1
|
Miranda MI, Alcalá A. Histamine H3 receptor activation in the insular cortex during taste memory conditioning decreases appetitive response but accelerates aversive memory extinction under an ad libitum liquid regimen. Neuroscience 2024; 559:1-7. [PMID: 39128699 DOI: 10.1016/j.neuroscience.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/19/2024] [Accepted: 08/02/2024] [Indexed: 08/13/2024]
Abstract
Conditioned taste aversion (CTA) is a robust associative learning; liquid deprivation during this conditioning allows researchers to obtain readable measures of associative learning. Recent research suggests that thirst could be a crucial motivator that modulates conditioning and memory extinction processes, highlighting the importance of the body's internal state during learning. Furthermore, the histaminergic system is one of the major modulatory systems controlling several behavioral and neurobiological functions, such as feeding, water intake, and nociception. Therefore, this research aimed to assess the effect of H3 histaminergic receptor activation in the insular cortex (IC) during CTA. For this, we conditioned adult male Wistar rats under two regimens: water deprivation and water ad libitum. A classical CTA protocol was used for water deprivation. Before CTA acquisition, 10 μM R-α-methylhistamine (RAMH), an H3 receptor agonist, was injected into the IC. Results showed that RAMH injections decreased CTA in water-deprived rats without affecting the significant aversion conditioning in rats that were given water ad libitum. Moreover, RAMH accelerated the process of aversive memory extinction under ad libitum water conditions. According to our findings, the degree of liquid satiety differentially affected taste-aversive memory formation, and H3 histamine receptors were more involved under water deprivation conditions during acquisition. However, these receptors modulated the strength of aversive conditioning by altering the rate of aversive memory extinction in the absence of deprivation. In conclusion, histaminergic activity in the IC may influence taste memory dynamics through different mechanisms depending on the degree of liquid satiety or deprivation during conditioning.
Collapse
Affiliation(s)
- María-Isabel Miranda
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla No. 3001, Juriquilla, Querétaro, Querétaro 76230, Mexico.
| | - Alejandra Alcalá
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla No. 3001, Juriquilla, Querétaro, Querétaro 76230, Mexico
| |
Collapse
|
2
|
Taste association capabilities differ in high- and low-yawning rats versus outbred Sprague-Dawley rats after prolonged sugar consumption. Anim Cogn 2020; 24:41-52. [PMID: 32681199 DOI: 10.1007/s10071-020-01415-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 06/03/2020] [Accepted: 07/10/2020] [Indexed: 10/23/2022]
Abstract
Yawning is a stereotypical behavior pattern commonly associated with other behaviors such as grooming, sleepiness, and arousal. Several differences in behavioral and neurochemical characteristics have been described in high-yawning (HY) and low-yawning (LY) sublines from Sprague-Dawley (SD) rats that support they had changes in the neural mechanism between sublines. Differences in behavior and neurochemistry observed in yawning sublines could also overlap in processes needed during taste learning, particularly during conditioned taste aversion (CTA) and its latent inhibition. Therefore, the aim of this study was to analyze taste memory differences, after familiarization to novel or highly sweet stimuli, between yawning sublines and compare them with outbred SD rats. First, we evaluated changes in appetitive response during long-term sugar consumption for 14 days. Then, we evaluated the latent inhibition of CTA strength induced by this long pre-exposure, and we also measured aversive memory extinction rate. The results showed that SD rats and the two sublines developed similar CTA for novel sugar and significantly stronger appetitive memory after long-term sugar exposure. However, after 14 days of sugar exposure, HY and LY sublines were unable to develop latent inhibition of CTA after two acquisition trials and had a slower aversive memory extinction rate than outbreed rats. Thus, the inability of the HY and LY sublines to develop latent inhibition of CTA after long-term sugar exposure could be related to the time/context processes involved in long-term appetitive re-learning, and in the strong inbreeding that characterizes the behavioral traits of these sublines, suggesting that inbreeding affects associative learning, particularly after long-term exposure to sweet stimuli which reflects high familiarization.
