1
|
Matsumoto Y, Matsumoto CS, Mizunami M. Critical roles of nicotinic acetylcholine receptors in olfactory memory formation and retrieval in crickets. Front Physiol 2024; 15:1345397. [PMID: 38405118 PMCID: PMC10884312 DOI: 10.3389/fphys.2024.1345397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024] Open
Abstract
Acetylcholine (ACh) is a major excitatory neurotransmitter in the insect central nervous system, and insect neurons express several types of ACh receptors (AChRs). AChRs are classified into two subgroups, muscarinic AChRs and nicotinic AChRs (nAChRs). nAChRs are also divided into two subgroups by sensitivity to α-bungarotoxin (α-BGT). The cricket Gryllus bimaculatus is one of the useful insects for studying the molecular mechanisms in olfactory learning and memory. However, the roles of nAChRs in olfactory learning and memory of the cricket are still unknown. In the present study, to investigate whether nAChRs are involved in cricket olfactory learning and memory, we tested the effects of two different AChR antagonists on long-term memory (LTM) formation and retrieval in a behavioral assay. The two AChR antagonists that we used are mecamylamine (MEC), an α-BGT-insensitive nAChR antagonist, and methyllycaconitine (MLA), an α-BGT-sensitive nAChR antagonist. In crickets, multiple-trial olfactory conditioning induced 1-day memory (LTM), whereas single-trial olfactory conditioning induced 1-h memory (mid-term memory, MTM) but not 1-day memory. Crickets injected with MEC 20 min before the retention test at 1 day after the multiple-trial conditioning exhibited no memory retrieval. This indicates that α-BGT-insensitive nAChRs participate in memory retrieval. In addition, crickets injected with MLA before the multiple-trial conditioning exhibited MTM but not LTM, indicating that α-BGT-sensitive nAChRs participate in the formation of LTM. Moreover, injection of nicotine (an nAChR agonist) before the single-trial conditioning induced LTM. Finally, the nitric oxide (NO)-cGMP signaling pathway is known to participate in the formation of LTM in crickets, and we conducted co-injection experiments with an agonist or inhibitor of the nAChR and an activator or inhibitor of the NO-cGMP signaling pathway. The results suggest that nAChR works upstream of the NO-cGMP signaling system in the LTM formation process.
Collapse
Affiliation(s)
- Yukihisa Matsumoto
- Institute of Education, Liberal Arts and Sciences Division, Tokyo Medical and Dental University, Ichikawa, Chiba, Japan
| | | | - Makoto Mizunami
- Faculty of Science, Hokkaido University, Sapporo, Hokkaido, Japan
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
2
|
Sato Matsumoto C, Matsumoto Y, Mizunami M. Roles of octopamine neurons in the vertical lobe of the mushroom body for the execution of a conditioned response in cockroaches. Neurobiol Learn Mem 2023:107778. [PMID: 37257558 DOI: 10.1016/j.nlm.2023.107778] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/20/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023]
Abstract
Aminergic neurons mediate reward signals in mammals and insects. In crickets, we showed that blockade of synaptic transmission from octopamine neurons (OANs) impairs conditioning of an odor (conditioned stimulus, CS) with water or sucrose (unconditioned stimulus, US) and execution of a conditioned response (CR) to the CS. It has not yet been established, however, whether findings in crickets can be applied to other species of insects. In this study, we investigated the roles of OANs in conditioning of salivation, monitored by activities of salivary neurons, and in execution of the CR in cockroaches (Periplaneta americana). We showed that injection of epinastine (an OA receptor antagonist) into the head hemolymph impaired both conditioning and execution of the CR, in accordance with findings in crickets. Moreover, local injection of epinastine into the vertical lobes of the mushroom body (MB), the center for associative learning and control of the CR, impaired execution of the CR, whereas injection of epinastine into the calyces of the MB or the antennal lobes (primary olfactory centers) did not. We propose that OANs in the MB vertical lobes play critical roles in the execution of the CR in cockroaches. This is analogous to the fact that midbrain dopamine neurons govern execution of learned actions in mammals.
