1
|
Kushwaha A, Thakur MK. Suv39h1 Silencing Recovers Memory Decline in Scopolamine-Induced Amnesic Mouse Model. Mol Neurobiol 2024; 61:487-497. [PMID: 37626270 DOI: 10.1007/s12035-023-03570-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
Histone post-translational modifications play an important role in the regulation of long-term memory and modulation of expression of neuronal immediate early genes (IEGs). The lysine methyltransferase KMT1A/ Suv39h1 (a mammalian ortholog of the Drosophila melanogaster SU (VAR) 3-9) aids in the methylation of histone H3 at lysine 9. We previously reported that age-related memory decline is associated with an increase in Suv39h1 expression in the hippocampus of male mice. The scopolamine-induced amnesic mouse model is a well-known animal model of memory impairment. In the current study, we have made an attempt to find a link between the changes in the H3K9 trimethylation pattern and memory decline during scopolamine-induced amnesia. It was followed by checking the effect of siRNA-mediated silencing of hippocampal Suv39h1 on memory and expression of neuronal IEGs. Scopolamine treatment significantly increased global levels of H3K9me3 and Suv39h1 in the amnesic hippocampus. Suv39h1 silencing in amnesic mice reduced H3K9me3 levels at the neuronal IEGs (Arc and BDNF) promoter, increased the expression of Arc and BDNF in the hippocampus, and improved recognition memory. Thus, these findings suggest that the silencing of Suv39h1 alone or in combination with other epigenetic drugs might be effective for treating memory decline during amnesia.
Collapse
Affiliation(s)
- Akanksha Kushwaha
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221 005, India
- K N Govt. P G College, Gyanpur, Sant Ravidas Nagar, 221304, India
| | - Mahendra Kumar Thakur
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221 005, India.
| |
Collapse
|
2
|
Contextual memory reactivation modulates Ca2+-activity network state in a mushroom body-like center of the crab N. granulata. Sci Rep 2022; 12:11408. [PMID: 35794138 PMCID: PMC9259570 DOI: 10.1038/s41598-022-15502-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/24/2022] [Indexed: 11/19/2022] Open
Abstract
High-order brain centers play key roles in sensory integration and cognition. In arthropods, much is known about the insect high-order centers that support associative memory processes, the mushroom bodies. The hypothesis that crustaceans possess structures equivalent to the mushroom bodies -traditionally called hemiellipsoid body- has been receiving neuroanatomical endorsement. The recent functional support is limited to the short term: in a structure of the true crab Neohelice granulata that has many insect-like mushroom bodies traits, the plastic learning changes express the context attribute of an associative memory trace. Here, we used in vivo calcium imaging to test whether neuronal activity in this structure is associated with memory reactivation in the long-term (i.e., 24 h after training). Long-term training effects were tested by presenting the training-context alone, a reminder known to trigger memory reconsolidation. We found similar spontaneous activity between trained and naïve animals. However, after training-context presentation, trained animals showed increased calcium events rate, suggesting that memory reactivation induced a change in the underlying physiological state of this center. Reflecting the change in the escape response observed in the paradigm, animals trained with a visual danger stimulus showed significantly lower calcium-evoked transients in the insect-like mushroom body. Protein synthesis inhibitor cycloheximide administered during consolidation prevented calcium mediated changes. Moreover, we found the presence of distinct calcium activity spatial patterns. Results suggest that intrinsic neurons of this crustacean mushroom body-like center are involved in contextual associative long-term memory processes.
Collapse
|
3
|
Evaluation of the effect of nicotine and O-acetyl-L-carnitine on testosterone-induced spatial learning impairment in Morris water maze and assessment of protein markers. LEARNING AND MOTIVATION 2022. [DOI: 10.1016/j.lmot.2022.101810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
4
|
Beisel JMS, Maza FJ, Justel N, Larrosa PNF, Delorenzi A. Embodiment of an Emotional State Concurs with a Stress-Induced Reconsolidation Impairment Effect on an Auditory Verbal Word-List Memory. Neuroscience 2022; 497:239-256. [PMID: 35472504 DOI: 10.1016/j.neuroscience.2022.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 12/12/2022]
Abstract
Stress alters memory. Understanding how and when acute stress improves or impairs memory is a challenge. Stressors can affect memory depending on a combination of factors. Typically, mild stressors and stress hormones might promote consolidation of memory processing and impair memory retrieval. However, studies have shown that during reconsolidation, stressors may either enhance or impair recalled memory. We propose that a function of reconsolidation is to induce changes in the behavioral expression of memory. Here, we adapted the Rey Auditory Verbal Learning Test (RAVLT) to evaluate the effect of cold pressor stress (CPS) during the reconsolidation of this declarative memory. A decay in memory performance attributable to forgetting was found at the time of memory reactivation 5 d after training (day 6). Contrary to our initial predictions, the administration of CPS after memory reactivation impaired long-term memory expression (day 7), an effect dependent on the presence of a mismatch during Reactivation Session. No differences in recognition tests were found. To assess putative sources of the negative memory modulation effects induced during reconsolidation, current emotional state was evaluated immediately after Testing Session (day 7). An increase in arousal was revealed only when CPS was administered concurrently with memory reactivation-labilization. The possibility of integration during reconsolidation of independent associations of these emotive components in the trace is a critical factor in modulating neutral memories during reconsolidation by stressors.
