1
|
Márquez LA, Meneses A, Galván EJ. 5-HT 6 Receptors Control GABAergic Transmission and CA1 Pyramidal Cell Output of Dorsal Hippocampus. Neuroscience 2023; 532:65-78. [PMID: 37776946 DOI: 10.1016/j.neuroscience.2023.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/06/2023] [Accepted: 09/22/2023] [Indexed: 10/02/2023]
Abstract
The blockade of 5-HT6 receptors represents an experimental approach that might ameliorate the memory deficits associated with brain disorders, including Alzheimer's disease and schizophrenia. However, the synaptic mechanism by which 5-HT6 receptors control the GABAergic and glutamatergic synaptic transmission is barely understood. In this study, we demonstrate that pharmacological manipulation of 5-HT6 receptors with the specific agonist EMD 386088 (7.4 nM) or the antagonist SB-399885 (300 nM) modulates the field inhibitory postsynaptic potentials of the dorsal hippocampus and controls the strength of the population spike of pyramidal cells. Likewise, pharmacological modulation of 5-HT6 controls the magnitude of paired-pulse inhibition, a phenomenon mediated by GABAergic interneurons acting via GABAA receptors of pyramidal cells. The effects of pharmacological manipulation of the 5-HT6 receptor were limited to GABAergic transmission and did not affect the strength of field excitatory postsynaptic potentials mediated by the Schaffer collaterals axons. Lastly, in a modified version of the Pavlovian autoshaping task that requires the activation of the hippocampal formation, we demonstrated that the anti-amnesic effect induced by the blockade of the 5-HT6 receptor is prevented when the GAT1 transporter is blocked, suggesting that modulation of GABAergic transmission is required for the anti-amnesic properties of 5-HT6 receptor antagonists.
Collapse
Affiliation(s)
- Luis A Márquez
- Departamento de Farmacobiología, Cinvestav Sur, Ciudad de México, Mexico
| | - Alfredo Meneses
- Departamento de Farmacobiología, Cinvestav Sur, Ciudad de México, Mexico
| | - Emilio J Galván
- Departamento de Farmacobiología, Cinvestav Sur, Ciudad de México, Mexico; Centro de Investigaciones sobre el Envejecimiento, CIE, Ciudad de México, Méexico.
| |
Collapse
|
2
|
Burren A, Pietsch C. Distress Regulates Different Pathways in the Brain of Common Carp: A Preliminary Study. Animals (Basel) 2021; 11:ani11020585. [PMID: 33672436 PMCID: PMC7926896 DOI: 10.3390/ani11020585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/31/2022] Open
Abstract
In this study, a stress trial was conducted with common carp, one of the most important species in aquaculture worldwide, to identify relevant gene regulation pathways in different areas of the brain. Acute distress due to exposure to air significantly activated the expression of the immediate early gene c-fos in the telencephalon. In addition, evidence for regulation of the two corticotropin-releasing factor (crf) genes in relation to their binding protein (corticotropin-releasing hormone-binding protein, crh-bp) is presented in this preliminary study. Inferences on the effects of due to exposure to air were obtained by using point estimation, which allows the prediction of a single value. This constitutes the best description to date of the previously generally unknown effects of stress in different brain regions in carp. Furthermore, principal component analyses were performed to reveal possible regulation patterns in the different regions of the fish brain. In conclusion, these preliminary studies on gene regulation in the carp brain that has been influenced by exposure to a stressor reveal that a number of genes may be successfully used as markers for exposure to unfavourable conditions.