Collapse
|
3
|
Microinjection of histamine and its H 3 receptor agonist and antagonist into the agranular insular cortex influence sensory and affective components of neuropathic pain in rats. Eur J Pharmacol 2019; 857:172450. [PMID: 31202805 DOI: 10.1016/j.ejphar.2019.172450] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/08/2019] [Accepted: 06/12/2019] [Indexed: 01/01/2023]
Abstract
Many areas of the brain along with neurotransmitters involve in processing of nociceptive, emotional and cognitive dimensions of neuropathic pain. Brian neuronal histamine through H1, H2, H3 and H4 receptors mediates many physiological functions such as cognition, emotion and pain. In the present study we investigated the effects of intra-agranular insular cortex microinjection of histamine and its H3 receptor agonist and antagonist on sensory and affective aspects of neuropathic pain. Spared nerve injury model of neuropathic pain was used. Two guide cannulas were surgically implanted in the right and left sides of agranular insular cortex. Sensory component (mechanical hyperalgesia) was recorded by application of von Frey filaments onto the plantar surface of the hind paw. Area under curve of mechanical hyperalgesia was calculated. Affective aspect (place escape avoidance paradigm) was recorded using an inverse white/black chamber. Histamine (0.5, 1 and 2 μg/site) and thioperamide (a histamine H3 receptor antagonist, 4 μg/site) decreased, whereas immepip (a histamine H3 receptor agonist, 2 μg/site) increased the percentages of paw withdrawal frequency and time spent in white side of white/black box. Prior administration of thioperamide (4 μg/site) increased the suppressive effects induced by histamine and inhibited immepip (2 μg/site)-induced hyperalgesia and aversion. Based on the present results, it is concluded that histamine and its H3 receptor at the agranular insular cortex level may involve in modulation of sensory and affective components of neuropathic pain.
Collapse
|
4
|
Takei H, Yamamoto K, Bae YC, Shirakawa T, Kobayashi M. Histamine H 3 Heteroreceptors Suppress Glutamatergic and GABAergic Synaptic Transmission in the Rat Insular Cortex. Front Neural Circuits 2017; 11:85. [PMID: 29170631 PMCID: PMC5684127 DOI: 10.3389/fncir.2017.00085] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/16/2017] [Indexed: 12/26/2022] Open
Abstract
Histamine H3 receptors are autoreceptors that regulate histamine release from histaminergic neuronal terminals. The cerebral cortex, including the insular cortex (IC), expresses abundant H3 receptors; however, the functions and mechanisms of H3 receptors remain unknown. The aim of this study was to elucidate the functional roles of H3 in synaptic transmission in layer V of the rat IC. Unitary excitatory and inhibitory postsynaptic currents (uEPSCs and uIPSCs) were obtained through paired whole-cell patch-clamp recording in cerebrocortical slice preparations. The H3 receptor agonist, R-α-methylhistamine (RAMH), reduced the uEPSC amplitude obtained from pyramidal cell to pyramidal cell or GABAergic interneuron connections. Similarly, RAMH reduced the uIPSC amplitude in GABAergic interneuron to pyramidal cell connections. RAMH-induced decreases in both the uEPSC and uIPSC amplitudes were accompanied by increases in the failure rate and paired-pulse ratio. JNJ 5207852 dihydrochloride or thioperamide, H3 receptor antagonists, inhibited RAMH-induced suppression of uEPSCs and uIPSCs. Unexpectedly, thioperamide alone increased the uIPSC amplitude, suggesting that thioperamide was likely to act as an inverse agonist. Miniature EPSC or IPSC recordings support the hypothesis that the activation of H3 receptors suppresses the release of glutamate and GABA from presynaptic terminals. The colocalization of H3 receptors and glutamate decarboxylase or vesicular glutamate transport protein 1 in presynaptic axon terminals was confirmed through double pre-embedding microscopy, using a combination of pre-embedding immunogold and immunoperoxidase techniques. The suppressive regulation of H3 heteroreceptors on synaptic transmission might mediate the regulation of sensory information processes, such as gustation and visceral sensation, in the IC.
