolayer against oxygen-glucose deprivation. Src, p-Src, MMP-9, and P-gp were associated with ingredients treatments. Furthermore, molecular docking and molecular dynamics simulations revealed stable and tight binding modes of ingredients with Src and P-gp. The current study supports the potential role of HSYA, Quer, and their combination in the treatment of IS by regulating BBB integrity.
Collapse
Affiliation(s)
- Xiang Li
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 311399, China
| | - Yuanxiao Yang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 311399, China
| | - Pinpin Feng
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, China
| | - Hongwei Wang
- Department of Anesthesiology, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, China
| | - Mingzhi Zheng
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 311399, China
| | - Yiliang Zhu
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 311399, China
| | - Kai Zhong
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 311399, China
| | - Jue Hu
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 311399, China
| | - Yilu Ye
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 311399, China
| | - Linhuizi Lu
- Department of Clinical Medicine, Hangzhou Medical College, Hangzhou, 311399, China
| | - Qinqin Zhao
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, China
| |
Collapse
|
4
|
Sayed AM, Gohar OM, Abd-Alhameed EK, Hassanein EHM, Ali FEM. The importance of natural chalcones in ischemic organ damage: Comprehensive and bioinformatic analysis review. J Food Biochem 2022; 46:e14320. [PMID: 35857486 DOI: 10.1111/jfbc.14320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 11/26/2022]
Abstract
Over the last few decades, extensive research has been conducted, yielding a detailed account of thousands of newly discovered compounds of natural origin and their biological activities, all of which have the potential to be used for a wide range of therapeutic purposes. There are multiple research papers denoting the central objective of chalcones, which have been shown to have therapeutic potential against various forms of ischemia. The various aspects of chalcones are discussed in this review regarding molecular mechanisms involved in the promising anti-ischemic potential of these chalcones. The main mechanisms involved in these protective effects are Nrf2/Akt activation and NF-κB/TLR4 suppression. Furthermore, in-silico studies were carried out to discover the probable binding of these chalcones to Keap-1 (an inhibitor of Nrf2), Akt, NF-κB, and TLR4 protein molecules. Besides, network pharmacology analysis was conducted to predict the interacting partners of these signals. The obtained results indicated that Nrf2, Akt, NF-κB, and TLR4 are involved in the beneficial anti-ischemic actions of chalcones. Conclusively, the present findings show that chalcones as anti-ischemic agents have a valid rationale. The discussed studies will provide a comprehensive viewpoint on chalcones and can help to optimize their effects in different ischemia. PRACTICAL APPLICATIONS: Ischemic organ damage is an unavoidable pathological condition with a high worldwide incidence. According to the current research progress, natural chalcones have been proved to treat and/or prevent various types of ischemic organ damage by alleviating oxidative stress, inflammation, and apoptosis by different molecular mechanisms. This article displays the comprehensive research progress and the molecular basis of ischemic organ damage pathophysiology and introduces natural chalcones' mechanism in the ischemic organ condition.
Collapse
Affiliation(s)
- Ahmed M Sayed
- Biochemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, Assiut, Egypt
| | - Osama M Gohar
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
| | - Esraa K Abd-Alhameed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| |
Collapse
|
5
|
Scheid S, Goeller M, Baar W, Wollborn J, Buerkle H, Schlunck G, Lagrèze W, Goebel U, Ulbrich F. Inhalative as well as Intravenous Administration of H 2S Provides Neuroprotection after Ischemia and Reperfusion Injury in the Rats' Retina. Int J Mol Sci 2022; 23:5519. [PMID: 35628328 PMCID: PMC9143628 DOI: 10.3390/ijms23105519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Neuronal ischemia-reperfusion injury (IRI), such as it can occur in glaucoma or strokes, is associated with neuronal cell death and irreversible loss of function of the affected tissue. Hydrogen sulfide (H2S) is considered a potentially neuroprotective substance, but the most effective route of application and the underlying mechanism remain to be determined. METHODS Ischemia-reperfusion injury was induced in rats by a temporary increase in intraocular pressure (1 h). H2S was then applied by inhalation (80 ppm at 0, 1.5, and 3 h after reperfusion) or by intravenous administration of the slow-releasing H2S donor GYY 4137. After 24 h, the retinas were harvested for Western blotting, qPCR, and immunohistochemical staining. Retinal ganglion cell survival was evaluated 7 days after ischemia. RESULTS Both inhalative and intravenously delivered H2S reduced retinal ganglion cell death with a better result from inhalative application. H2S inhalation for 1.5 h, as well as GYY 4137 treatment, increased p38 phosphorylation. Both forms of application enhanced the extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation, and inhalation showed a significant increase at all three time points. H2S treatment also reduced apoptotic and inflammatory markers, such as caspase-3, intracellular adhesion molecule 1 (ICAM-1), vascular endothelial growth factor (VEGF), and inducible nitric oxide synthase (iNOS). The protective effect of H2S was partly abolished by the ERK1/2 inhibitor PD98059. Inhalative H2S also reduced the heat shock response including heme oxygenase (HO-1) and heat shock protein 70 (HSP-70) and the expression of radical scavengers such as superoxide dismutases (SOD1, SOD2) and catalase. CONCLUSION Hydrogen sulfide acts, at least in part, via the mitogen-activated protein kinase (MAPK) ERK1/2 to reduce apoptosis and inflammation. Both inhalative H2S and intravenous GYY 4137 administrations can improve neuronal cell survival.