Collapse
|
3
|
Solís-Guillén R, Leopoldo M, Meneses A, Centurión D. Activation of 5-HT 1A and 5-HT 7 receptors enhanced a positively reinforced long-term memory. Behav Brain Res 2021; 397:112932. [PMID: 32987057 DOI: 10.1016/j.bbr.2020.112932] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/27/2020] [Accepted: 09/22/2020] [Indexed: 12/27/2022]
Abstract
Memory is one of the most important capabilities of our mind since it determines our individuality. Memory formation involves different stages: acquisition, consolidation and retrieval. There are many studies about early stages, however little is known about memory retrieval. Retrieval is the use of learned information and represents a big problem in patients with memory deficits where the main issue is that they can learn but cannot remember. Previous findings have demonstrated that 5-hydroxytryptamine (5-HT) is a neurotransmitter involved in memory process. Hence, here we are exploring the role of 5-HT in memory retrieval by using its metabolic precursor l-tryptophan and several ligands at 5-HT1A and 5-HT7 receptors. Experimental protocol consisted of evaluating conditioned responses (%CR) after one week of interruption following autoshaping sessions for memory formation; a decrease of %CR was interpreted as memory decay. Systemic administration of: (1) l-tryptophan (50 and 100 mg/kg), (2) 5-HT1A receptor agonist 8-OH-DPAT (0.031 and 0.062 mg/kg), (3) the selective antagonist 5-HT1A receptor WAY 100635 (0.3 and 0.6 mg/kg), (4) the 5-HT7 receptor agonist, LP 211, in a dose-dependent manner (1, 2.5, 5.0 and 10.0 mg/kg) enhanced memory retrieval. Further, the 5-HT7 receptor antagonist, SB 269970 (10.0 mg/kg), had no effect. Finally, SB 269970 (10.0 mg/kg) significantly blocked memory retrieval enhancement produced by 10.0 mg/kg LP 211, but not that induced by 2.5 mg/kg LP 211.These results, taken together, suggest that activation of 5-HT1A and 5-HT7 receptors enhanced memory retrieval and these receptors may be therapeutic targets to improve long-term memory retrieval.
Collapse
Affiliation(s)
- Rocío Solís-Guillén
- Departamento de Farmacobiología, Cinvestav Unidad Coapa, Czda. de los Tenorios 235, Col. Granjas-Coapa, Del. Tlalpan, C.P. 14330, México D.F., Mexico
| | - Marcello Leopoldo
- Dipartimento di Farmacia - Scienze del Farmaco, Universitá degli Studi di Bari "A Moro", Bari, Italy
| | - Alfredo Meneses
- Departamento de Farmacobiología, Cinvestav Unidad Coapa, Czda. de los Tenorios 235, Col. Granjas-Coapa, Del. Tlalpan, C.P. 14330, México D.F., Mexico
| | - David Centurión
- Departamento de Farmacobiología, Cinvestav Unidad Coapa, Czda. de los Tenorios 235, Col. Granjas-Coapa, Del. Tlalpan, C.P. 14330, México D.F., Mexico.
| |
Collapse
|
4
|
Jiang L, Wang L, Yin Y, Huo M, Liu C, Zhou Q, Yu D, Xu L, Mao R. Spaced Training Enhances Contextual Fear Memory via Activating Hippocampal 5-HT2A Receptors. Front Mol Neurosci 2020; 12:317. [PMID: 32038159 PMCID: PMC6992649 DOI: 10.3389/fnmol.2019.00317] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 12/11/2019] [Indexed: 11/20/2022] Open
Abstract
Spaced training is robustly superior to massed training, which is a well-documented phenomenon in humans and animals. However, the mechanisms underlying the spacing effect still remain unclear. We have reported previously that spacing training exerts memory-enhancing effects by inhibiting forgetting via decreasing hippocampal Rac1 activity. Here, using contextual fear conditioning in rat, we found that spaced but not massed training increased hippocampal 5-HT2A receptors' expression. Furthermore, hippocampal administration of 5-HT2A receptor antagonist MDL11939 before spaced training blocked the enhanced memory, while hippocampal administration of 5-HT2A receptor agonist TCB-2 before massed training promoted the memory. Moreover, MDL11939 activated hippocampal Rac1, while TCB-2 decreased hippocampal Rac1 activity in naïve rats. These results indicated the possibility of interaction between 5-HT2A receptors and Rac1, which was demonstrated by co-immunoprecipitation experiments. Our study first demonstrates that activation of hippocampal 5-HT2A is a mechanism underlying the spacing effect, and forgetting related molecular Rac1 is engaged in this process through interacting with 5-HT2A receptors, which suggest a promising strategy to modulate abnormal learning in cognitive disorders.