Collapse
Affiliation(s)
| | - Yukihisa Matsumoto
- Tokyo Dental and Medical University, Department of Biology, Ichikawa, Japan
| | | |
Collapse
|
3
|
Mizunami M, Terao K, Alvarez B. Application of a Prediction Error Theory to Pavlovian Conditioning in an Insect. Front Psychol 2018; 9:1272. [PMID: 30083125 PMCID: PMC6064870 DOI: 10.3389/fpsyg.2018.01272] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 07/03/2018] [Indexed: 12/01/2022] Open
Abstract
Elucidation of the conditions in which associative learning occurs is a critical issue in neuroscience and comparative psychology. In Pavlovian conditioning in mammals, it is thought that the discrepancy, or error, between the actual reward and the predicted reward determines whether learning occurs. This theory stems from the finding of Kamin’s blocking effect, in which after pairing of a stimulus with an unconditioned stimulus (US), conditioning of a second stimulus is blocked when the two stimuli are presented in compound and paired with the same US. Whether this theory is applicable to any species of invertebrates, however, has remained unknown. We first showed blocking and one-trial blocking of Pavlovian conditioning in the cricket Gryllus bimaculatus, which supported the Rescorla–Wagner model but not attentional theories, the major competitive error-correction learning theories to account for blocking. To match the prediction error theory, a neural circuit model was proposed, and prediction from the model was tested: the results were consistent with the Rescorla–Wagner model but not with the retrieval theory, another competitive theory to account for blocking. The findings suggest that the Rescorla–Wagner model best accounts for Pavlovian conditioning in crickets and that the basic computation rule underlying Pavlovian conditioning in crickets is the same to those suggested in mammals. Moreover, results of pharmacological studies in crickets suggested that octopamine and dopamine mediate prediction error signals in appetitive and aversive conditioning, respectively. This was in contrast to the notion that dopamine mediates appetitive prediction error signals in mammals. The functional significance and evolutionary implications of these findings are discussed.
Collapse
Affiliation(s)
| | - Kanta Terao
- Graduate School of Life Sciences, Hokkaido University, Sapporo, Japan
| | | |
Collapse
|
4
|
Watanabe H, Nishino H, Mizunami M, Yokohari F. Two Parallel Olfactory Pathways for Processing General Odors in a Cockroach. Front Neural Circuits 2017; 11:32. [PMID: 28529476 PMCID: PMC5418552 DOI: 10.3389/fncir.2017.00032] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 04/18/2017] [Indexed: 11/23/2022] Open
Abstract
In animals, sensory processing via parallel pathways, including the olfactory system, is a common design. However, the mechanisms that parallel pathways use to encode highly complex and dynamic odor signals remain unclear. In the current study, we examined the anatomical and physiological features of parallel olfactory pathways in an evolutionally basal insect, the cockroach Periplaneta americana. In this insect, the entire system for processing general odors, from olfactory sensory neurons to higher brain centers, is anatomically segregated into two parallel pathways. Two separate populations of secondary olfactory neurons, type1 and type2 projection neurons (PNs), with dendrites in distinct glomerular groups relay olfactory signals to segregated areas of higher brain centers. We conducted intracellular recordings, revealing olfactory properties and temporal patterns of both types of PNs. Generally, type1 PNs exhibit higher odor-specificities to nine tested odorants than type2 PNs. Cluster analyses revealed that odor-evoked responses were temporally complex and varied in type1 PNs, while type2 PNs exhibited phasic on-responses with either early or late latencies to an effective odor. The late responses are 30–40 ms later than the early responses. Simultaneous intracellular recordings from two different PNs revealed that a given odor activated both types of PNs with different temporal patterns, and latencies of early and late responses in type2 PNs might be precisely controlled. Our results suggest that the cockroach is equipped with two anatomically and physiologically segregated parallel olfactory pathways, which might employ different neural strategies to encode odor information.
Collapse
Affiliation(s)
- Hidehiro Watanabe
- Division of Biology, Department of Earth System Science, Fukuoka UniversityFukuoka, Japan
| | - Hiroshi Nishino
- Research Institute for Electronic Science, Hokkaido UniversitySapporo, Japan
| | | | - Fumio Yokohari
- Division of Biology, Department of Earth System Science, Fukuoka UniversityFukuoka, Japan
| |
Collapse
|
5
|
Kinoshita M, Homberg U. Insect Brains: Minute Structures Controlling Complex Behaviors. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/978-4-431-56469-0_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
6
|
Hosono S, Matsumoto Y, Mizunami M. Interaction of inhibitory and facilitatory effects of conditioning trials on long-term memory formation. ACTA ACUST UNITED AC 2016; 23:669-678. [PMID: 27918270 PMCID: PMC5110985 DOI: 10.1101/lm.043513.116] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 08/17/2016] [Indexed: 01/27/2023]
Abstract
Animals learn through experience and consolidate the memories into long-time storage. Conditioning parameters to induce protein synthesis-dependent long-term memory (LTM) have been the subject of extensive studies in many animals. Here we found a case in which a conditioning trial inhibits or facilitates LTM formation depending on the intervals from preceding trials. We studied the effects of conditioning parameters on LTM formation in olfactory conditioning of maxillary-palpi extension response with sucrose reward in the cockroach Periplaneta americana. We found, at first, that translation- and transcription-dependent LTM forms 1 h after training, the fastest so far reported in insects. Second, we observed that multiple-trial training with an intertrial interval (ITI) of 20 or 30 sec, often called massed training, is more effective than spaced training for LTM formation, an observation that differs from the results of most studies in other animals. Third, we found that a conditioning trial inhibits LTM formation when the intervals from preceding trials were in the range of 10–16 min. This inhibitory effect is pairing-specific and is not due to decreased motivation for learning (overtraining effect). To our knowledge, no similar inhibition of LTM formation by a conditioning trial has been reported in any animals. We propose a model to account for the effects of trial number and ITIs on LTM formation. Olfactory conditioning in cockroaches should provide pertinent materials in which to study neuronal and molecular mechanisms underlying the inhibitory and facilitatory processes for LTM formation.