Collapse
Affiliation(s)
- Stefanie Scheid
- Department of Anesthesiology and Critical Care, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (S.S.); (M.G.); (W.B.); (J.W.); (H.B.)
| | - Max Goeller
- Department of Anesthesiology and Critical Care, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (S.S.); (M.G.); (W.B.); (J.W.); (H.B.)
| | - Wolfgang Baar
- Department of Anesthesiology and Critical Care, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (S.S.); (M.G.); (W.B.); (J.W.); (H.B.)
| | - Jakob Wollborn
- Department of Anesthesiology and Critical Care, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (S.S.); (M.G.); (W.B.); (J.W.); (H.B.)
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Woman’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hartmut Buerkle
- Department of Anesthesiology and Critical Care, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (S.S.); (M.G.); (W.B.); (J.W.); (H.B.)
| | - Günther Schlunck
- Eye-Center, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (G.S.); (W.L.)
| | - Wolf Lagrèze
- Eye-Center, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (G.S.); (W.L.)
| | - Ulrich Goebel
- Department of Anesthesiology and Critical Care Medicine, St. Franziskus-Hospital, 48145 Muenster, Germany;
| | - Felix Ulbrich
- Department of Anesthesiology and Critical Care, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (S.S.); (M.G.); (W.B.); (J.W.); (H.B.)
| |
Collapse
|
6
|
LI Y, GE J, YIN Y, HE X, GU J. Hydroxysafflor yellow A (HSYA) improve scars by vivo and vitro study. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.117121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Yan LI
- Nanjing Medical University, China
| | | | | | - Xu HE
- Nanjing Medical University, China
| | | |
Collapse
|
7
|
Lee YC, Kao ST, Cheng CY. Acorus tatarinowii Schott extract reduces cerebral edema caused by ischemia-reperfusion injury in rats: involvement in regulation of astrocytic NKCC1/AQP4 and JNK/iNOS-mediated signaling. BMC Complement Med Ther 2020; 20:374. [PMID: 33298024 PMCID: PMC7726880 DOI: 10.1186/s12906-020-03168-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022] Open
Abstract
Background This study aimed to evaluate the effects of the Acorus tatarinowii Schott [Shi Chang Pu (SCP)] extract administered at the start of 2 h of middle cerebral artery occlusion (MCAo), followed by 3 d of reperfusion, and to determine mechanisms involved in anti-edema effects in the penumbra of the cerebral cortex. Method Rats were intraperitoneally administered the SCP extract at a dose of 0.25 g/kg (SCP-0.25 g), 0.5 g/kg (SCP-0.5 g), or 1 g/kg (SCP-1 g) at the start of MCAo. Result SCP-0.5 g and SCP-1 g treatments effectively reduced the cerebral infarct size, ameliorated cerebral edema, reduced blood–brain barrier permeability, and restored neurological function. SCP-0.5 g and SCP-1 g treatments markedly downregulated the levels of glial fibrillary acidic protein, Na+-K+-2Cl− cotransporter type 1 (NKCC1), aquaporin 4 (AQP4), phospho-c-Jun N-terminal kinase (p-JNK)/JNK, inducible nitric oxide synthase (iNOS), 3-nitrotyrosine, intercellular adhesion molecule-1 (ICAM-1), matrix metalloproteinase-9 (MMP-9), vascular endothelial growth factor-A (VEGF-A), and zonula occluden-1 (ZO-1) and upregulated ZO-3 expression in the penumbra of the cerebral cortex 3 d after reperfusion. Conclusions SCP-0.5 g and SCP-1 g treatments exert neuroprotective effects against cerebral infarction and cerebral edema partially by mitigating astrocytic swelling and blood–brain barrier disruption. Moreover, the anti-cerebral edema effects of SCP extract treatments are possibly associated with the downregulation of astrocytic NKCC1/AQP4 and JNK/iNOS-mediated ICAM-1/MMP-9 signaling in the penumbra of the cerebral cortex 3 d after reperfusion.
Collapse
Affiliation(s)
- Yu-Chen Lee
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, 40402, Taiwan.,Department of Chinese Medicine, China Medical University Hospital 40447, Taichung, Taiwan.,Research Center for Chinese Medicine & Acupuncture, China Medical University, Taichung, 40402, Taiwan
| | - Shung-Te Kao
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Chin-Yi Cheng
- School of Post-baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan. .,Department of Chinese Medicine, Hui-Sheng Hospital 42056, Taichung, Taiwan.
| |
Collapse
|
8
|
Bai X, Wang WX, Fu RJ, Yue SJ, Gao H, Chen YY, Tang YP. Therapeutic Potential of Hydroxysafflor Yellow A on Cardio-Cerebrovascular Diseases. Front Pharmacol 2020; 11:01265. [PMID: 33117148 PMCID: PMC7550755 DOI: 10.3389/fphar.2020.01265] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 07/30/2020] [Indexed: 12/15/2022] Open
Abstract
The incidence rate of cardio-cerebrovascular diseases (CCVDs) is increasing worldwide, causing an increasingly serious public health burden. The pursuit of new promising treatment options is thus becoming a pressing issue. Hydroxysafflor yellow A (HSYA) is one of the main active quinochalcone C-glycosides in the florets of Carthamus tinctorius L., a medical and edible dual-purpose plant. HSYA has attracted much interest for its pharmacological actions in treating and/or managing CCVDs, such as myocardial and cerebral ischemia, hypertension, atherosclerosis, vascular dementia, and traumatic brain injury, in massive preclinical studies. In this review, we briefly summarized the mode and mechanism of action of HSYA on CCVDs based on these preclinical studies. The therapeutic effects of HSYA against CCVDs were presumed to reside mostly in its antioxidant, anti-inflammatory, and neuroprotective roles by acting on complex signaling pathways.