Collapse
Affiliation(s)
- Jessica Mariel Sánchez Beisel
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Ciudad Universitaria, Pabellón IFIBYNE, Argentina
| | - Francisco Javier Maza
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Ciudad Universitaria, Pabellón IFIBYNE, Argentina
| | - Nadia Justel
- Lab. Interdisciplinario de Neurociencia Cognitiva (LINC), CEMSC3, ICIFI, UNSAM CONICET, Argentina
| | - Pablo Nicolas Fernandez Larrosa
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Ciudad Universitaria, Pabellón IFIBYNE, Argentina; Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Argentina.
| | - Alejandro Delorenzi
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Ciudad Universitaria, Pabellón IFIBYNE, Argentina; Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Argentina.
| |
Collapse
|
5
|
Hashemzaei M, Baratzadeh N, Sharamian I, Fanoudi S, Sanati M, Rezaei H, Shahraki J, Rezaee R, Belaran M, Bazi A, Tabrizian K. Intrahippocampal co-administration of nicotine and O-acetyl-L-carnitine prevents the H-89-induced spatial learning deficits in Morris water maze. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2021; 19:691-696. [PMID: 33964190 DOI: 10.1515/jcim-2021-0035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/16/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES H-89 (a protein kinase AII [PKA II] inhibitor) impairs the spatial memory in the Morris water maze task in rats. In the present study, we aimed to study the protective effects of nicotine and O-acetyl-L-carnitine against H-89-induced spatial memory deficits. METHODS Spatial memory impairment was induced by the bilateral intrahippocampal administration of 10 µM H-89 (dissolved in dimethyl sulfoxide, DMSO) to rats. The rats then received bilateral administrations of either nicotine (1 μg/μL, dissolved in saline) or O-acetyl-L-carnitine (100 μM/side, dissolved in deionized water) alone and in combination. Control groups received either saline, deionized water, or DMSO. RESULTS The H-89-treated animals showed significant increases in the time and distance travelled to find hidden platforms, and there was also a significant decrease in the time spent in the target quadrant compared to DMSO-treated animals. Nicotine and O-acetyl-L-carnitine had no significant effects on H-89-induced spatial learning impairments alone, but the bilateral intrahippocampal co-administration of nicotine and O-acetyl-L-carnitine prevented H-89-induced spatial learning deficits and increased the time spent in the target quadrant in comparison with H-89-treated animals. CONCLUSIONS Our results indicated the potential synergistic effects of nicotine and O-acetyl-L-carnitine in preventing protein kinase AII inhibitor (H-89)-induced spatial learning impairments.
Collapse
Affiliation(s)
- Mahmoud Hashemzaei
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Najmeh Baratzadeh
- Students Research Committee, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Iraj Sharamian
- Pediatric Gastroenterology and Hepatology Research Center, Zabol University of Medical Sciences, Zabol, Iran
| | - Sahar Fanoudi
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanieh Rezaei
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Jafar Shahraki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Ramin Rezaee
- Clinical Research Unit, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Belaran
- Department of Physiology, Faculty of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Ali Bazi
- Faculty of Allied Medical Sciences, Zabol University of Medical Science, Zabol, Iran
| | - Kaveh Tabrizian
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| |
Collapse
|
6
|
Gonzalez H, Bloise L, Maza FJ, Molina VA, Delorenzi A. Memory built in conjunction with a stressor is privileged: Reconsolidation-resistant memories in the crab Neohelice. Brain Res Bull 2020; 157:108-118. [PMID: 32017969 DOI: 10.1016/j.brainresbull.2020.01.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/14/2020] [Accepted: 01/21/2020] [Indexed: 11/27/2022]
Abstract
The dynamics of memory processes are conserved throughout evolution, a feature based on the hypothesis of a common origin of the high-order memory centers in bilateral animals. Reconsolidation is just one example. The possibility to interfere with long-term memory expression during reconsolidation has been proposed as potentially useful in clinical application to treat traumatic memories. However, several pieces of evidence in rodents show that either robust fear memories or stressful events applied before acquisition promote reconsolidation-resistant memories, i.e., memories that are resistant to the interfering effect of drugs on memory reconsolidation. Conceivably, the generation of these reconsolidation-resistant fear memories also occurs in humans. Is the induction of reconsolidation-resistant memories part of the dynamics of memory processes conserved throughout evolution? In the semiterrestrial crab Neohelice granulata, memory reconsolidation is triggered by a short reminder without reinforcement. Here, we show that an increase in the salience of the aversive stimulus augmented the memory strength; nonetheless, the protein synthesis inhibitor cycloheximide still disrupted the reconsolidation process. However, crabs stressed by a water-deprivation episode before a strong training session built up a memory that was now reconsolidation-resistant. We tested whether these reconsolidation-resistant effects can be challenged by changing parametric conditions of memory-reminder sessions; multiple memory reactivations without reinforcement were not able to trigger the labilization-reconsolidation of this resistant memory. Overall, the present findings suggest that generation of reconsolidation-resistant memories can be another part of the dynamics of memory processes conserved throughout evolution that protects privileged information from change.