Collapse
Affiliation(s)
- Lizhu Jiang
- Department of Neuropsychopathy, Clinical Medical School, Dali University, Dali, China
- Key Lab of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, China
- Department of Central Laboratory, The Third People’s Hospital of Yunnan Province, Kunming, China
| | - Liping Wang
- Key Lab of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, China
| | - Yan Yin
- Department of Central Laboratory, The Third People’s Hospital of Yunnan Province, Kunming, China
| | - Mengke Huo
- Department of Neuropsychopathy, Clinical Medical School, Dali University, Dali, China
| | - Chao Liu
- Key Lab of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, China
- Key Lab of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Beijing, China
| | - Qixin Zhou
- Key Lab of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, China
| | - Dafu Yu
- Department of Nuclear Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Lin Xu
- Key Lab of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, China
- Key Lab of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Beijing, China
| | - Rongrong Mao
- Department of Pathology and Pathophysiology, School of Basic Medical Science, Kunming Medical University, Kunming, China
| |
Collapse
|
5
|
Medina JH. Neural, Cellular and Molecular Mechanisms of Active Forgetting. Front Syst Neurosci 2018; 12:3. [PMID: 29467630 PMCID: PMC5808127 DOI: 10.3389/fnsys.2018.00003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 01/18/2018] [Indexed: 11/16/2022] Open
Abstract
The neurobiology of memory formation attracts much attention in the last five decades. Conversely, the rules that govern and the mechanisms underlying forgetting are less understood. In addition to retroactive interference, retrieval-induced forgetting and passive decay of time, it has been recently demonstrated that the nervous system has a diversity of active and inherent processes involved in forgetting. In Drosophila, some operate mainly at an early stage of memory formation and involves dopamine (DA) neurons, specific postsynaptic DA receptor subtypes, Rac1 activation and induces rapid active forgetting. In mammals, others regulate forgetting and persistence of seemingly consolidated memories and implicate the activity of DA receptor subtypes and AMPA receptors in the hippocampus (HP) and related structures to activate parallel signaling pathways controlling active time-dependent forgetting. Most of them may involve plastic changes in synaptic and extrasynaptic receptors including specific removal of GluA2 AMPA receptors. Forgetting at longer timescales might also include changes in adult neurogenesis in the dentate gyrus (DG) of the HP. Therefore, based on relevance or value considerations neuronal circuits may regulate in a time-dependent manner what is formed, stored, and maintained and what is forgotten.
Collapse
Affiliation(s)
- Jorge H Medina
- Laboratorio de Memoria, IBCN Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (UBA-CONICET), Buenos Aires, Argentina.,Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
6
|
Effects of 5-HT 5A receptor blockade on amnesia or forgetting. Behav Brain Res 2018; 357-358:98-103. [PMID: 29330003 DOI: 10.1016/j.bbr.2018.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 10/19/2017] [Accepted: 01/08/2018] [Indexed: 11/21/2022]
Abstract
Previously the effects (0.01-3.0 mg/kg) of post-training SB-699551 (a 5-HT5A receptor antagonist) were reported in the associative learning task of autoshaping, showing that SB-699551 (0.1 mg/kg) decreased lever-press conditioned responses (CR) during short-term (STM; 1.5-h) or (3.0 mg/kg) long-term memory (LTM; 24-h); relative to the vehicle animals. Moreover, as pro-cognitive efficacy of SB-699551 was reported in the ketamine-model of schizophrenia. Hence, firstly aiming improving performance (conditioned response, CR), in this work autoshaping lever-press vs. nose-poke response was compared; secondly, new set of animals were randomly assigned to SB-699551 plus forgetting or amnesia protocols. Results show that the nose-poke operandum reduced inter-individual variance, increased CR and produced a progressive CR until 48-h. After one week of no training/testing sessions (i.e., interruption of 216 h), the forgetting was observed; i.e., the CR% of control-saline group significantly decreased. In contrast, SB-699551 at 0.3 and 3.0 mg/kg prevents forgetting. Additionally, as previously reported the non-competitive NMDA receptor antagonist dizocilpine (0.2 mg/kg) or the non-selective cholinergic antagonist scopolamine (0.3 mg/kg) decreased CR in STM. SB-699551 (0.3 mg/kg) alone also produced amnesia-like effect. Co-administration of SB-699551-dizocilpine or SB-699551-scopolamine reversed the SB-699551 induced-amnesic effects in LTM (24-h). Nose-poke seems to be a reliable operandum. The anti-amnesic and anti-forgetting mechanisms of amnesic SB-699551-dose remain unclear. The present findings are consistent with the notion that low doses of 5-HT5A receptor antagonists might be useful for reversing memory deficits associated to forgetting and amnesia. Of course, further experiments are necessary.