Collapse
Affiliation(s)
- Xue Bai
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Wen-Xiao Wang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Rui-Jia Fu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Shi-Jun Yue
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Huan Gao
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Yan-Yan Chen
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| |
Collapse
|
9
|
A Metabolic Perspective and Opportunities in Pharmacologically Important Safflower. Metabolites 2020; 10:metabo10060253. [PMID: 32560514 PMCID: PMC7344433 DOI: 10.3390/metabo10060253] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 02/07/2023] Open
Abstract
Safflower (Carthamus tinctorius L.) has long been grown as a crop due to its commercial utility as oil, animal feed, and pharmacologically significant secondary metabolites. The integration of omics approaches, including genomics, transcriptomics, metabolomics, and proteomics datasets, has provided more comprehensive knowledge of the chemical composition of crop plants for multiple applications. Knowledge of a metabolome of plant is crucial to optimize the evolution of crop traits, improve crop yields and quality, and ensure nutritional and health factors that provide the opportunity to produce functional food or feedstuffs. Safflower contains numerous chemical components that possess many pharmacological activities including central nervous, cardiac, vascular, anticoagulant, reproductive, gastrointestinal, antioxidant, hypolipidemic, and metabolic activities, providing many other human health benefits. In addition to classical metabolite studies, this review focuses on several metabolite-based working techniques and updates to provide a summary of the current medical applications of safflower.
Collapse
|
10
|
Yu L, Liu Z, He W, Chen H, Lai Z, Duan Y, Cao X, Tao J, Xu C, Zhang Q, Zhao Z, Zhang J. Hydroxysafflor Yellow A Confers Neuroprotection from Focal Cerebral Ischemia by Modulating the Crosstalk Between JAK2/STAT3 and SOCS3 Signaling Pathways. Cell Mol Neurobiol 2020; 40:1271-1281. [PMID: 32060857 DOI: 10.1007/s10571-020-00812-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 01/23/2020] [Indexed: 01/24/2023]
Abstract
Natural bioactive compounds have increasingly proved to be promising in evidence- or target-directed treatment or modification of a spectrum of diseases including cerebral ischemic stroke. Hydroxysafflor yellow A (HSYA), a major active component of the safflower plant, has drawn more interests in recent year for its multiple pharmacological actions in the treatment of cerebrovascular and cardiovascular diseases. Although the Janus kinase signaling, such as JAK2/STAT3 pathway, has been implicated in the modulation of the disease, the inhibition or activation of the pathway that contributed to the neuronal prevention from ischemic damages remains controversial. In this study, a series of experiments were performed to examine the dose- and therapeutic time window-related pharmacological efficacies of HSYA with emphasis on the HSYA-modulated interaction of JAK2/STAT3 and SOCS3 signaling in the MCAO rats. We found that HSYA treatment significantly rescued the neurological and functional deficits in a dose-dependent manner in the MCAO rats within 3 h after ischemia. HSYA treatment with a dosage of 8 mg/kg or higher markedly downregulated the expression of the JAK2-mediated signaling that was activated in response to ischemic insult, while it also promoted the expression of SOCS3 coordinately. In the subsequent experiments with the use of the JAK2 inhibitor WP1066, we found that the treatment of WP1066 alone or combination of WP1066/HSYA all exhibited inhibitory effects on JAK2-mediated signaling, while there was no influence on the SOCS3 activity of corresponding efficacious data in the MCAO rats, suggesting that excessive activation of JAK2/STAT3 might be necessary for HSYA to provoke SOCS3-negative feedback signaling. Taking together, our study demonstrates that HSYA might modulate the crosstalk between JAK2/STAT3 and SOCS3 signaling pathways that eventually contributed to its therapeutic roles against cerebral ischemic stroke.
Collapse
Affiliation(s)
- Lu Yu
- Comprehensive Department of Traditional Chinese Medicine, Putuo Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Zhili Liu
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, 200062, China
| | - Wendi He
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, 200062, China
| | - Huifen Chen
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, China
| | - Zelin Lai
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, 200062, China
| | - Yanhong Duan
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, 200062, China
| | - Xiaohua Cao
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, 200062, China
| | - Jie Tao
- Comprehensive Department of Traditional Chinese Medicine, Putuo Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Chuan Xu
- Department of Neurology, Yueyang Hospital of Integrated Chinese and Western Medicine, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Qiujuan Zhang
- Department of Neurology, Yueyang Hospital of Integrated Chinese and Western Medicine, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Zheng Zhao
- Key Laboratory of Brain Functional Genomics (East China Normal University), Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, 200062, China.
| | - Jun Zhang
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, China.