Collapse
Affiliation(s)
- Heidi Gonzalez
- Departamento de Fisiologíay Biología Molecular y Celular, IFIByNE-CONICET, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria C1428EHA, Argentina.
| | - Leonardo Bloise
- Departamento de Fisiologíay Biología Molecular y Celular, IFIByNE-CONICET, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria C1428EHA, Argentina.
| | - Francisco J Maza
- Departamento de Fisiologíay Biología Molecular y Celular, IFIByNE-CONICET, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria C1428EHA, Argentina.
| | - Víctor A Molina
- Departamento de Farmacología, Facultad de Ciencias Químicas, IFEC-CONICET-Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina.
| | - Alejandro Delorenzi
- Departamento de Fisiologíay Biología Molecular y Celular, IFIByNE-CONICET, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria C1428EHA, Argentina.
| |
Collapse
|
7
|
Iskhakov B, Bourie F, Shenouda M, Fazilov G, Buras A, Bhattacharjee D, Dohnalova P, Iskhakova J, Bodnar RJ. Murine genetic variance in muscarinic cholinergic receptor antagonism of acquisition and expression of sucrose-conditioned flavor preferences in three inbred mouse strains. Pharmacol Biochem Behav 2018; 172:1-8. [PMID: 29969600 DOI: 10.1016/j.pbb.2018.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/04/2018] [Accepted: 06/29/2018] [Indexed: 01/09/2023]
Abstract
Conditioned flavor preferences (CFP) are elicited by sucrose relative to saccharin in inbred mice with both the robustness of the preferences and sensitivity to pharmacological receptor antagonists sensitive to genetic variance. Dopamine, opioid and N-methyl-d-aspartate receptor antagonists differentially interfere with the acquisition (learning) and expression (maintenance) of sucrose-CFP in BALB/c and SWR inbred mice. Further, the muscarinic cholinergic receptor antagonist, scopolamine (SCOP) more potently reduces both sucrose and saccharin intake in BALB/c and C57BL/6 relative to SWR inbred mice. The present study examined whether SCOP altered the expression and acquisition of sucrose-CFP in BALB/c, C57BL/6 and SWR mice. In expression experiments, food-restricted mice alternately consumed a flavored (CS+, e.g., cherry, 5 sessions) 16% sucrose solution and a differently-flavored (CS-, e.g., grape, 5 sessions) 0.05% saccharin solution. Two-bottle CS choice tests with the two flavors mixed in 0.2% saccharin solutions occurred following vehicle or SCOP at doses of 1 or 5 mg/kg. SCOP significantly reduced the magnitude of the expression of sucrose-CFP in BALB/c, but not either C57BL/6 or SWR mice. In acquisition experiments, separate groups of BALB/c, C57BL/6 and SWR mice were treated prior to acquisition training sessions with vehicle or 2.5 or 5 mg/kg SCOP doses that was followed by six two-bottle CS choice tests without injections. SCOP dose-dependently reduced (1 mg/kg) and eliminated (2.5 mg/kg) the acquisition of sucrose-CFP in BALB/c mice, and reduced the magnitude of acquisition of sucrose-CFP in SWR mice. In contrast, neither SCOP dose affected the acquisition of sucrose-CFP in C57BL/6 mice. Thus, muscarinic cholinergic receptor signaling is essential for the learning of sucrose-CFP in BALB/c mice, to a lesser degree in SWR mice, but not in C57BL/6 mice. Murine genetic variance differentially modulates muscarinic cholinergic receptor control of sweet intake per se relative to learned conditioned flavor preferences of sweets.