Collapse
Affiliation(s)
- Shouhei Hosono
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan.,Graduate School of Agriculture, Tamagawa University, Machida 194-8610, Japan
| | - Yukihisa Matsumoto
- Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.,Faculty of Liberal Arts, Tokyo Medical and Dental University, Ichikawa 272-0827, Japan
| | - Makoto Mizunami
- Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
7
|
Taillebois E, Thany SH. CHARACTERIZATION OF NICOTINE ACETYLCHOLINE RECEPTOR SUBUNITS IN THE COCKROACH Periplaneta americana MUSHROOM BODIES REVEALS A STRONG EXPRESSION OF β1 SUBUNIT: INVOLVEMENT IN NICOTINE-INDUCED CURRENTS. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2016; 93:40-54. [PMID: 27357353 DOI: 10.1002/arch.21340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Nicotinic acetylcholine receptors are ligand-gated ion channels expressed in many insect structures, such as mushroom bodies, in which they play a central role. We have recently demonstrated using electrophysiological recordings that different native nicotinic receptors are expressed in cockroach mushroom bodies Kenyon cells. In the present study, we demonstrated that eight genes coding for cockroach nicotinic acetylcholine receptor subunits are expressed in the mushroom bodies. Quantitative real-time polymerase chain reaction (PCR) experiments demonstrated that β1 subunit was the most expressed in the mushroom bodies. Moreover, antisense oligonucleotides performed against β1 subunit revealed that inhibition of β1 expression strongly decreases nicotine-induced currents amplitudes. Moreover, co-application with 0.5 μM α-bungarotoxin completely inhibited nicotine currents whereas 10 μM d-tubocurarine had a partial effect demonstrating that β1-containing neuronal nicotinic acetylcholine receptor subtypes could be sensitive to the nicotinic acetylcholine receptor antagonist α-bungarotoxin.
Collapse
Affiliation(s)
- Emiliane Taillebois
- Laboratoire Récepteurs et Canaux Ioniques Membranaires (RCIM), Université d'Angers, Angers, France
| | - Steeve H Thany
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), Université d'Orléans, Orléans, France
| |
Collapse
|
8
|
Matsumoto Y, Matsumoto CS, Takahashi T, Mizunami M. Activation of NO-cGMP Signaling Rescues Age-Related Memory Impairment in Crickets. Front Behav Neurosci 2016; 10:166. [PMID: 27616985 PMCID: PMC4999442 DOI: 10.3389/fnbeh.2016.00166] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/15/2016] [Indexed: 12/02/2022] Open
Abstract
Age-related memory impairment (AMI) is a common feature and a debilitating phenotype of brain aging in many animals. However, the molecular mechanisms underlying AMI are still largely unknown. The cricket Gryllus bimaculatus is a useful experimental animal for studying age-related changes in learning and memory capability; because the cricket has relatively short life-cycle and a high capability of olfactory learning and memory. Moreover, the molecular mechanisms underlying memory formation in crickets have been examined in detail. In the present study, we trained male crickets of different ages by multiple-trial olfactory conditioning to determine whether AMI occurs in crickets. Crickets 3 weeks after the final molt (3-week-old crickets) exhibited levels of retention similar to those of 1-week-old crickets at 30 min or 2 h after training; however they showed significantly decreased levels of 1-day retention, indicating AMI in long-term memory (LTM) but not in anesthesia-resistant memory (ARM) in olfactory learning of crickets. Furthermore, 3-week-old crickets injected with a nitric oxide (NO) donor, a cyclic GMP (cGMP) analog or a cyclic AMP (cAMP) analog into the hemolymph before conditioning exhibited a normal level of LTM, the same level as that in 1-week-old crickets. The rescue effect by NO donor or cGMP analog injection was absent when the crickets were injected after the conditioning. For the first time, an NO donor and a cGMP analog were found to antagonize the age-related impairment of LTM formation, suggesting that deterioration of NO synthase (NOS) or molecules upstream of NOS activation is involved in brain-aging processes.