| |
Collapse
|
11
|
Wang TT, Shi MM, Liao XL, Li YQ, Yuan HX, Li Y, Liu X, Ning DS, Peng YM, Yang F, Mo ZW, Jiang YM, Xu YQ, Li H, Wang M, Ou ZJ, Xia Z, Ou JS. Overexpression of inducible nitric oxide synthase in the diabetic heart compromises ischemic postconditioning. J Mol Cell Cardiol 2019; 129:144-153. [PMID: 30797815 DOI: 10.1016/j.yjmcc.2019.02.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/21/2019] [Accepted: 02/18/2019] [Indexed: 01/07/2023]
Abstract
Ischemia postconditioning (PTC) can reduce myocardial ischemia/reperfusion injury. However, the effectiveness of PTC cardioprotection is reduced or lost in diabetes and the mechanisms are largely unclear. Hyperglycemia can induce overexpression of inducible nitric oxide synthesis (iNOS) in the myocardium of diabetic subjects. However, it is unknown whether or not iNOS especially its overexpression plays an important role in the loss of cardioprotection of PTC in diabetes. C57BL6 and iNOS-/- mice were treated with streptozotocin to induce diabetes. Part of diabetic C57BL6 mice were also treated with an iNOS specific inhibitor, 1400 W. Mice were subjected to myocardial ischemia/ reperfusion with/without PTC. The hemodynamic parameters, plasma levels of cardiac troponin T (cTnT), TNF-α, IL-6 and nitric oxide (NO) were monitored. The myocardial infarct size, superoxide anion (O2-) generation, nitrotyrosine production and apoptosis were measured. The expression of phosphorylated Akt, endothelial NOS (eNOS), iNOS and Erk1/2 in ischemic heart were detected by immunoblot analysis. In diabetic C57BL6 and iNOS-/- mice, the post-ischemic hemodynamics were impaired, the cTnT, TNF-α, IL-6 level, myocardial infarct size, apoptotic index, O2- and nitrotyrosine generation were increased and the Akt/eNOS signal pathways were inhibited. PTC improved hemodynamic parameters, reduced cTnT level, myocardial infarct size, apoptotic index, O2- and nitrotyrosine generation and activated Akt/eNOS and Erk1/2 signal pathways in both non-diabetic C57BL6 and iNOS-/- mice as well as diabetic iNOS-/- mice, but not in diabetic C57BL6 mice. PTC also increased NO production in both non-diabetic and diabetic C57BL6 and iNOS-/- mice, and enhanced iNOS expression in non-diabetic C57BL6 mice. 1400 W restored the cardioprotection of PTC in diabetic C57BL6 mice. Our data demonstrated that PTC reduced myocardial ischemia/reperfusion injury in non-diabetic mice but not C57BL6 diabetic mice. Deletion of iNOS restored the cardioprotection of PTC in diabetic mice. Our findings suggest that iNOS plays a key role in the reduction of cardioprotection of PTC in diabetes and may provide a therapeutic target for diabetic patients.
Collapse
Affiliation(s)
- Tian-Tian Wang
- Division of Cardiac Surgery, Heart center, The First Affiliated Hospital, Sun Yat-sen University, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China; National and Guangdong Province Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, PR China
| | - Mao-Mao Shi
- Division of Cardiac Surgery, Heart center, The First Affiliated Hospital, Sun Yat-sen University, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China; National and Guangdong Province Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, PR China
| | - Xiao-Long Liao
- Division of Cardiac Surgery, Heart center, The First Affiliated Hospital, Sun Yat-sen University, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China
| | - Yu-Quan Li
- Division of Cardiac Surgery, Heart center, The First Affiliated Hospital, Sun Yat-sen University, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China; National and Guangdong Province Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, PR China
| | - Hao-Xiang Yuan
- Division of Cardiac Surgery, Heart center, The First Affiliated Hospital, Sun Yat-sen University, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China; National and Guangdong Province Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, PR China
| | - Yan Li
- Division of Cardiac Surgery, Heart center, The First Affiliated Hospital, Sun Yat-sen University, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China; National and Guangdong Province Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, PR China
| | - Xiang Liu
- Division of Cardiac Surgery, Heart center, The First Affiliated Hospital, Sun Yat-sen University, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China; National and Guangdong Province Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, PR China
| | - Da-Sheng Ning
- Division of Cardiac Surgery, Heart center, The First Affiliated Hospital, Sun Yat-sen University, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China; National and Guangdong Province Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, PR China
| | - Yue-Ming Peng
- Division of Cardiac Surgery, Heart center, The First Affiliated Hospital, Sun Yat-sen University, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China; National and Guangdong Province Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, PR China
| | - Fan Yang
- Division of Cardiac Surgery, Heart center, The First Affiliated Hospital, Sun Yat-sen University, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China; National and Guangdong Province Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, PR China
| | - Zhi-Wei Mo
- Division of Cardiac Surgery, Heart center, The First Affiliated Hospital, Sun Yat-sen University, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China; National and Guangdong Province Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, PR China
| | - Yu-Mei Jiang
- Department of Extracorporeal circulation, Heart center, The First Affiliated Hospital, Sun Yat-sen University, PR China
| | - Ying-Qi Xu
- Division of Cardiac Surgery, Heart center, The First Affiliated Hospital, Sun Yat-sen University, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China
| | - Haobo Li
- Department of Anaesthesiology, The University of Hong Kong, Hong Kong, China
| | - Min Wang
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, PR China
| | - Zhi-Jun Ou
- Division of Hypertension and Vascular Diseases, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, PR China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China; National and Guangdong Province Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, PR China.
