1
|
Gao DD, Liu GQ, Chen YL, Ding N, Zhong JH, Liang GN, Deng WJ, Li PL, Su JR, Wang M, Huang JH, Hu M. Cellular mechanism underlying leptin-induced anion secretion of rat epididymal epithelial cells. Andrology 2024. [PMID: 38778669 DOI: 10.1111/andr.13656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/12/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND A large number of studies have shown that leptin plays an important role in the regulation of fertility via the hypothalamus-pituitary-gonad axis. However, its peripheral function in epididymis was still elusive. OBJECTIVE The purpose of this study was to determine the pro-secretion effect of leptin on the rat epididymal epithelium. MATERIALS AND METHODS In the present study, real-time quantitative polymerase chain reaction, western blot, and immunohistochemical analysis were employed to detect the expression pattern of leptin receptors in rat epididymis. The pro-secretion effect of leptin on epididymal epithelial cells was measured by short-circuit current, and the prostaglandin E2 and cyclic adenosine monophosphate level was evaluated by enzyme-linked immunosorbent assay. RESULTS We verified that the leptin receptor was located on the epididymal epithelium, with a relatively high expression level in corpus and cauda epididymis. Ussing chamber experiments showed that leptin stimulated a significant rise of the short-circuit current in rat epididymal epithelial cells, which could be abolished by the specific leptin receptor antagonist peptide Allo-aca, or by removing the ambient Cl- and HCO3 -. Furthermore, the leptin-stimulated short-circuit current response could be abrogated by blocking the apical cystic fibrosis transmembrane regulator or the basolateral Na+-K+-2Cl- cotransporter. Our pharmacological experiments manifested that interfering with the prostaglandin H synthase-2-prostaglandin E2-EP2/EP4-adenylate cyclase pathways could significantly blunt the cystic fibrosis transmembrane regulator-mediated anion secretion induced by leptin. The enzyme-linked immunosorbent assay demonstrated that leptin could induce a substantial increase in prostaglandin E2 release and cyclic adenosine monophosphate synthesis of primary cultured rat cauda epididymal epithelial cells. Our data also suggested that JAK2, ERK, and PI3K-dependent phosphorylation may be involved in the activation of prostaglandin H synthase-2 and the subsequent prostaglandin E2 production. CONCLUSIONS The present study demonstrated the pro-secretion function of leptin in rat epididymal epithelium via the activation of cystic fibrosis transmembrane regulator and Na+-K+-2Cl- cotransporter, which was dependent on the paracrine/autocrine prostaglandin E2 stimulated EP2/EP4-adenylate cyclase pathways, and thus contributed to the formation of an appropriate microenvironment essential for sperm maturation.
Collapse
Affiliation(s)
- Dong-Dong Gao
- Guangdong Provincial Key Laboratory of Sport and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, China
| | - Guo-Qing Liu
- Guangdong Provincial Key Laboratory of Sport and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, China
| | - Yi-Lin Chen
- Guangdong Provincial Key Laboratory of Sport and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, China
| | - Nan Ding
- Guangdong Provincial Key Laboratory of Sport and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, China
| | - Jia-Hui Zhong
- Guangdong Provincial Key Laboratory of Sport and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, China
| | - Guang-Nan Liang
- Guangdong Provincial Key Laboratory of Sport and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, China
| | - Wei-Ji Deng
- Guangdong Provincial Key Laboratory of Sport and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, China
| | - Pei-Lun Li
- Guangdong Provincial Key Laboratory of Sport and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, China
| | - Jia-Rui Su
- Guangdong Provincial Key Laboratory of Sport and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, China
| | - Ming Wang
- Guangdong Provincial Key Laboratory of Sport and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, China
| | - Jun-Hao Huang
- Guangdong Provincial Key Laboratory of Sport and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, China
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Min Hu
- Guangdong Provincial Key Laboratory of Sport and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, China
| |
Collapse
|
2
|
Silva LDD, Pinheiro JLS, Rodrigues LHM, Santos VMRD, Borges JLF, Oliveira RRD, Maciel LG, Araújo TDSL, Martins CDS, Gomes DA, Lira EC, Souza MHLP, Medeiros JVR, Damasceno ROS. Crucial role of carbon monoxide as a regulator of diarrhea caused by cholera toxin: Evidence of direct interaction with toxin. Biochem Pharmacol 2023; 216:115791. [PMID: 37689274 DOI: 10.1016/j.bcp.2023.115791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
The present study evaluated the role of heme oxygenase 1 (HO-1)/carbon monoxide (CO) pathway in the cholera toxin-induced diarrhea and its possible action mechanism. The pharmacological modulation with CORM-2 (a CO donor) or Hemin (a HO-1 inducer) decreased the intestinal fluid secretion and Cl- efflux, altered by cholera toxin. In contrast, ZnPP (a HO-1 inhibitor) reversed the antisecretory effect of Hemin and potentiated cholera toxin-induced intestinal secretion. Moreover, CORM-2 also prevented the alteration of intestinal epithelial architecture and local vascular permeability promoted by cholera toxin. The intestinal absorption was not altered by any of the pharmacological modulators. Cholera toxin inoculation also increased HO-1 immunoreactivity and bilirubin levels, a possible protective physiological response. Finally, using fluorometric technique, ELISA assay and molecular docking simulations, we show evidence that CO directly interacts with cholera toxin, forming a complex that affects its binding to GM1 receptor, which help explain the antisecretory effect. Thus, CO is an essential molecule for protection against choleric diarrhea and suggests its use as a possible therapeutic tool.