Collapse
Affiliation(s)
- Hiroki Takei
- Department of Pharmacology, Nihon University School of Dentistry, Chiyoda-ku, Japan.,Department of Pediatric Dentistry, Nihon University School of Dentistry, Chiyoda-ku, Japan
| | - Kiyofumi Yamamoto
- Department of Pharmacology, Nihon University School of Dentistry, Chiyoda-ku, Japan.,Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, Chiyoda-ku, Japan
| | - Yong-Chul Bae
- Department of Oral Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Tetsuo Shirakawa
- Department of Pediatric Dentistry, Nihon University School of Dentistry, Chiyoda-ku, Japan
| | - Masayuki Kobayashi
- Department of Pharmacology, Nihon University School of Dentistry, Chiyoda-ku, Japan.,Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, Chiyoda-ku, Japan.,Molecular Dynamics Imaging Unit, RIKEN Center for Life Science Technologies, Kobe, Japan
| |
Collapse
|
5
|
Hurtado MM, García R, Puerto A. Tolerance to repeated rewarding electrical stimulation of the insular cortex. Brain Res 2016; 1630:64-72. [PMID: 26562666 DOI: 10.1016/j.brainres.2015.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 09/29/2015] [Accepted: 11/01/2015] [Indexed: 12/29/2022]
Abstract
The insular cortex (IC) has been related to various reinforcing behavioral processes. This study examined the effect of electrical stimulation of the posterior agranular IC on concurrent place preferences. Two groups of animals and their respective controls underwent rewarding brain stimulation every day or on alternate days. While the rats stimulated every other day maintained their preference for the place associated with brain stimulation, those stimulated every day evidenced a reduction in their place preference, suggesting tolerance to the stimulation's rewarding effect. A 15% increase in the current intensity produced a recovery of the preferences of the daily-stimulated rats but had no effect on those stimulated on alternate days. These results are discussed in terms of the rewarding effects induced by different electrical and chemical rewarding agents.
Collapse
Affiliation(s)
- María M Hurtado
- Department of Psychobiology, and Mind, Brain and Behavior Research Center (CIMCYC), Campus of Cartuja, University of Granada, Granada 18071, Spain.
| | - Raquel García
- Department of Psychobiology, and Mind, Brain and Behavior Research Center (CIMCYC), Campus of Cartuja, University of Granada, Granada 18071, Spain
| | - Amadeo Puerto
- Department of Psychobiology, and Mind, Brain and Behavior Research Center (CIMCYC), Campus of Cartuja, University of Granada, Granada 18071, Spain
| |
Collapse
|
6
|
Impairment in the aversive memory of mice in the inhibitory avoidance task but not in the elevated plus maze through intra-amygdala injections of histamine. Pharmacol Biochem Behav 2015; 135:237-45. [DOI: 10.1016/j.pbb.2015.05.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 05/18/2015] [Accepted: 05/19/2015] [Indexed: 12/20/2022]
|
7
|
Purón-Sierra L, Miranda MI. Histaminergic modulation of cholinergic release from the nucleus basalis magnocellularis into insular cortex during taste aversive memory formation. PLoS One 2014; 9:e91120. [PMID: 24625748 PMCID: PMC3953328 DOI: 10.1371/journal.pone.0091120] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Accepted: 02/07/2014] [Indexed: 11/19/2022] Open
Abstract
The ability of acetylcholine (ACh) to alter specific functional properties of the cortex endows the cholinergic system with an important modulatory role in memory formation. For example, an increase in ACh release occurs during novel stimulus processing, indicating that ACh activity is critical during early stages of memory processing. During novel taste presentation, there is an increase in ACh release in the insular cortex (IC), a major structure for taste memory recognition. There is extensive evidence implicating the cholinergic efferents of the nucleus basalis magnocellularis (NBM) in cortical activity changes during learning processes, and new evidence suggests that the histaminergic system may interact with the cholinergic system in important ways. However, there is little information as to whether changes in cholinergic activity in the IC are modulated during taste memory formation. Therefore, in the present study, we evaluated the influence of two histamine receptor subtypes, H1 in the NBM and H3 in the IC, on ACh release in the IC during conditioned taste aversion (CTA). Injection of the H3 receptor agonist R-α-methylhistamine (RAMH) into the IC or of the H1 receptor antagonist pyrilamine into the NBM during CTA training impaired subsequent CTA memory, and simultaneously resulted in a reduction of ACh release in the IC. This study demonstrated that basal and cortical cholinergic pathways are finely tuned by histaminergic activity during CTA, since dual actions of histamine receptor subtypes on ACh modulation release each have a significant impact during taste memory formation.