| | - Zhengyuan Xia
- Department of Anaesthesiology, The University of Hong Kong, Hong Kong, China.
| | - Jing-Song Ou
- Division of Cardiac Surgery, Heart center, The First Affiliated Hospital, Sun Yat-sen University, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China; National and Guangdong Province Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, PR China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou 510080, PR China.
| |
Collapse
|
12
|
Yu L, Duan Y, Zhao Z, He W, Xia M, Zhang Q, Cao X. Hydroxysafflor Yellow A (HSYA) Improves Learning and Memory in Cerebral Ischemia Reperfusion-Injured Rats via Recovering Synaptic Plasticity in the Hippocampus. Front Cell Neurosci 2018; 12:371. [PMID: 30405354 PMCID: PMC6200869 DOI: 10.3389/fncel.2018.00371] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 09/28/2018] [Indexed: 12/31/2022] Open
Abstract
Hydroxysafflor yellow A (HSYA) is the major active chemical component of the safflower plant flower, which is widely used in Chinese medicine for cerebrovascular and cardiovascular disease treatment. Recent studies have demonstrated that HSYA exerts neuroprotective effect on cerebral ischemia, such as neuronal anti-apoptosis, antioxidant activity and oxygen free radical-scavenging. However, whether and how HSYA has a protective effect on cognitive impairment induced by cerebral ischemia reperfusion remains elusive. In the present study, by using the middle cerebral artery occlusion (MCAO) model, we found that 8 mg/kg and 16 mg/kg HSYA administration by common carotid artery (CCA) injection improved impaired cognitive function in Morris water maze (MWM) and passive avoidance tasks, but not 4 mg/kg HSYA treatment, suggesting that HSYA treatment in a certain concentration can improve cognitive impairment in MCAO rats. Furthermore, we found that 8 mg/kg HSYA treatment rescued the impaired long-term potentiation (LTP) in hippocampus of MCAO rats. Taken together, these results for the first time demonstrate that HSYA has the capacity to protect cognitive function and synaptic plasticity against cerebral ischemia-reperfusion injury, and provide a new insight that HSYA may be a promising alternative for recovery of cognitive dysfunction after brain ischemic injury.
Collapse
Affiliation(s)
- Lu Yu
- Comprehensive Department of Traditional Chinese Medicine, Putuo Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanhong Duan
- Shanghai Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, China
| | - Zheng Zhao
- Shanghai Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, China
| | - Wendi He
- Shanghai Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, China
| | - Ming Xia
- Comprehensive Department of Traditional Chinese Medicine, Putuo Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiujuan Zhang
- Department of Neurology, Yueyang Hospital of Integrated Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaohua Cao
- Shanghai Key Laboratory of Brain Functional Genomics, Ministry of Education, School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
13
|
Hydroxysafflor Yellow A Shows Protection against PPAR γ Inactivation in Nitrosative Neurons. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:9101740. [PMID: 30410641 PMCID: PMC6206554 DOI: 10.1155/2018/9101740] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 08/01/2018] [Accepted: 08/28/2018] [Indexed: 12/16/2022]
Abstract
Peroxynitrite-mediated nitrosative stress in the brain has been associated with various neurodegenerative disorders. Recent evidence highlights peroxisome proliferator-activated receptor γ (PPARγ) as a critical neuroprotective factor in neurodegenerative diseases. Here, we observed the effect of the herb hydroxysafflor yellow A (HSYA) during nitrosative stress in neurons and investigated the mechanism based on PPARγ protection. We found that a single exposure of primary neurons to peroxynitrite donor SIN-1 caused neuronal injury, which was accompanied by the increase of PPARγ nitration status and lack of activation of the receptor, as measured by PPARγ DNA-binding activity, by agonist (15d-PGJ2 or rosiglitazone) stimulation. The crucial role of PPARγ in neuronal defense against nitrosative stress was verified by showing that pretreatment with 15d-PGJ2 or rosiglitazone attenuated SIN-1-induced neuronal injury but pretreatment with GW9662, a PPARγ antagonist, aggravated SIN-1-induced neuronal injury. The addition of HSYA not only inhibited SIN-1-induced neuronal damage but prevented PPARγ nitrative modification and resumed PPARγ activity stimulated by either 15d-PGJ2 or rosiglitazone. Furthermore, HSYA also showed the ability to rescue the neuroprotective effect of 15d-PGJ2 or rosiglitazone when the agonists were coincubated with SIN-1. Finally, in vivo experiments demonstrated that the administration of HSYA also efficiently blocked PPARγ nitration and loss of activity in the SIN-1-injected hippocampus and reversed the increased neuronal susceptibility which was supported by the inhibition of Bcl-2 protein downregulation induced by SIN-1. The results suggest that HSYA protects neurons from nitrosative stress through keeping PPARγ as a functional receptor, allowing a more effective activation of this neuroprotective factor by the endogenous or exogenous agonist. Our findings provide new clues in understanding the role of the neuroprotective potential of the herbal HSYA.