Collapse
Affiliation(s)
- Yukihisa Matsumoto
- College of Liberal Arts and Science, Tokyo Medical and Dental UniversityIchikawa, Japan; Graduate School of Life Science, Hokkaido UniversitySapporo, Japan
| | | | | | - Makoto Mizunami
- Graduate School of Life Science, Hokkaido University Sapporo, Japan
| |
Collapse
|
9
|
Dopamine- and Tyrosine Hydroxylase-Immunoreactive Neurons in the Brain of the American Cockroach, Periplaneta americana. PLoS One 2016; 11:e0160531. [PMID: 27494326 PMCID: PMC4975486 DOI: 10.1371/journal.pone.0160531] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 07/19/2016] [Indexed: 11/19/2022] Open
Abstract
The catecholamine dopamine plays several vital roles in the central nervous system of many species, but its neural mechanisms remain elusive. Detailed neuroanatomical characterization of dopamine neurons is a prerequisite for elucidating dopamine’s actions in the brain. In the present study, we investigated the distribution of dopaminergic neurons in the brain of the American cockroach, Periplaneta americana, using two antisera: 1) an antiserum against dopamine, and 2) an antiserum against tyrosine hydroxylase (TH, an enzyme required for dopamine synthesis), and identified about 250 putatively dopaminergic neurons. The patterns of dopamine- and TH-immunoreactive neurons were strikingly similar, suggesting that both antisera recognize the same sets of “dopaminergic” neurons. The dopamine and TH antibodies intensively or moderately immunolabeled prominent brain neuropils, e.g. the mushroom body (memory center), antennal lobe (first-order olfactory center) and central complex (motor coordination center). All subdivisions of the mushroom body exhibit both dopamine and TH immunoreactivity. Comparison of immunolabeled neurons with those filled by dye injection revealed that a group of immunolabeled neurons with cell bodies near the calyx projects into a distal region of the vertical lobe, which is a plausible site for olfactory memory formation in insects. In the antennal lobe, ordinary glomeruli as well as macroglomeruli exhibit both dopamine and TH immunoreactivity. It is noteworthy that the dopamine antiserum labeled tiny granular structures inside the glomeruli whereas the TH antiserum labeled processes in the marginal regions of the glomeruli, suggesting a different origin. In the central complex, all subdivisions excluding part of the noduli and protocerebral bridge exhibit both dopamine and TH immunoreactivity. These anatomical findings will accelerate our understanding of dopaminergic systems, specifically in neural circuits underlying aversive memory formation and arousal, in insects.
Collapse
|
10
|
Awata H, Wakuda R, Ishimaru Y, Matsuoka Y, Terao K, Katata S, Matsumoto Y, Hamanaka Y, Noji S, Mito T, Mizunami M. Roles of OA1 octopamine receptor and Dop1 dopamine receptor in mediating appetitive and aversive reinforcement revealed by RNAi studies. Sci Rep 2016; 6:29696. [PMID: 27412401 PMCID: PMC4944188 DOI: 10.1038/srep29696] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 06/21/2016] [Indexed: 01/25/2023] Open
Abstract
Revealing reinforcing mechanisms in associative learning is important for elucidation of brain mechanisms of behavior. In mammals, dopamine neurons are thought to mediate both appetitive and aversive reinforcement signals. Studies using transgenic fruit-flies suggested that dopamine neurons mediate both appetitive and aversive reinforcements, through the Dop1 dopamine receptor, but our studies using octopamine and dopamine receptor antagonists and using Dop1 knockout crickets suggested that octopamine neurons mediate appetitive reinforcement and dopamine neurons mediate aversive reinforcement in associative learning in crickets. To fully resolve this issue, we examined the effects of silencing of expression of genes that code the OA1 octopamine receptor and Dop1 and Dop2 dopamine receptors by RNAi in crickets. OA1-silenced crickets exhibited impairment in appetitive learning with water but not in aversive learning with sodium chloride solution, while Dop1-silenced crickets exhibited impairment in aversive learning but not in appetitive learning. Dop2-silenced crickets showed normal scores in both appetitive learning and aversive learning. The results indicate that octopamine neurons mediate appetitive reinforcement via OA1 and that dopamine neurons mediate aversive reinforcement via Dop1 in crickets, providing decisive evidence that neurotransmitters and receptors that mediate appetitive reinforcement indeed differ among different species of insects.