Collapse
Affiliation(s)
- Ben Iskhakov
- Department of Psychology, Queens College, CUNY, New York, NY, USA
| | - Faye Bourie
- Department of Psychology, Queens College, CUNY, New York, NY, USA
| | - Merna Shenouda
- Department of Psychology, Queens College, CUNY, New York, NY, USA
| | - Gabriela Fazilov
- Department of Psychology, Queens College, CUNY, New York, NY, USA
| | - Agata Buras
- Department of Psychology, Queens College, CUNY, New York, NY, USA
| | | | - Petra Dohnalova
- Department of Psychology, Queens College, CUNY, New York, NY, USA
| | - Julia Iskhakova
- Department of Psychology, Queens College, CUNY, New York, NY, USA
| | - Richard J Bodnar
- Department of Psychology, Queens College, CUNY, New York, NY, USA; CUNY Neuroscience Collaborative, CUNY Graduate Center, New York, NY, USA.
| |
Collapse
|
8
|
Emotional memory expression is misleading: delineating transitions between memory processes. Curr Opin Behav Sci 2018. [DOI: 10.1016/j.cobeha.2017.12.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Liu X, Tian L, Cui R, Ruan H, Li X. Muscarinic receptors in the nucleus accumbens shell play different roles in context-induced or morphine-challenged expression of behavioral sensitization in rats. Eur J Pharmacol 2018; 819:51-57. [PMID: 29196177 DOI: 10.1016/j.ejphar.2017.11.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/17/2017] [Accepted: 11/24/2017] [Indexed: 01/01/2023]
Abstract
Both drug-related cues and drug priming are the main factors that induce relapse of drug addiction. Previous research has reported that blockade of the muscarinic receptors could significantly depress addictive behavior, suggesting that the muscarinic receptors might be involved in drug use and relapse behavior. The nucleus accumbens (NAc), especially the shell of the NAc, where the muscarinic receptors are expressed, is critical for craving and relapse. This study investigated the effects of microinfusion of the muscarinic receptor antagonist scopolamine into the NAc shell on context- and morphine-induced expression of behavioral sensitization. Behavioral sensitization was established by exposure to 5mg/kg morphine once daily for five consecutive days. Expression of behavioral sensitization was induced by saline challenge or 5mg/kg morphine challenge. The results showed that: (a) the muscarinic receptor antagonist scopolamine (10.8μg/rat) microinjected into the NAc shell blocked expression of conditional sensitization; (b) acetylcholinesterase inhibitor huperzine-A (0.5 and 0.1μg/rat), but not scopolamine (10.8μg/rat), microinjected into the NAc shell blocked morphine-induced expression of sensitization; and (c) pre-infusion of scopolamine (10.8μg/rat) reversed the inhibitory effect of huperzine-A (0.5μg/rat) on morphine-induced sensitization. Our findings suggest that muscarinic receptors in the NAc shell play different roles in context-induced and morphine-challenged expression of behavioral sensitization.
Collapse
Affiliation(s)
- Xinhe Liu
- Beijing Key Laboratory of Learning and Cognition, Department of Psychology, Capital Normal University, Beijing, PR China
| | - Lin Tian
- Beijing Key Laboratory of Learning and Cognition, Department of Psychology, Capital Normal University, Beijing, PR China
| | - Ruisi Cui
- Beijing Key Laboratory of Learning and Cognition, Department of Psychology, Capital Normal University, Beijing, PR China
| | - Heng Ruan
- Beijing Key Laboratory of Learning and Cognition, Department of Psychology, Capital Normal University, Beijing, PR China
| | - Xinwang Li
- Beijing Key Laboratory of Learning and Cognition, Department of Psychology, Capital Normal University, Beijing, PR China.
| |
Collapse
|
10
|
Who is the boss? Individual recognition memory and social hierarchy formation in crayfish. Neurobiol Learn Mem 2018; 147:79-89. [DOI: 10.1016/j.nlm.2017.11.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/24/2017] [Accepted: 11/30/2017] [Indexed: 11/24/2022]
|
11
|
Parallel memory traces are built after an experience containing aversive and appetitive components in the crab Neohelice. Proc Natl Acad Sci U S A 2017; 114:E4666-E4675. [PMID: 28507135 DOI: 10.1073/pnas.1701927114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The neurobiology of learning and memory has been mainly studied by focusing on pure aversive or appetitive experiences. Here, we challenged this approach considering that real-life stimuli come normally associated with competing aversive and appetitive consequences and that interaction between conflicting information must be intrinsic part of the memory processes. We used Neohelice crabs, taking advantage of two well-described appetitive and aversive learning paradigms and combining them in a single training session to evaluate how this affects memory. We found that crabs build separate appetitive and aversive memories that compete during retrieval but not during acquisition. Which memory prevails depends on the balance between the strength of the unconditioned stimuli and on the motivational state of the animals. The results indicate that after a mix experience with appetitive and aversive consequences, parallel memories are established in a way that appetitive and aversive information is stored to be retrieved in an opportunistic manner.