Collapse
|
14
|
Hydroxysafflor Yellow A: A Promising Therapeutic Agent for a Broad Spectrum of Diseases. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:8259280. [PMID: 30356354 PMCID: PMC6176289 DOI: 10.1155/2018/8259280] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/12/2018] [Indexed: 01/13/2023]
Abstract
Hydroxysafflor yellow A (HSYA) is one of the major bioactive and water-soluble compounds isolated from Carthami Flos, the flower of safflower (Carthamus tinctorius L.). As a natural pigment with favorable medical use, HSYA has gained extensive attention due to broad and effective pharmacological activities since first isolation in 1993. In clinic, the safflor yellow injection which mainly contains about 80% HSYA was approved by the China State Food and Drug Administration and used to treat cardiac diseases such as angina pectoris. In basic pharmacology, HSYA has been proved to exhibit a broad spectrum of biological effects that include, but not limited to, cardiovascular effect, neuroprotection, liver and lung protection, antitumor activity, metabolism regulation, and endothelium cell protection. Although a great number of studies have been carried out to prove the pharmacological effects and corresponding mechanisms of HYSA, a systemic review of HYSA has not yet been seen. Here, we provide a comprehensive summarization of the pharmacological effects of HYSA. Together with special attention to mechanisms of actions, this review can serve as the basis for further researches and developments of this medicinal compound.
Collapse
|
15
|
Yu L, Wan HF, Li C, Yang JH, Zhou HF, Wan HT, He Y. Pharmacokinetics of Active Components From Guhong Injection in Normal and Pathological Rat Models of Cerebral Ischemia: A Comparative Study. Front Pharmacol 2018; 9:493. [PMID: 29867497 PMCID: PMC5962683 DOI: 10.3389/fphar.2018.00493] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 04/25/2018] [Indexed: 11/13/2022] Open
Abstract
Background and Objectives: Guhong Injection (GHI) is usually administered for the treatment of stroke in clinics. Aceglutamide and hydroxyl safflower yellow A (HSYA) are its key ingredients for brain protective effect. To investigate the pharmacokinetics of aceglutamide and HSYA under pathological and normal conditions, the pharmacokinetic parameters and characteristics of middle cerebral artery occlusion (MCAO) and normal rats given the same dosage of GHI were studied compared. Methods: 12 SD rats were divided into two groups, namely, MCAO and normal groups. Both groups were treated with GHI in the same dosage. Plasma samples were collected from the jaw vein at different time points and subsequently tested by high-performance liquid chromatography (HPLC). Results: After administration of GHI, both aceglutamide and HSYA were immediately detected in the plasma. Ninety percent of aceglutamide and HSYA was eliminated within 3 h. For aceglutamide, statistically significant differences in the parameters including AUC(0-t), AUC(0-∞), AUMC(0-t), AUMC(0-∞), Cmax (P < 0.01), and Vz (P < 0.05). Meanwhile, compared with the MCAO group, in the normal group, the values of AUC(0-t), AUMC(0-t), VRT(0-t), and Cmax (P < 0.01) for HSYA were significantly higher, whereas the value of MRT(0-t) was significantly lower in the normal group. Conclusions: The in vivo trials based on the different models showed that, the pharmacokinetic behaviors and parameters of aceglutamide and HSYA in GHI were completely different. These results suggest that the pathological damage of ischemia-reperfusion has a significant impact on the pharmacokinetic traits of aceglutamide and HSYA.
Collapse
Affiliation(s)
- Li Yu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hao-Fang Wan
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chang Li
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jie-Hong Yang
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hui-Fen Zhou
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hai-Tong Wan
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu He
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
16
|
Pei JP, Fan LH, Nan K, Li J, Dang XQ, Wang KZ. HSYA alleviates secondary neuronal death through attenuating oxidative stress, inflammatory response, and neural apoptosis in SD rat spinal cord compression injury. J Neuroinflammation 2017; 14:97. [PMID: 28468657 PMCID: PMC5415746 DOI: 10.1186/s12974-017-0870-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/21/2017] [Indexed: 01/08/2023] Open
Abstract
Background Hydroxysafflor yellow A (HSYA) is a major active component of yellow pigment extracted from safflowers; this compound possesses potent neuroprotective effects both in vitro and in vivo. However, underlying mechanism of HSYA is not fully elucidated. The present study investigated the protective effects of HSYA in rat spinal cord compression injury model and related mechanisms involved. Methods Sprague–Dawley rats were divided as Sham, Control, and HSYA groups (n = 30 per group). Spinal cord injury (SCI) model was induced by application of vascular clips (force of 50 g, 1 min) to the dura at T9–T10 level of vertebra. Injured animals were administered with either HSYA (8 mg/kg at 1 and 6 h after injury, then 14 mg/kg, for a total of 7 days at 24-h time intervals) or equal volume of saline by intraperitoneal injection. Results From this experiment, we discovered that SCI in rats resulted in severe trauma, which is characterized by tissue damage, lipid peroxidation, neutrophil infiltration, inflammation mediator release, and neuronal apoptosis. However, HSYA treatment significantly reduced the following: (1) degree of tissue injury (histological score) and edema; (2) neutrophil infiltration (myeloperoxidase activity); (3) oxidative stress (superoxide dismutase, malondialdehyde, and nitric oxide); (4) pro-inflammatory cytokine expression (tumor necrosis factor-α, interleukin-6, inducible nitric oxide synthase, cyclooxygenase-2); (5) nuclear factor-κB activation; (6) apoptosis (terminal deoxynucleotidyl transferase dUTP nick end labeling staining and cysteine-aspartic protease-3 activity). Moreover, in a separate set of experiments, we clearly demonstrated that HSYA treatment significantly ameliorated recovery of limb function (as evaluated by Basso, Beattie, and Bresnahan behavioral recovery scores). Conclusions Treatment with HSYA restrains development of oxidative stress, inflammation response, and apoptotic events associated with SCI of rats, demonstrating that HSYA is a potential neuroprotectant for human SCI therapy.