Collapse
Affiliation(s)
- Lorena Duarte da Silva
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, PE, Brazil
| | | | | | | | | | | | | | | | | | - Dayane Aparecida Gomes
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, PE, Brazil
| | - Eduardo Carvalho Lira
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, PE, Brazil
| | | | - Jand Venes Rolim Medeiros
- Biotechnology and Biodiversity Center Research, Parnaíba Delta Federal University, Parnaíba, PI, Brazil
| | | |
Collapse
|
3
|
Gao S, Chen Z, Shi J, Chen Z, Yun D, Li X, Wu X, Sun F. Sperm immotility is associated with epididymis metabolism disorder in mice under obstructive azoospermia. FASEB J 2023; 37:e23081. [PMID: 37410071 DOI: 10.1096/fj.202201862rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 05/15/2023] [Accepted: 06/26/2023] [Indexed: 07/07/2023]
Abstract
Obstructive azoospermia (OA) accounts for approximately 40% of males who suffer from azoospermia of male infertility. Currently, available treatment for OA consists of reproductive tract surgical reconstruction and sperm retrieval from the testis. However, both treatments result in low fertility compared to normal pregnancy, and the main reason remains largely unknown. Previous studies have shown that the quality of sperm retrieved from OA patients is poor compared with normal adult males but without an in-depth study. Herein, we generated a mouse OA model with vasectomy to evaluate sperm quality systematically. Our results showed that the testis had normal spermatogenesis but increased apoptotic activity in both OA patients and mice. More importantly, epididymal morphology was abnormal, with swollen epididymal tubules and vacuole-like principal cells. Especially, sperm retrieved from the epididymis of OA mice showed poor motility and low fertilization ability in vitro. Using mass spectrometry in epididymal fluid, we found differences in the expression of key proteins for sperm maturation, such as Angiotensinogen (AGT), rhophilin-associated tail protein 1 (ROPN1), NPC intracellular cholesterol transporter 2 (NPC2), and prominin 1 (PROM1). Furthermore, our results demonstrated that AGT, secreted by epididymal principal cells, could regulate sperm motility by managing PKCα expression to modify sperm phosphorylation. In conclusion, our data evaluate sperm quality systematically in OA mice and contribute to the understanding between the sperm and epididymis, which may provide novel insight into treating male infertility.
Collapse
Affiliation(s)
- Sheng Gao
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, China
| | - Zhengru Chen
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, China
| | - Jie Shi
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, China
| | - Zifeng Chen
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, China
| | - Damin Yun
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, China
| | - Xinyao Li
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, China
| | - Xiaolong Wu
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fei Sun
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, China
| |
Collapse
|
4
|
Gao DD, Ding N, Deng WJ, Li PL, Chen YL, Guo LM, Liang WH, Zhong JH, Liao JW, Huang JH, Hu M. Aerobic exercises regulate the epididymal anion homeostasis of high-fat diet-induced obese rats through TRPA1-mediated Cl- and HCO3- secretion†. Biol Reprod 2023; 109:53-64. [PMID: 37154585 PMCID: PMC10344602 DOI: 10.1093/biolre/ioad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/19/2023] [Accepted: 05/02/2023] [Indexed: 05/10/2023] Open
Abstract
Aerobic exercises could improve the sperm motility of obese individuals. However, the underlying mechanism has not been fully elucidated, especially the possible involvement of the epididymis in which sperm acquire their fertilizing capacity. This study aims to investigate the benefit effect of aerobic exercises on the epididymal luminal milieu of obese rats. Sprague-Dawley male rats were fed on a normal or high-fat diet (HFD) for 10 weeks and then subjected to aerobic exercises for 12 weeks. We verified that TRPA1 was located in the epididymal epithelium. Notably, aerobic exercises reversed the downregulated TRPA1 in the epididymis of HFD-induced obese rats, thus improving sperm fertilizing capacity and Cl- concentration in epididymal milieu. Ussing chamber experiments showed that cinnamaldehyd (CIN), agonist of TRPA1, stimulated an increase of the short-circuit current (ISC) in rat cauda epididymal epithelium, which was subsequently abolished by removing the ambient Cl- and HCO3-. In vivo data revealed that aerobic exercises increased the CIN-stimulated Cl- secretion rate of epididymal epithelium in obese rats. Pharmacological experiments revealed that blocking cystic fibrosis transmembrane regulator (CFTR) and Ca2+-activated Cl- channel (CaCC) suppressed the CIN-stimulated anion secretion. Moreover, CIN application in rat cauda epididymal epithelial cells elevated intracellular Ca2+ level, and thus activate CACC. Interfering with the PGHS2-PGE2-EP2/EP4-cAMP pathway suppressed CFTR-mediated anion secretion. This study demonstrates that TRPA1 activation can stimulate anion secretion via CFTR and CaCC, which potentially forming an appropriate microenvironment essential for sperm maturation, and aerobic exercises can reverse the downregulation of TRPA1 in the epididymal epithelium of obese rats.