Collapse
|
12
|
Navarro NM, Krawczyk MC, Boccia MM, Blake MG. Extinction and recovery of an avoidance memory impaired by scopolamine. Physiol Behav 2017; 171:192-198. [PMID: 28069463 DOI: 10.1016/j.physbeh.2016.12.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/07/2016] [Accepted: 12/20/2016] [Indexed: 11/29/2022]
Abstract
Pre-training administration of scopolamine (SCP) resembles situations of cholinergic dysfunction, leading to memory impairment of mice trained in an inhibitory avoidance task. We suggest here that SCP does not impair memory formation, but acquisition is affected in a way that reduces the strength of the stored memory, thus making this memory less able to control behavior when tested. Hence, a memory trace is stored, but is poorly expressed during the test. Although weakly expressed, this memory shows extinction during successive tests, and can be strengthened by using a reminder. Our results indicate that memories stored under cholinergic dysfunction conditions seem absent or lost, but are in fact present and experience common memory processes, such as extinction, and could be even recovered by using appropriate protocols.
Collapse
Affiliation(s)
- N M Navarro
- Universidad de Buenos Aires, CONICET, Facultad de Medicina, Departamento de Fisiología, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO), Paraguay, 2155, 7th floor, C1121ABG, Buenos Aires, Argentina
| | - M C Krawczyk
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Farmacología, Junín, 956, 5th floor, C1113AAC, Buenos Aires, Argentina
| | - M M Boccia
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Farmacología, Junín, 956, 5th floor, C1113AAC, Buenos Aires, Argentina
| | - M G Blake
- Universidad de Buenos Aires, CONICET, Facultad de Medicina, Departamento de Fisiología, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO), Paraguay, 2155, 7th floor, C1121ABG, Buenos Aires, Argentina.
| |
Collapse
|
13
|
Larrosa PNF, Ojea A, Ojea I, Molina VA, Zorrilla-Zubilete MA, Delorenzi A. Retrieval under stress decreases the long-term expression of a human declarative memory via reconsolidation. Neurobiol Learn Mem 2017; 142:135-145. [PMID: 28285131 DOI: 10.1016/j.nlm.2017.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/02/2017] [Accepted: 03/06/2017] [Indexed: 12/25/2022]
Abstract
Acute stress impairs memory retrieval of several types of memories. An increase in glucocorticoids, several minutes after stressful events, is described as essential to the impairing retrieval-effects of stressors. Moreover, memory retrieval under stress can have long-term consequences. Through what process does the reactivated memory under stress, despite the disrupting retrieval effects, modify long-term memories? The reconsolidation hypothesis proposes that a previously consolidated memory reactivated by a reminder enters a vulnerability phase (labilization) during which it is transiently sensitive to modulation, followed by a re-stabilization phase. However, previous studies show that the expression of memories during reminder sessions is not a condition to trigger the reconsolidation process since unexpressed memories can be reactivated and labilized. Here we evaluate whether it is possible to reactivate-labilize a memory under the impairing-effects of a mild stressor. We used a paradigm of human declarative memory whose reminder structure allows us to differentiate between a reactivated-labile memory state and a reactivated but non-labile state. Subjects memorized a list of five cue-syllables associated with their respective response-syllables. Seventy-two hours later, results showed that the retrieval of the paired-associate memory was impaired when tested 20min after a mild stressor (cold pressor stress (CPS)) administration, coincident with cortisol levels increase. Then, we investigated the long-term effects of CPS administration prior to the reminder session. Under conditions where the reminder initiates the reconsolidation process, CPS impaired the long-term memory expression tested 24h later. In contrast, CPS did not show effects when administered before a reminder session that does not trigger reconsolidation. Results showed that memory reactivation-labilization occurs even when retrieval was impaired. Memory reactivation under stress could hinder -via reconsolidation- the probability of the traces to be expressed in the long term.
Collapse
Affiliation(s)
- Pablo Nicolás Fernández Larrosa
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología y Biología Molecular y Celular, IFIByNE-CONICET, Pabellón II, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria C1428EHA, Argentina
| | - Alejandro Ojea
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología y Biología Molecular y Celular, IFIByNE-CONICET, Pabellón II, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria C1428EHA, Argentina
| | - Ignacio Ojea
- Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires - Inst. de Investigaciones Matemáticas "Luis A. Santalo ́", CONICET-UBA, Argentina.
| | - Victor Alejandro Molina
- Departamento de Farmacología, Facultad de Ciencias Químicas, IFEC-CONICET-Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina.
| | - María Aurelia Zorrilla-Zubilete
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO - CONICET), Departamento de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Argentina.