Collapse
Affiliation(s)
- Jun-Peng Pei
- Department of Orthopaedics, the Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, 710004, Shaanxi Province, People's Republic of China
| | - Li-Hong Fan
- Department of Orthopaedics, the Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, 710004, Shaanxi Province, People's Republic of China.
| | - Kai Nan
- Department of Orthopaedics, the Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, 710004, Shaanxi Province, People's Republic of China
| | - Jia Li
- Department of Orthopaedics, the First Affiliated Hospital of Xi'an Jiaotong University, School of Medicine, Xi'an, 710061, China
| | - Xiao-Qian Dang
- Department of Orthopaedics, the Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, 710004, Shaanxi Province, People's Republic of China
| | - Kun-Zheng Wang
- Department of Orthopaedics, the Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, 710004, Shaanxi Province, People's Republic of China
| |
Collapse
|
17
|
Feng J, Chen X, Shen J. Reactive nitrogen species as therapeutic targets for autophagy: implication for ischemic stroke. Expert Opin Ther Targets 2017; 21:305-317. [DOI: 10.1080/14728222.2017.1281250] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jinghan Feng
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, China
| | - Xingmiao Chen
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, China
| | - Jiangang Shen
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, China
| |
Collapse
|
18
|
Liu F, Guo DD, Tu YH, Xue YR, Gao Y, Guo ML. Identification of reference genes for gene expression normalization in safflower (Carthamus tinctorius). REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2016. [DOI: 10.1016/j.bjp.2016.05.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Tu Y, Xue Y, Guo D, Sun L, Guo M. Carthami flos: a review of its ethnopharmacology, pharmacology and clinical applications. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2015. [DOI: 10.1016/j.bjp.2015.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Abdelsaid M, Prakash R, Li W, Coucha M, Hafez S, Johnson MH, Fagan SC, Ergul A. Metformin treatment in the period after stroke prevents nitrative stress and restores angiogenic signaling in the brain in diabetes. Diabetes 2015; 64:1804-17. [PMID: 25524911 PMCID: PMC4407857 DOI: 10.2337/db14-1423] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 12/11/2014] [Indexed: 12/04/2022]
Abstract
Diabetes impedes vascular repair and causes vasoregression in the brain after stroke, but mechanisms underlying this response are still unclear. We hypothesized that excess peroxynitrite formation in diabetic ischemia/reperfusion (I/R) injury inactivates the p85 subunit of phosphoinositide 3-kinase (PI3K) by nitration and diverts the PI3K-Akt survival signal to the p38-mitogen-activated protein kinase apoptosis pathway. Nitrotyrosine (NY), Akt and p38 activity, p85 nitration, and caspase-3 cleavage were measured in brains from control, diabetic (GK), or metformin-treated GK rats subjected to sham or stroke surgery and in brain microvascular endothelial cells (BMVECs) from Wistar and GK rats subjected to hypoxia/reoxygenation injury. GK rat brains showed increased NY, caspase-3 cleavage, and p38 activation and decreased Akt activation. Metformin attenuated stroke-induced nitrative signaling in GK rats. GK rat BMVECs showed increased basal nitrative stress compared with controls. A second hit by hypoxia/reoxygenation injury dramatically increased the nitration of p85 and activation of p38 but decreased Akt. These effects were associated with impairment of angiogenic response and were restored by treatment with the peroxynitrite scavenger 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrinato iron III chloride or the nitration inhibitor epicatechin. Our results provide evidence that I/R-induced peroxynitrite inhibits survival, induces apoptosis, and promotes peroxynitrite as a novel therapeutic target for the improvement of reparative angiogenesis after stroke in diabetes.