Collapse
Affiliation(s)
- Liliana Purón-Sierra
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Qro., México
| | - María Isabel Miranda
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Qro., México
| |
Collapse
|
8
|
Takei H, Song L, Ebihara K, Shirakawa T, Koshikawa N, Kobayashi M. Histaminergic effects on the frequency of repetitive spike firing in rat insular cortex. Neurosci Lett 2012; 518:55-9. [DOI: 10.1016/j.neulet.2012.04.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/23/2012] [Accepted: 04/24/2012] [Indexed: 10/28/2022]
|
9
|
Gianlorenço ACL, Canto-de-Souza A, Mattioli R. Microinjection of histamine into the cerebellar vermis impairs emotional memory consolidation in mice. Brain Res Bull 2011; 86:134-8. [PMID: 21664441 DOI: 10.1016/j.brainresbull.2011.05.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 05/24/2011] [Accepted: 05/26/2011] [Indexed: 11/19/2022]
Abstract
The biogenic amine histamine is an important neurotransmitter in the central nervous system that has been implicated in learning and memory processes. Experimental evidence indicates that the role of the cerebellum may be more complex than the simple regulation of motor responses, and recent studies have demonstrated significant involvement of the cerebellum in emotional memory consolidation. This study investigated the effect of histamine microinjected into the cerebellar vermis on emotional memory consolidation in mice in the elevated plus-maze (EPM). The cerebellar vermis of male mice (Swiss Albino) were implanted with guide cannulae. The mice weighed between 25 and 30 g. After three days of recovery, behavioral tests in the EPM were performed on two consecutive days; the testing periods were called, Trial 1 and Trial 2. Immediately after Trial 1, the animals received microinjections of histamine in the cerebellar vermis (0.54, 1.36, 2.72, and 4.07 nmol/0.1 μl). On both days, the test sessions were recorded to enable analysis of behavioral measures. The decrease in open arm exploration (% entries and % time spent in the open arms) in Trial 2 relative to Trial 1 was used as a measure of learning and memory. The data were analyzed using One-way Analysis of Variance (ANOVA) and Duncan's tests. The percentage of open arm entries (%OAE) and the percentage of time spent in the open arms (%OAT) were reduced in Trial 2 relative to Trial 1 for the control group; the same was true for the group that was microinjected with histamine at doses of 0.54 (%OAE and %OAT) and 1.36 nmol (%OAT). However, when the animals received histamine at doses of 2.72 and 4.07 nmol, their open arm exploration did not decrease. No significant changes were observed in the number of enclosed arm entries (EAE), an EPM index of general exploratory activity. These results suggest that there is a dose-dependent inhibitory effect of histamine microinjected into the cerebellar vermis on emotional memory consolidation.
Collapse
Affiliation(s)
- A C L Gianlorenço
- Laboratory of Neuroscience, Physiotherapy Department, Center of Biological Sciences and Health, Federal University of Sao Carlos, Brazil
| | | | | |
Collapse
|