| | - Alejandro Delorenzi
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología y Biología Molecular y Celular, IFIByNE-CONICET, Pabellón II, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria C1428EHA, Argentina.
| |
Collapse
|
14
|
Maza FJ, Locatelli FF, Delorenzi A. Neural correlates of expression-independent memories in the crab Neohelice. Neurobiol Learn Mem 2016; 131:61-75. [PMID: 26988613 DOI: 10.1016/j.nlm.2016.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 03/09/2016] [Accepted: 03/12/2016] [Indexed: 11/26/2022]
Abstract
The neural correlates of memory have been usually examined considering that memory retrieval and memory expression are interchangeable concepts. However, our studies in the crab Neohelice (Chasmagnathus) granulata and in other memory models have shown that memory expression is not necessary for memory to be re-activated and become labile. In order to examine putative neural correlates of memory in the crab Neohelice, we contrast changes induced by training in both animal's behavior and neuronal responses in the medulla terminalis using in vivo Ca(2+) imaging. Disruption of long-term memory by the amnesic agents MK-801 or scopolamine (5μg/g) blocks the learning-induced changes in the Ca(2+) responses in the medulla terminalis. Conversely, treatments that lead to an unexpressed but persistent memory (weak training protocol or scopolamine 0.1μg/g) do not block these learning-induced neural changes. The present results reveal a set of changes in the neural activity induced by training that correlates with memory persistence but not with the probability of this memory to be expressed in the long-term. In addition, the study constitutes the first in vivo evidence in favor of a role of the medulla terminalis in learning and memory in crustaceans, and provides a physiological evidence indicating that memory persistence and the probability of memory to be expressed might involve separate components of memory traces.
Collapse
Affiliation(s)
- F J Maza
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología y Biología Molecular y Celular, IFIByNE-CONICET, Pabellón II, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria (C1428EHA), Argentina.
| | - F F Locatelli
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología y Biología Molecular y Celular, IFIByNE-CONICET, Pabellón II, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria (C1428EHA), Argentina.
| | - A Delorenzi
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología y Biología Molecular y Celular, IFIByNE-CONICET, Pabellón II, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria (C1428EHA), Argentina.
| |
Collapse
|
15
|
Blaser R, Heyser C. Spontaneous object recognition: a promising approach to the comparative study of memory. Front Behav Neurosci 2015; 9:183. [PMID: 26217207 PMCID: PMC4498097 DOI: 10.3389/fnbeh.2015.00183] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/29/2015] [Indexed: 01/11/2023] Open
Abstract
Spontaneous recognition of a novel object is a popular measure of exploratory behavior, perception and recognition memory in rodent models. Because of its relative simplicity and speed of testing, the variety of stimuli that can be used, and its ecological validity across species, it is also an attractive task for comparative research. To date, variants of this test have been used with vertebrate and invertebrate species, but the methods have seldom been sufficiently standardized to allow cross-species comparison. Here, we review the methods necessary for the study of novel object recognition in mammalian and non-mammalian models, as well as the results of these experiments. Critical to the use of this test is an understanding of the organism's initial response to a novel object, the modulation of exploration by context, and species differences in object perception and exploratory behaviors. We argue that with appropriate consideration of species differences in perception, object affordances, and natural exploratory behaviors, the spontaneous object recognition test can be a valid and versatile tool for translational research with non-mammalian models.
Collapse
Affiliation(s)
- Rachel Blaser
- Department of Psychological Sciences, University of San DiegoSan Diego, CA, USA
| | - Charles Heyser
- Behavioral Testing Core, Department of Neurosciences, University of California, San DiegoSan Diego, CA, USA
| |
Collapse
|
16
|
Soeter M, Kindt M. Retrieval cues that trigger reconsolidation of associative fear memory are not necessarily an exact replica of the original learning experience. Front Behav Neurosci 2015; 9:122. [PMID: 26042008 PMCID: PMC4435076 DOI: 10.3389/fnbeh.2015.00122] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 04/28/2015] [Indexed: 11/21/2022] Open
Abstract
Disrupting the process of memory reconsolidation may point to a novel therapeutic strategy for the permanent reduction of fear in patients suffering from anxiety disorders. However both in animal and human studies the retrieval cue typically involves a re-exposure to the original fear-conditioned stimulus (CS). A relevant question is whether abstract cues not directly associated with the threat event also trigger reconsolidation, given that anxiety disorders often result from vicarious or unobtrusive learning for which no explicit memory exists. Insofar as the fear memory involves a flexible representation of the original learning experience, we hypothesized that the process of memory reconsolidation may also be triggered by abstract cues. We addressed this hypothesis by using a differential human fear-conditioning procedure in two distinct fear-learning groups. We predicted that if fear learning involves discrimination on basis of perceptual cues within one semantic category (i.e., the perceptual-learning group, n = 15), the subsequent ambiguity of the abstract retrieval cue would not trigger memory reconsolidation. In contrast, if fear learning involves discriminating between two semantic categories (i.e., categorical-learning group, n = 15), an abstract retrieval cue would unequivocally reactivate the fear memory and might subsequently trigger memory reconsolidation. Here we show that memory reconsolidation may indeed be triggered by another cue than the one that was present during the original learning occasion, but this effect depends on the learning history. Evidence for fear memory reconsolidation was inferred from the fear-erasing effect of one pill of propranolol (40 mg) systemically administered upon exposure to the abstract retrieval cue. Our finding that reconsolidation of a specific fear association does not require exposure to the original retrieval cue supports the feasibility of reconsolidation-based interventions for emotional disorders.