Collapse
Affiliation(s)
- Hiroko Awata
- Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Ryo Wakuda
- Graduate School of Live Sciences, Hokkaido University, Sapporo, 060-0810, Japan
| | - Yoshiyasu Ishimaru
- Department of Life Systems, Institute of Technology and Science, Tokushima University, Tokushima 770-8506, Japan
| | - Yuji Matsuoka
- Department of Life Systems, Institute of Technology and Science, Tokushima University, Tokushima 770-8506, Japan
| | - Kanta Terao
- Graduate School of Live Sciences, Hokkaido University, Sapporo, 060-0810, Japan
| | - Satomi Katata
- Graduate School of Live Sciences, Hokkaido University, Sapporo, 060-0810, Japan
| | - Yukihisa Matsumoto
- Faculty of Liberal Arts, Tokyo Medical and Dental University, Ichikawa 272-0827, Japan
| | | | - Sumihare Noji
- Department of Life Systems, Institute of Technology and Science, Tokushima University, Tokushima 770-8506, Japan
| | - Taro Mito
- Department of Life Systems, Institute of Technology and Science, Tokushima University, Tokushima 770-8506, Japan
| | - Makoto Mizunami
- Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| |
Collapse
|
11
|
Hasebe M, Yoshino M. Nitric oxide/cGMP/PKG signaling pathway activated by M1-type muscarinic acetylcholine receptor cascade inhibits Na+-activated K+ currents in Kenyon cells. J Neurophysiol 2016; 115:3174-85. [PMID: 26984419 DOI: 10.1152/jn.00036.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/14/2016] [Indexed: 01/21/2023] Open
Abstract
The interneurons of the mushroom body, known as Kenyon cells, are essential for the long-term memory of olfactory associative learning in some insects. Some studies have reported that nitric oxide (NO) is strongly related to this long-term memory in Kenyon cells. However, the target molecules and upstream and downstream NO signaling cascades are not completely understood. Here we analyzed the effect of the NO signaling cascade on Na(+)-activated K(+) (KNa) channel activity in Kenyon cells of crickets (Gryllus bimaculatus). We found that two different NO donors, S-nitrosoglutathione (GSNO) and S-nitroso-N-acetyl-dl-penicillamine (SNAP), strongly suppressed KNa channel currents. Additionally, this inhibitory effect of GSNO on KNa channel activity was diminished by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), an inhibitor of soluble guanylate cyclase (sGC), and KT5823, an inhibitor of protein kinase G (PKG). Next, we analyzed the role of ACh in the NO signaling cascade. ACh strongly suppressed KNa channel currents, similar to NO donors. Furthermore, this inhibitory effect of ACh was blocked by pirenzepine, an M1 muscarinic ACh receptor antagonist, but not by 1,1-dimethyl-4-diphenylacetoxypiperidinium iodide (4-DAMP) and mecamylamine, an M3 muscarinic ACh receptor antagonist and a nicotinic ACh receptor antagonist, respectively. The ACh-induced inhibition of KNa channel currents was also diminished by the PLC inhibitor U73122 and the calmodulin antagonist W-7. Finally, we found that ACh inhibition was blocked by the nitric oxide synthase (NOS) inhibitor N(G)-nitro-l-arginine methyl ester (l-NAME). These results suggested that the ACh signaling cascade promotes NO production by activating NOS and NO inhibits KNa channel currents via the sGC/cGMP/PKG signaling cascade in Kenyon cells.
Collapse
Affiliation(s)
- Masaharu Hasebe
- Department of Biology, Tokyo Gakugei University, Tokyo, Japan
| | - Masami Yoshino
- Department of Biology, Tokyo Gakugei University, Tokyo, Japan
| |
Collapse
|
12
|
Knockout crickets for the study of learning and memory: Dopamine receptor Dop1 mediates aversive but not appetitive reinforcement in crickets. Sci Rep 2015; 5:15885. [PMID: 26521965 PMCID: PMC4629116 DOI: 10.1038/srep15885] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 10/05/2015] [Indexed: 01/25/2023] Open
Abstract
Elucidation of reinforcement mechanisms in associative learning is an important subject in neuroscience. In mammals, dopamine neurons are thought to play critical roles in mediating both appetitive and aversive reinforcement. Our pharmacological studies suggested that octopamine and dopamine neurons mediate reward and punishment, respectively, in crickets, but recent studies in fruit-flies concluded that dopamine neurons mediates both reward and punishment, via the type 1 dopamine receptor Dop1. To resolve the discrepancy between studies in different insect species, we produced Dop1 knockout crickets using the CRISPR/Cas9 system and found that they are defective in aversive learning with sodium chloride punishment but not appetitive learning with water or sucrose reward. The results suggest that dopamine and octopamine neurons mediate aversive and appetitive reinforcement, respectively, in crickets. We suggest unexpected diversity in neurotransmitters mediating appetitive reinforcement between crickets and fruit-flies, although the neurotransmitter mediating aversive reinforcement is conserved. This study demonstrates usefulness of the CRISPR/Cas9 system for producing knockout animals for the study of learning and memory.