Collapse
|
7
|
Frameworking memory and serotonergic markers. Rev Neurosci 2017; 28:455-497. [DOI: 10.1515/revneuro-2016-0079] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/16/2017] [Indexed: 12/29/2022]
Abstract
Abstract:The evidence for neural markers and memory is continuously being revised, and as evidence continues to accumulate, herein, we frame earlier and new evidence. Hence, in this work, the aim is to provide an appropriate conceptual framework of serotonergic markers associated with neural activity and memory. Serotonin (5-hydroxytryptamine [5-HT]) has multiple pharmacological tools, well-characterized downstream signaling in mammals’ species, and established 5-HT neural markers showing new insights about memory functions and dysfunctions, including receptors (5-HT1A/1B/1D, 5-HT2A/2B/2C, and 5-HT3-7), transporter (serotonin transporter [SERT]) and volume transmission present in brain areas involved in memory. Bidirectional influence occurs between 5-HT markers and memory/amnesia. A growing number of researchers report that memory, amnesia, or forgetting modifies neural markers. Diverse approaches support the translatability of using neural markers and cerebral functions/dysfunctions, including memory formation and amnesia. At least, 5-HT1A, 5-HT4, 5-HT6, and 5-HT7receptors and SERT seem to be useful neural markers and therapeutic targets. Hence, several mechanisms cooperate to achieve synaptic plasticity or memory, including changes in the expression of neurotransmitter receptors and transporters.
Collapse
|
8
|
|
9
|
Gasbarri A, Bert B, Meneses A. Editorial: 5-HT2A/2B/2C Receptors, Memory, and Neuropsychiatric Disorders. Front Pharmacol 2016; 7:9. [PMID: 26869926 PMCID: PMC4734106 DOI: 10.3389/fphar.2016.00009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 01/12/2016] [Indexed: 12/11/2022] Open
Affiliation(s)
- Antonella Gasbarri
- Department of Applied Clinical and Biotechnologic Sciences, University of L'Aquila L'Aquila, Italy
| | - Bettina Bert
- Department of Veterinary Medicine, Institute of Pharmacology and Toxicology, Freie Universität Berlin Berlin, Germany
| | - Alfredo Meneses
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Mexico City, Mexico
| |
Collapse
|
10
|
Wu T, He K, Zhan Q, Ang S, Ying J, Zhang S, Zhang T, Xue Y, Tang M. MPA-capped CdTe quantum dots exposure causes neurotoxic effects in nematode Caenorhabditis elegans by affecting the transporters and receptors of glutamate, serotonin and dopamine at the genetic level, or by increasing ROS, or both. NANOSCALE 2015; 7:20460-20473. [PMID: 26583374 DOI: 10.1039/c5nr05914c] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
As quantum dots (QDs) are widely used in biomedical applications, the number of studies focusing on their biological properties is increasing. While several studies have attempted to evaluate the toxicity of QDs towards neural cells, the in vivo toxic effects on the nervous system and the molecular mechanisms are unclear. The aim of the present study was to investigate the neurotoxic effects and the underlying mechanisms of water-soluble cadmium telluride (CdTe) QDs capped with 3-mercaptopropionic acid (MPA) in Caenorhabditis elegans (C. elegans). Our results showed that exposure to MPA-capped CdTe QDs induced behavioral defects, including alterations to body bending, head thrashing, pharyngeal pumping and defecation intervals, as well as impaired learning and memory behavior plasticity, based on chemotaxis or thermotaxis, in a dose-, time- and size-dependent manner. Further investigations suggested that MPA-capped CdTe QDs exposure inhibited the transporters and receptors of glutamate, serotonin and dopamine in C. elegans at the genetic level within 24 h, while opposite results were observed after 72 h. Additionally, excessive reactive oxygen species (ROS) generation was observed in the CdTe QD-treated worms, which confirmed the common nanotoxicity mechanism of oxidative stress damage, and might overcome the increased gene expression of neurotransmitter transporters and receptors in C. elegans induced by long-term QD exposure, resulting in more severe behavioral impairments.