Collapse
Affiliation(s)
- Marieke Soeter
- Department of Clinical Psychology, University of Amsterdam Amsterdam, Netherlands ; Amsterdam Brain and Cognition, University of Amsterdam Amsterdam, Netherlands
| | - Merel Kindt
- Department of Clinical Psychology, University of Amsterdam Amsterdam, Netherlands ; Amsterdam Brain and Cognition, University of Amsterdam Amsterdam, Netherlands
| |
Collapse
|
17
|
Shiban Y, Brütting J, Pauli P, Mühlberger A. Fear reactivation prior to exposure therapy: does it facilitate the effects of VR exposure in a randomized clinical sample? J Behav Ther Exp Psychiatry 2015; 46:133-40. [PMID: 25460259 DOI: 10.1016/j.jbtep.2014.09.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 08/29/2014] [Accepted: 09/27/2014] [Indexed: 11/17/2022]
Abstract
BACKGROUND AND OBJECTIVES The current study is the first to examine whether reactivation of fear memory prior to exposure therapy reduces relapse in a randomized clinical sample. METHODS In a standardized treatment protocol combining virtual reality and in-vivo exposure, patients underwent a fear reactivation procedure using a virtual spider 10 min prior to a virtual reality (VR) exposure (reactivation group: RG, n = 15). A control group (CG, n = 17) was exposed to a virtual plant 10 min prior to the VR exposure. Outcome measures were a VR spontaneous recovery test (SRT) and in-vivo a behavioral avoidance test assessed 24 h after VR exposure. One week later an in-vivo exposure session followed. Additionally, a follow-up using psychometric assessment was conducted six months after the first session. RESULTS Both groups benefitted significantly and equally from the combined treatment, and importantly, the SRT revealed no return of fear in both groups. Furthermore, follow-up tests showed long-term treatment effects with no group differences. LIMITATIONS Due to different study components (VR treatment and in-vivo), we were not able to determine which treatment module was mainly responsible for the long-term treatment effect. Furthermore, no direct measure of memory destabilization was possible in this study. CONCLUSIONS Our treatment package was highly effective in reducing phobic fear up to 6 months following treatment. Explicit fear reactivation prior to exposure was not beneficial in VR exposure treatment, possibly due to a failure to induce a memory destabilization or due to an implicit fear reactivation prior to treatment in both groups.
Collapse
|
18
|
Kindt M, Soeter M, Sevenster D. Disrupting reconsolidation of fear memory in humans by a noradrenergic β-blocker. J Vis Exp 2014:52151. [PMID: 25549103 PMCID: PMC4396967 DOI: 10.3791/52151] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The basic design used in our human fear-conditioning studies on disrupting reconsolidation includes testing over different phases across three consecutive days. On day 1 - the fear acquisition phase, healthy participants are exposed to a series of picture presentations. One picture stimulus (CS1+) is repeatedly paired with an aversive electric stimulus (US), resulting in the acquisition of a fear association, whereas another picture stimulus (CS2-) is never followed by an US. On day 2 - the memory reactivation phase, the participants are re-exposed to the conditioned stimulus without the US (CS1-), which typically triggers a conditioned fear response. After the memory reactivation we administer an oral dose of 40 mg of propranolol HCl, a β-adrenergic receptor antagonist that indirectly targets the protein synthesis required for reconsolidation by inhibiting the noradrenaline-stimulated CREB phosphorylation. On day 3 - the test phase, the participants are again exposed to the unreinforced conditioned stimuli (CS1- and CS2-) in order to measure the fear-reducing effect of the manipulation. This retention test is followed by an extinction procedure and the presentation of situational triggers to test for the return of fear. Potentiation of the eye blink startle reflex is measured as an index for conditioned fear responding. Declarative knowledge of the fear association is measured through online US expectancy ratings during each CS presentation. In contrast to extinction learning, disrupting reconsolidation targets the original fear memory thereby preventing the return of fear. Although the clinical applications are still in their infancy, disrupting reconsolidation of fear memory seems to be a promising new technique with the prospect to persistently dampen the expression of fear memory in patients suffering from anxiety disorders and other psychiatric disorders.