Collapse
|
13
|
Mizunami M, Hamanaka Y, Nishino H. Toward elucidating diversity of neural mechanisms underlying insect learning. ZOOLOGICAL LETTERS 2015; 1:8. [PMID: 26605053 PMCID: PMC4655456 DOI: 10.1186/s40851-014-0008-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 11/07/2014] [Indexed: 06/05/2023]
Abstract
Insects are widely used as models to study neural mechanisms of learning and memory. Our recent studies on crickets, together with reports on other insect species, suggest that some fundamental differences exist in neural and molecular mechanisms of learning and memory among different species of insects, particularly between crickets and fruit flies. First, we suggested that in crickets octopamine (OA) and dopamine (DA) neurons convey reward and punishment signals, respectively, in associated learning. On the other hand, it has been reported that in fruit flies different sets of DA neurons convey reward or punishment signals. Secondly, we have suggested that in crickets OA and DA neurons participate in the retrieval of appetitive and aversive memories, respectively, while this is not the case in fruit flies. Thirdly, cyclic AMP signaling is critical for short-term memory formation in fruit flies, but not in crickets. Finally, nitric oxide-cyclic GMP signaling and calcium-calmodulin signaling are critical for long-term memory (LTM) formation in crickets, but such roles have not been reported in fruit flies. Not all of these differences can be ascribed to different experimental methods used in studies. We thus suggest that there are unexpected diversities in basic mechanisms of learning and memory among different insect species, especially between crickets and fruit flies. Studies on a larger number of insect species will help clarify the diversity of learning and memory mechanisms in relation to functional adaptation to the environment and evolutionary history.
Collapse
Affiliation(s)
- Makoto Mizunami
- />Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-Ku, Sapporo, 060-0810 Japan
| | - Yoshitaka Hamanaka
- />Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-Ku, Sapporo, 060-0810 Japan
| | - Hiroshi Nishino
- />Research Institute for Electronic Science, Hokkaido University, Kita 12 Nishi 7, Kita-ku, Sapporo, 060-0811 Japan
| |
Collapse
|
14
|
Inoue S, Murata K, Tanaka A, Kakuta E, Tanemura S, Hatakeyama S, Nakamura A, Yamamoto C, Hasebe M, Kosakai K, Yoshino M. Ionic channel mechanisms mediating the intrinsic excitability of Kenyon cells in the mushroom body of the cricket brain. JOURNAL OF INSECT PHYSIOLOGY 2014; 68:44-57. [PMID: 24995840 DOI: 10.1016/j.jinsphys.2014.06.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 06/05/2014] [Accepted: 06/18/2014] [Indexed: 06/03/2023]
Abstract
Intrinsic neurons within the mushroom body of the insect brain, called Kenyon cells, play an important role in olfactory associative learning. In this study, we examined the ionic mechanisms mediating the intrinsic excitability of Kenyon cells in the cricket Gryllus bimaculatus. A perforated whole-cell clamp study using β-escin indicated the existence of several inward and outward currents. Three types of inward currents (INaf, INaP, and ICa) were identified. The transient sodium current (INaf) activated at -40 mV, peaked at -26 mV, and half-inactivated at -46.7 mV. The persistent sodium current (INaP) activated at -51 mV, peaked at -23 mV, and half-inactivated at -30.7 mV. Tetrodotoxin (TTX; 1 μM) completely blocked both INaf and INaP, but 10nM TTX blocked INaf more potently than INaP. Cd(2+) (50 μM) potently blocked INaP with little effect on INaf. Riluzole (>20 μM) nonselectively blocked both INaP and INaf. The voltage-dependent calcium current (ICa) activated at -30 mV, peaked at -11.3 mV, and half-inactivated at -34 mV. The Ca(2+) channel blocker verapamil (100 μM) blocked ICa in a use-dependent manner. Cell-attached patch-clamp recordings showed the presence of a large-conductance Ca(2+)-activated K(+) (BK) channel, and the activity of this channel was decreased by removing the extracellular Ca(2+) or adding verapamil or nifedipine, and increased by adding the Ca(2+) agonist Bay K8644, indicating that Ca(2+) entry via the L-type Ca(2+) channel regulates BK channel activity. Under the current-clamp condition, membrane depolarization generated membrane oscillations in the presence of 10nM TTX or 100 μM riluzole in the bath solution. These membrane oscillations disappeared with 1 μM TTX, 50 μM Cd(2+), replacement of external Na(+) with choline, and blockage of Na(+)-activated K(+) current (IKNa) with 50 μM quinidine, indicating that membrane oscillations are primarily mediated by INaP in cooperation with IKNa. The plateau potentials observed either in Ca(2+)-free medium or in the presence of verapamil were eliminated by blocking INaP with 50 μM Cd(2+). Taken together, these results indicate that INaP and IKNa participate in the generation of membrane oscillations and that INaP additionally participates in the generation of plateau potentials and initiation of spontaneous action potentials. ICa, through L-type Ca(2+) channels, was also found to play a role in the rapid membrane repolarization of action potentials by functional coupling with BK channels.