Collapse
Affiliation(s)
- Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing 210009, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Cognition Enhancing and Neuromodulatory Propensity of Bacopa monniera Extract Against Scopolamine Induced Cognitive Impairments in Rat Hippocampus. Neurochem Res 2015; 41:985-99. [DOI: 10.1007/s11064-015-1780-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 10/30/2015] [Accepted: 11/17/2015] [Indexed: 12/31/2022]
|
12
|
Abstract
Diverse neuropsychiatric disorders present dysfunctional memory and no effective treatment exits for them; likely as result of the absence of neural markers associated to memory. Neurotransmitter systems and signaling pathways have been implicated in memory and dysfunctional memory; however, their role is poorly understood. Hence, neural markers and cerebral functions and dysfunctions are revised. To our knowledge no previous systematic works have been published addressing these issues. The interactions among behavioral tasks, control groups and molecular changes and/or pharmacological effects are mentioned. Neurotransmitter receptors and signaling pathways, during normal and abnormally functioning memory with an emphasis on the behavioral aspects of memory are revised. With focus on serotonin, since as it is a well characterized neurotransmitter, with multiple pharmacological tools, and well characterized downstream signaling in mammals' species. 5-HT1A, 5-HT4, 5-HT5, 5-HT6, and 5-HT7 receptors as well as SERT (serotonin transporter) seem to be useful neural markers and/or therapeutic targets. Certainly, if the mentioned evidence is replicated, then the translatability from preclinical and clinical studies to neural changes might be confirmed. Hypothesis and theories might provide appropriate limits and perspectives of evidence.
Collapse
Affiliation(s)
- Alfredo Meneses
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Mexico City, Mexico
| |
Collapse
|
13
|
Borrow AP, Cameron NM. Estrogenic mediation of serotonergic and neurotrophic systems: implications for female mood disorders. Prog Neuropsychopharmacol Biol Psychiatry 2014; 54:13-25. [PMID: 24865152 DOI: 10.1016/j.pnpbp.2014.05.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 05/13/2014] [Accepted: 05/14/2014] [Indexed: 01/17/2023]
Abstract
Clinical research has demonstrated a significant sex difference in the occurrence of depressive disorders. Beginning at pubertal onset, women report a higher incidence of depression than men. Women are also vulnerable to the development of depressive disorders such as premenstrual dysphoric disorder, postpartum depression, and perimenopausal depression. These disorders are associated with reproductive stages involving changes in gonadal hormone levels. Specifically, female depression and female affective behaviors are influenced by estradiol levels. This review argues two major mechanisms by which estrogens influence depression and depressive-like behavior: through interactions with neurotrophic factors and through an influence on the serotonergic system. In particular, estradiol increases brain derived neurotrophic factor (BDNF) levels within the brain, and alters serotonergic expression in a receptor subtype-specific manner. We will take a regional approach, examining these effects of estrogens in the major brain areas implicated in depression. Finally, we will discuss the gaps in our current knowledge of the effects of estrogens on female depression, and the potential utility for estrogen receptor modulators in treatment for this disorder.
Collapse
|
14
|
Meneses A. 5-HT7 receptor stimulation and blockade: a therapeutic paradox about memory formation and amnesia. Front Behav Neurosci 2014; 8:207. [PMID: 24971055 PMCID: PMC4053683 DOI: 10.3389/fnbeh.2014.00207] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 05/22/2014] [Indexed: 12/30/2022] Open
Affiliation(s)
- Alfredo Meneses
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico NacionalMexico City, Mexico
| |
Collapse
|
15
|
Meneses A. 5-HT systems: emergent targets for memory formation and memory alterations. Rev Neurosci 2014; 24:629-64. [PMID: 24259245 DOI: 10.1515/revneuro-2013-0026] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 09/29/2013] [Indexed: 12/20/2022]
Abstract
Drugs acting through 5-hydroxytryptamine (serotonin or 5-HT) systems modulate memory and its alterations, although the mechanisms involved are poorly understood. 5-HT drugs may present promnesic and/or antiamnesic (or even being amnesic) effects. Key questions regarding 5-HT markers include whether receptors directly or indirectly participate and/or contribute to the physiological and pharmacological basis of memory and its pathogenesis; hence, the major aim of this article was to examine recent advances in emergent targets of the 5-HT systems for memory formation and memory alterations. Recent reviews and findings are summarized, mainly in the context of the growing notion of memory deficits in brain disorders (e.g., posttraumatic stress disorder, mild cognitive impairment, consumption of drugs, poststroke cognitive dysfunctions, schizophrenia, Parkinson disease, and infection-induced memory impairments). Mainly, mammalian and (some) human data were the focus. At least agonists and antagonists for 5-HT1A/1B, 5-HT2A/2B/2C, 5-HT3, 5-HT4, 5-HT6, and 5-HT7 receptors as well as serotonin uptake inhibitors seem to have a promnesic and/or antiamnesic effect in different conditions and 5-HT markers seem to be associated to neural changes. Available evidence offers clues about the possibilities, but the exact mechanisms remain unclear. For instance, 5-HT transporter expression seems to be a reliable neural marker related to memory mechanisms and its alterations.