Collapse
Affiliation(s)
- Dong-Dong Gao
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, Guangdong, China
| | - Nan Ding
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, Guangdong, China
| | - Wei-Ji Deng
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, Guangdong, China
| | - Pei-Lun Li
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, Guangdong, China
| | - Yi-Lin Chen
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, Guangdong, China
| | - Lian-Meng Guo
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, Guangdong, China
| | - Wen-Hao Liang
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, Guangdong, China
| | - Jia-Hui Zhong
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, Guangdong, China
| | - Jing-Wen Liao
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, Guangdong, China
| | - Jun-Hao Huang
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, Guangdong, China
- Dr Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Min Hu
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Zhang J, Lin L, Chen X, Wang S, Wei Y, Zhou W, Yang S, Zhou S. Conjunctival Fluid Secretion Impairment via CaCC-CFTR Dysfunction Is the Key Mechanism in Environmental Dry Eye. Int J Mol Sci 2022; 23:ijms232214399. [PMID: 36430877 PMCID: PMC9697764 DOI: 10.3390/ijms232214399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Dry eye disease (DED) is a multifactorial disease with an incidence of approximately 50% worldwide. DED seriously affects quality of life and work. The prevalence of environmental DED (eDED) ranges from 35 to 48%. Conjunctival fluid secretion dysfunction may be one of the major causes of DED. Notably, the Cl- flux corresponds to the conjunctival fluid secretion and could be affected by ATP. Both the cystic fibrosis transmembrane conductance regulator (CFTR) and the Ca2+-activated Cl- channel (CaCC) are Cl- channels involved in epithelial fluid secretion. Conjunctival fluid secretion could be increased by activating P2Y2R (an ATP receptor) in DED. However, the role of the CaCC and CFTR channels regulated by P2Y2R in eDED remains unclear. In this study, we established a rabbit eDED model using a controlled drying system. A Ussing chamber was used to perform a conjunctival short-circuit current induced by ATP to evaluate the reactivity of the ion channels to the ATP. Our results revealed that eDED accompanied by conjunctival fluid secretion impairment was caused by a P2Y2R dysfunction, which is related to CaCC-CFTR signaling in the conjunctiva epithelium. Notably, the coupling effect of the ATP-induced CaCC-CFTR activation and intracellular Ca2+ may represent a promising therapeutic target for treating eDED.