Collapse
Affiliation(s)
- Mohammed Abdelsaid
- Charlie Norwood Veterans Administration Medical Center, Augusta, GA Department of Physiology, Georgia Regents University, Augusta, GA
| | - Roshini Prakash
- Program in Clinical and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, GA
| | - Weiguo Li
- Charlie Norwood Veterans Administration Medical Center, Augusta, GA Department of Physiology, Georgia Regents University, Augusta, GA
| | - Maha Coucha
- Department of Physiology, Georgia Regents University, Augusta, GA
| | - Sherif Hafez
- Charlie Norwood Veterans Administration Medical Center, Augusta, GA Program in Clinical and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, GA
| | | | - Susan C Fagan
- Charlie Norwood Veterans Administration Medical Center, Augusta, GA Program in Clinical and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, GA
| | - Adviye Ergul
- Charlie Norwood Veterans Administration Medical Center, Augusta, GA Department of Physiology, Georgia Regents University, Augusta, GA Program in Clinical and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, GA
| |
Collapse
|
21
|
Hong B, Wang Z, Xu T, Li C, Li W. Matrix solid-phase dispersion extraction followed by high performance liquid chromatography-diode array detection and ultra performance liquid chromatography-quadrupole-time of flight-mass spectrometer method for the determination of the main compounds from Carthamus tinctorius L. (Hong-hua). J Pharm Biomed Anal 2015; 107:464-72. [PMID: 25676855 DOI: 10.1016/j.jpba.2015.01.040] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 01/17/2015] [Accepted: 01/19/2015] [Indexed: 10/24/2022]
Abstract
A simple and low-cost method based on matrix solid-phase dispersion (MSPD) extraction, HPLC separation, diode array detection and UPLC-Q-TOF-MS have been developed for the determination of Hydroxysafflor yellow A (HSYA), Kaempferol and other main compounds in Carthamus tinctorius. The experimental parameters that may affect the MSPD method, including dispersing sorbent, ratio of dispersing sorbent to sample, elution solvent, and volume of the elution solvent were examined and optimized. The optimized conditions were determined to be that silica gel was used as dispersing sorbent, the ratio of silica gel to sample mass was selected to be 3:1, and 10 mL of methanol: water (1:3, v:v) was used as elution solvent. The highest extraction yields of the two compounds were obtained under the optimized conditions. The method showed good linearity (r(2)≥0.999 2) and precision (RSD≤3.4%) for HSYA and Kaempferol, with the limits of detection of 35.2 and 14.5 ng mL(-1), respectively. The recoveries were in the range of 92.62-101.7% with RSD values ranging from 1.5 to 3.5%. At the meanwhile, there were 21 compounds in the extraction by MSPD method were identified by TOF-MS method to improve the quality control for safflower. Comparing to ultrasonic and soxhlet methods, the proposed MSPD procedure was more convenient and less time-consuming with reduced requirements on sample and solvent amounts. The proposed procedure was applied to analyze four real samples that were collected from different localities.
Collapse
Affiliation(s)
- Bo Hong
- Department of Pharmacy, Qiqihar Medical University, Heilongjiang 161006, China
| | - Zhe Wang
- Analysis and Test Center, Qiqihar University, Heilongjiang 161006, China
| | - Tianjiao Xu
- Department of Pharmacy, Qiqihar Medical University, Heilongjiang 161006, China
| | - Chengchong Li
- Department of Pharmacy, Qiqihar Medical University, Heilongjiang 161006, China
| | - Wenjing Li
- Department of Pharmacy, Qiqihar Medical University, Heilongjiang 161006, China.
| |
Collapse
|
22
|
Sun L, Xu YW, Han J, Liang H, Wang N, Cheng Y. 12/15-Lipoxygenase metabolites of arachidonic acid activate PPARγ: a possible neuroprotective effect in ischemic brain. J Lipid Res 2015; 56:502-514. [PMID: 25605873 DOI: 10.1194/jlr.m053058] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The enzyme 12/15-lipoxygenase (LOX) oxidizes various free fatty acids, including arachidonic acid (AA). In the brain, the principal 12/15-LOX metabolites of AA are 12(S)-HETE and 15(S)-HETE. PPARγ is a nuclear receptor whose activation is neuroprotective through its anti-inflammatory properties. In this study, we investigate the involvement of 12(S)- and 15(S)-HETE in the regulation of PPARγ following cerebral ischemia and their effects on ischemia-induced inflammatory response. We show here the increased expression of 12/15-LOX, predominantly in neurons, and elevated production of 12(S)-HETE and 15(S)-HETE in ischemic brain. The exogenous 12(S)- and 15(S)-HETE increase PPARγ protein level, nuclear translocation, and DNA-binding activity in ischemic rats, suggesting the activation of PPARγ. This effect was further confirmed by showing the increased PPARγ transcriptional activity in primary cortical neurons when incubated with 12(S)- or 15(S)-HETE. Moreover, both 12(S)- and 15(S)-HETE potently inhibited the induction of nuclear factor-κB, inducible NO synthase, and cyclooxygenase-2 in ischemic rats, and elicited neuroprotection. The reversal of the effects of 12(S)- and 15(S)-HETE on pro-inflammatory factors by PPARγ antagonist GW9662 indicated their actions were mediated via PPARγ. Thus, the induction of 12(S)- and 15(S)-HETE during brain ischemia suggests that endogenous signals of neuroprotection may be generated.
Collapse
Affiliation(s)
- Li Sun
- Tianjin Medical University General Hospital, Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, 300052, People's Republic of China.
| | - Yan-Wei Xu
- Tianjin Medical University General Hospital, Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, 300052, People's Republic of China
| | - Jing Han
- Tianjin Medical University General Hospital, Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, 300052, People's Republic of China
| | - Hao Liang
- Tianjin Medical University General Hospital, Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, 300052, People's Republic of China
| | - Ning Wang
- Tianjin Medical University General Hospital, Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, 300052, People's Republic of China
| | - Yan Cheng
- Tianjin Medical University General Hospital, Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, 300052, People's Republic of China
| |
Collapse
|
23
|
Zhao S, Lu X, Xiao C, Ning Z, Zeng H, Ding X, Zhang Y, Lu C, Liu Y. Diversified bioactivities of four types of naturally occurring quinochalcones. Fitoterapia 2014; 99:7-20. [DOI: 10.1016/j.fitote.2014.08.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 08/08/2014] [Accepted: 08/20/2014] [Indexed: 10/24/2022]
|