Collapse
|
16
|
Gonzalez R, Chávez-Pascacio K, Meneses A. Role of 5-HT5A receptors in the consolidation of memory. Behav Brain Res 2013; 252:246-51. [DOI: 10.1016/j.bbr.2013.05.051] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 05/23/2013] [Accepted: 05/27/2013] [Indexed: 01/23/2023]
|
17
|
Kilpatrick LA, Mayer EA, Labus JS, Gupta A, Hamaguchi T, Mizuno T, Komuro H, Kano M, Kanazawa M, Aoki M, Fukudo S. Impact of serotonin transporter gene polymorphism on brain activation by colorectal distention. Neuroimage 2009; 10:e0123183. [PMID: 25893242 PMCID: PMC4404144 DOI: 10.1371/journal.pone.0123183] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 03/01/2015] [Indexed: 12/31/2022] Open
Abstract
Background and Aims The 5-hydroxytryptamine transporter gene-linked polymorphic region (5-HTTLPR) has been linked to increased stress responsiveness and negative emotional states. During fearful face recognition individuals with the s allele of 5-HTTLPR show greater amygdala activation. We aimed to test the hypothesis that the 5-HTTLPR polymorphism differentially affects connectivity within brain networks during an aversive visceral stimulus. Methods Twenty-three healthy male subjects were enrolled. DNA was extracted from the peripheral blood. The genotype of 5-HTTLPR was determined using polymerase chain reaction. Subjects with the s/s genotype (n = 13) were compared to those with the l allele (genotypes l/s, l/l, n = 10). Controlled rectal distension from 0 to 40 mmHg was delivered in random order using a barostat. Radioactive H2[15-O] saline was injected at time of distension followed by positron emission tomography (PET). Changes in regional cerebral blood flow (rCBF) were analyzed using partial least squares (PLS) and structural equation modeling (SEM). Results During baseline, subjects with s/s genotype demonstrated a significantly increased negative influence of pregenual ACC (pACC) on amygdala activity compared to l-carriers. During inflation, subjects with s/s genotype demonstrated a significantly greater positive influence of hippocampus on amygdala activity compared to l-carriers. Conclusion In male Japanese subjects, individuals with s/s genotype show alterations in the connectivity of brain regions involved in stress responsiveness and emotion regulation during aversive visceral stimuli compared to those with l carriers.
Collapse
Affiliation(s)
- Lisa A. Kilpatrick
- Oppenheimer Family Center for Neurobiology of Stress, Division of Digestive Diseases, David Geffen School of Medicine at University of California at Los Angeles (UCLA), Los Angeles, California, United States of America
| | - Emeran A. Mayer
- Oppenheimer Family Center for Neurobiology of Stress, Division of Digestive Diseases, David Geffen School of Medicine at University of California at Los Angeles (UCLA), Los Angeles, California, United States of America
| | - Jennifer S. Labus
- Oppenheimer Family Center for Neurobiology of Stress, Division of Digestive Diseases, David Geffen School of Medicine at University of California at Los Angeles (UCLA), Los Angeles, California, United States of America
| | - Arpana Gupta
- Oppenheimer Family Center for Neurobiology of Stress, Division of Digestive Diseases, David Geffen School of Medicine at University of California at Los Angeles (UCLA), Los Angeles, California, United States of America
| | - Toyohiro Hamaguchi
- Department of Behavioral Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomoko Mizuno
- Department of Behavioral Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hazuki Komuro
- Department of Behavioral Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Michiko Kano
- Department of Behavioral Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Motoyori Kanazawa
- Department of Behavioral Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Psychosomatic Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shin Fukudo
- Department of Behavioral Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Psychosomatic Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
- * E-mail:
| |
Collapse
|