Collapse
Affiliation(s)
- Jinyu Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Limian Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Xiaomin Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Shuyi Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Yuan Wei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Wenliang Zhou
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Shuangjian Yang
- Guangdong Institute for Vision and Eye Research, Guangzhou 510060, China
| | - Shiyou Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
- Correspondence:
| |
Collapse
|
6
|
Gao DD, Huang JH, Ding N, Deng WJ, Li PL, Mai YN, Wu JR, Hu M. Mechanosensitive Piezo1 channel in rat epididymal epithelial cells promotes transepithelial K+ secretion. Cell Calcium 2022; 104:102571. [DOI: 10.1016/j.ceca.2022.102571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 11/28/2022]
|
7
|
Gao DD, Huang JH, Zhang YL, Peng L, Deng WJ, Mai YN, Wu JR, Li PL, Ding N, Huang ZY, Zhu YX, Zhou WL, Hu M. Activation of TRPV4 stimulates transepithelial K+ secretion in rat epididymal epithelium. Mol Hum Reprod 2022; 28:6510948. [PMID: 35040999 DOI: 10.1093/molehr/gaac001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/24/2021] [Indexed: 11/12/2022] Open
Abstract
The maturation of sperms is dependent on the coordinated interactions between sperm and the unique epididymal luminal milieu, which is characterized by high K+ content. This study investigated the involvement of transient receptor potential vanilloid 4 (TRPV4) in the K+ secretion of epididymal epithelium. The expression level and cellular localization of TRPV4 and Ca2+- activated K+ channels (KCa) were analyzed via RT-PCR, real-time quantitative PCR, western blot, and immunofluorescence. The functional role of TRPV4 was investigated using short circuit current (ISC) and intracellular Ca2+ imaging techniques. We found a predominant expression of TRPV4 in the corpus and cauda epididymal epithelium. Activation of TRPV4 with a selective agonist, GSK1016790A, stimulated a transient decrease in the ISC of the epididymal epithelium. The ISC response was abolished by either the TRPV4 antagonists, HC067047 and RN-1734, or the removal of basolateral K+. Simultaneously, the application of GSK1016790A triggered Ca2+ influx in epididymal epithelial cells. Our data also indicated that the big conductance KCa (BK), small conductance KCa (SK), and intermediate conductance KCa (IK) were all expressed in rat epididymis. Pharmacological studies revealed that BK, but not SK and IK, mediated TRPV4-elicited transepithelial K+ secretion. Finally, we demonstrated that TRPV4 and BK were localized in the epididymal epithelium, which showed an increased expression level from caput to cauda regions of rat epididymis. This study implicates that TRPV4 plays an important role in the formation of high K+ concentration in epididymal intraluminal fluid via promoting transepithelial K+ secretion mediated by BK.
Collapse
Affiliation(s)
- Dong-Dong Gao
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, Guangdong, China
| | - Jun-Hao Huang
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, Guangdong, China
| | - Yi-Lin Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lei Peng
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wei-Ji Deng
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, Guangdong, China
| | - You-Nian Mai
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, Guangdong, China
| | - Jia-Rui Wu
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, Guangdong, China
| | - Pei-Lun Li
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, Guangdong, China
| | - Nan Ding
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, Guangdong, China
| | - Zi-Yang Huang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yun-Xin Zhu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wen-Liang Zhou
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Min Hu
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, Guangdong, China
| |
Collapse
|
8
|
Rodrat M, Jantarajit W, Ng DRS, Harvey BSJ, Liu J, Wilkinson WJ, Charoenphandhu N, Sheppard DN. Carbon monoxide-releasing molecules inhibit the cystic fibrosis transmembrane conductance regulator Cl - channel. Am J Physiol Lung Cell Mol Physiol 2020; 319:L997-L1009. [PMID: 32936026 DOI: 10.1152/ajplung.00440.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The gasotransmitter carbon monoxide (CO) regulates fluid and electrolyte movements across epithelial tissues. However, its action on anion channels is incompletely understood. Here, we investigate the direct action of CO on the cystic fibrosis transmembrane conductance regulator (CFTR) by applying CO-releasing molecules (CO-RMs) to the intracellular side of excised inside-out membrane patches from cells heterologously expressing wild-type human CFTR. Addition of increasing concentrations of tricarbonyldichlororuthenium(II) dimer (CORM-2) (1-300 μM) inhibited CFTR channel activity, whereas the control RuCl3 (100 μM) was without effect. CORM-2 predominantly inhibited CFTR by decreasing the frequency of channel openings and, hence, open probability (Po). But, it also reduced current flow through open channels with very fast kinetics, particularly at elevated concentrations. By contrast, the chemically distinct CO-releasing molecule CORM-3 inhibited CFTR by decreasing Po without altering current flow through open channels. Neither depolarizing the membrane voltage nor raising the ATP concentration on the intracellular side of the membrane affected CFTR inhibition by CORM-2. Interestingly, CFTR inhibition by CORM-2, but not by CFTRinh-172, was prevented by prior enhancement of channel activity by the clinically approved CFTR potentiator ivacaftor. Similarly, when added after CORM-2, ivacaftor completely relieved CFTR inhibition. In conclusion, CORM-2 has complex effects on wild-type human CFTR consistent with allosteric inhibition and open-channel blockade. Inhibition of CFTR by CO-releasing molecules suggests that CO regulates CFTR activity and that the gasotransmitter has tissue-specific effects on epithelial ion transport. The action of ivacaftor on CFTR Cl- channels inhibited by CO potentially expands the drug's clinical utility.
Collapse
Affiliation(s)
- Mayuree Rodrat
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom.,Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand.,Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Walailak Jantarajit
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom.,Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand.,Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Demi R S Ng
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Bartholomew S J Harvey
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Jia Liu
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | | | - Narattaphol Charoenphandhu
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand.,Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand.,The Academy of Science, The Royal Society of Thailand, Dusit, Bangkok, Thailand
| | - David N Sheppard
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| |
Collapse
|