Collapse
Affiliation(s)
- Shigeki Inoue
- Department of Biology, Tokyo Gakugei University, Tokyo, Japan
| | - Kaoru Murata
- Department of Biology, Tokyo Gakugei University, Tokyo, Japan
| | - Aiko Tanaka
- Department of Biology, Tokyo Gakugei University, Tokyo, Japan
| | - Eri Kakuta
- Department of Biology, Tokyo Gakugei University, Tokyo, Japan
| | - Saori Tanemura
- Department of Biology, Tokyo Gakugei University, Tokyo, Japan
| | | | | | | | - Masaharu Hasebe
- Department of Biology, Tokyo Gakugei University, Tokyo, Japan
| | - Kumiko Kosakai
- Department of Biology, Tokyo Gakugei University, Tokyo, Japan
| | - Masami Yoshino
- Department of Biology, Tokyo Gakugei University, Tokyo, Japan.
| |
Collapse
|
15
|
Watanabe H, Shimohigashi M, Yokohari F. Serotonin-immunoreactive sensory neurons in the antenna of the cockroachPeriplaneta americana. J Comp Neurol 2013; 522:414-34. [DOI: 10.1002/cne.23419] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/24/2013] [Accepted: 07/03/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Hidehiro Watanabe
- Division of Biology, Department of Earth System Science; Fukuoka University; Fukuoka Japan
| | - Miki Shimohigashi
- Division of Biology, Department of Earth System Science; Fukuoka University; Fukuoka Japan
| | - Fumio Yokohari
- Division of Biology, Department of Earth System Science; Fukuoka University; Fukuoka Japan
| |
Collapse
|
16
|
Ito E, Matsuo R, Okada R. Involvement of nitric oxide in memory formation in microbrains. Neurosci Lett 2013; 541:1-3. [PMID: 23473717 DOI: 10.1016/j.neulet.2013.02.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 02/11/2013] [Indexed: 01/09/2023]
Affiliation(s)
- Etsuro Ito
- Laboratory of Functional Biology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa 769-2193, Japan.
| | | | | |
Collapse
|
17
|
Matsumoto Y, Hirashima D, Mizunami M. Analysis and modeling of neural processes underlying sensory preconditioning. Neurobiol Learn Mem 2013; 101:103-13. [PMID: 23380289 DOI: 10.1016/j.nlm.2013.01.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Revised: 01/22/2013] [Accepted: 01/22/2013] [Indexed: 11/29/2022]
Abstract
Sensory preconditioning (SPC) is a procedure to demonstrate learning to associate between relatively neutral sensory stimuli in the absence of an external reinforcing stimulus, the underlying neural mechanisms of which have remained obscure. We address basic questions about neural processes underlying SPC, including whether neurons that mediate reward or punishment signals in reinforcement learning participate in association between neutral sensory stimuli. In crickets, we have suggested that octopaminergic (OA-ergic) or dopaminergic (DA-ergic) neurons participate in memory acquisition and retrieval in appetitive or aversive conditioning, respectively. Crickets that had been trained to associate an odor (CS2) with a visual pattern (CS1) (phase 1) and then to associate CS1 with water reward or quinine punishment (phase 2) exhibited a significantly increased or decreased preference for CS2 that had never been paired with the US, demonstrating successful SPC. Injection of an OA or DA receptor antagonist at different phases of the SPC training and testing showed that OA-ergic or DA-ergic neurons do not participate in learning of CS2-CS1 association in phase 1, but that OA-ergic neurons participate in learning in phase 2 and memory retrieval after appetitive SPC training. We also obtained evidence suggesting that association between CS2 and US, which should underlie conditioned response of crickets to CS2, is formed in phase 2, contrary to the standard theory of SPC assuming that it occurs in the final test. We propose models of SPC to account for these findings, by extending our model of classical conditioning.
Collapse
Affiliation(s)
- Yukihisa Matsumoto
- Graduate School of Life Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan
| | | | | |
Collapse
|
18
|
Participation of NO signaling in formation of long-term memory in salivary conditioning of the cockroach. Neurosci Lett 2013; 541:4-8. [PMID: 23333539 DOI: 10.1016/j.neulet.2013.01.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 01/08/2013] [Accepted: 01/09/2013] [Indexed: 11/24/2022]
Abstract
The molecular and neural basis of protein synthesis-dependent long-term memory (LTM) has been the subject of extensive studies in vertebrates and invertebrates. In crickets and honey bees, it has been demonstrated that nitric oxide (NO) signaling plays critical roles in LTM formation, but no experimental system appropriate for electrophysiological study of neural mechanisms by which production of NO leads to LTM formation has been established in insects. We have reported that cockroaches, as do dogs and humans, exhibit conditioning of salivation, i.e., they exhibit an increased level of salivation in response to an odor paired with sucrose reward. Salivary conditioning can be monitored by activity changes of salivary neurons in rigidly immobilized animals and thus is useful for the study of brain mechanisms of learning and memory. In the present study, we found that injection of cycloheximide, a protein synthesis inhibitor, into the hemolymph before multiple conditioning trials impairs formation of 1-day memory, but not that of 30-min memory. This indicates that formation of 1-day memory requires protein synthesis but that of earlier memory does not. We also found that injection of l-NAME, an inhibitor of NO synthase, before multiple conditioning impairs formation of 1-day memory but not that of 30-min memory. We thus conclude that NO signaling participates in the formation of protein synthesis-dependent LTM but not that of earlier memory in salivary conditioning. Salivary conditioning in cockroaches should become a pertinent system for the study of neural mechanisms by which activation of NO synthase leads to LTM formation.
Collapse
|
19
|
Nakamura A, Yoshino M. A novel GABAergic action mediated by functional coupling between GABAB-like receptor and two different high-conductance K+ channels in cricket Kenyon cells. J Neurophysiol 2013; 109:1735-45. [PMID: 23303861 DOI: 10.1152/jn.00915.2012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The γ-aminobutyric acid type B (GABA(B)) receptor has been shown to attenuate high-voltage-activated Ca(2+) currents and enhance voltage-dependent or inwardly rectifying K(+) currents in a variety of neurons. In this study, we report a novel coupling of GABA(B)-like receptor with two different high-conductance K(+) channels, Na(+)-activated K(+) (K(Na)) channel and Ca(2+)-activated K(+) (K(Ca)) channel, in Kenyon cells isolated from the mushroom body of the cricket brain. Single-channel activities of K(Na) and K(Ca) channels in response to bath applications of GABA and the GABA(B)-specific agonist SKF97541 were recorded with the cell-attached patch configuration. The open probability (P(o)) of both K(Na) and K(Ca) channels was found to be increased by bath application of GABA, and this increase in Po was antagonized by coapplication of the GABAB antagonist CGP54626, suggesting that GABA(B)-like receptors mediate these actions. Similarly, GABA(B)-specific agonist SKF97541 increased the Po of both K(Na) and K(Ca) channels. Perforated-patch recordings using β-escin further revealed that SKF97541 increased the amplitude of the outward currents elicited by step depolarizations. Under current-clamp conditions, SKF97541 decreased the firing frequency of spontaneous action potential (AP) and changed the AP waveform. The amplitude and duration of AP were decreased, whereas the afterhyperpolarization of AP was increased. Resting membrane potential, however, was not significantly altered by SKF97541. Taken together, these results suggest that GABA(B)-like receptor is functionally coupled with both K(Na) and K(Ca) channels and this coupling mechanism may serve to prevent AP formation and limit excitatory synaptic input.
Collapse
|
20
|
Context-dependent olfactory learning monitored by activities of salivary neurons in cockroaches. Neurobiol Learn Mem 2012; 97:30-6. [DOI: 10.1016/j.nlm.2011.08.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 08/05/2011] [Accepted: 08/19/2011] [Indexed: 11/22/2022]
|