Collapse
Affiliation(s)
- Merel Kindt
- Department of Clinical Psychology, University of Amsterdam;
| | - Marieke Soeter
- Department of Clinical Psychology, University of Amsterdam
| | | |
Collapse
|
19
|
Kindt M. A behavioural neuroscience perspective on the aetiology and treatment of anxiety disorders. Behav Res Ther 2014; 62:24-36. [DOI: 10.1016/j.brat.2014.08.012] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 08/18/2014] [Accepted: 08/18/2014] [Indexed: 01/06/2023]
|
20
|
Yu R, Yang Y, Cui Z, Zheng L, Zeng Z, Zhang H. Novel peptide VIP-TAT with higher affinity for PAC1 inhibited scopolamine induced amnesia. Peptides 2014; 60:41-50. [PMID: 25086267 DOI: 10.1016/j.peptides.2014.07.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 07/19/2014] [Accepted: 07/21/2014] [Indexed: 12/25/2022]
Abstract
A novel peptide VIP-TAT with a cell penetrating peptide TAT at the C-terminus of VIP was constructed and prepared using intein mediated purification with an affinity chitin-binding tag (IMPACT) system to enhance the brain uptake efficiency for the medical application in central nervous system. It was found by labeling VIP-TAT and VIP with fluorescein isothiocyanate (FITC) that the extension with TAT increased the brain uptake efficiency of VIP-TAT significantly. Then short-term and long-term treatment with scopolamine (Scop) was used to evaluate the effect of VIP-TAT or VIP on Scop induced amnesia. Both short-term and long-term administration of VIP-TAT inhibited the latent time reduction in step-through test induced by Scop significantly, but long-term administration of VIP aggravated the Scop induced amnesia. Long-term i.p. injection of VIP-TAT was shown to have positive effect by inhibiting the oxidative damage, apoptosis and the cholinergic system activity reduction that induced by Scop, while VIP exerted negative effect in brain opposite to that in periphery system. The in vitro data showed that VIP-TAT had not only protective but also proliferative effect on Neuro2a cells which was inhibited by PAC1 antagonist PACAP(6-38). Competition binding assay and cAMP assay confirmed that VIP-TAT had higher affinity and activation for PAC1 than VIP. So it was concluded that the significantly stronger protective effect of VIP-TAT against Scop induced amnesia than VIP was due to (1) the enhanced brain uptake efficiency of VIP-TAT and (2) the increased affinity and activation of VIP-TAT for receptor PAC1.
Collapse
Affiliation(s)
- Rongjie Yu
- Cell Biology Institute, Department of Cell Biology, Jinan University, Guangzhou 510632, China.
| | - Yanxu Yang
- Cell Biology Institute, Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Zekai Cui
- Cell Biology Institute, Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Lijun Zheng
- Cell Biology Institute, Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Zhixing Zeng
- Cell Biology Institute, Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Huahua Zhang
- Laboratory of Medical Genetics of Guangdong Medical College, Dongguan, Guangdong 523808, China
| |
Collapse
|
21
|
Delorenzi A, Maza FJ, Suárez LD, Barreiro K, Molina VA, Stehberg J. Memory beyond expression. ACTA ACUST UNITED AC 2014; 108:307-22. [PMID: 25102126 DOI: 10.1016/j.jphysparis.2014.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 07/16/2014] [Accepted: 07/17/2014] [Indexed: 01/05/2023]
Abstract
The idea that memories are not invariable after the consolidation process has led to new perspectives about several mnemonic processes. In this framework, we review our studies on the modulation of memory expression during reconsolidation. We propose that during both memory consolidation and reconsolidation, neuromodulators can determine the probability of the memory trace to guide behavior, i.e. they can either increase or decrease its behavioral expressibility without affecting the potential of persistent memories to be activated and become labile. Our hypothesis is based on the findings that positive modulation of memory expression during reconsolidation occurs even if memories are behaviorally unexpressed. This review discusses the original approach taken in the studies of the crab Neohelice (Chasmagnathus) granulata, which was then successfully applied to test the hypothesis in rodent fear memory. Data presented offers a new way of thinking about both weak trainings and experimental amnesia: memory retrieval can be dissociated from memory expression. Furthermore, the strategy presented here allowed us to show in human declarative memory that the periods in which long-term memory can be activated and become labile during reconsolidation exceeds the periods in which that memory is expressed, providing direct evidence that conscious access to memory is not needed for reconsolidation. Specific controls based on the constraints of reminders to trigger reconsolidation allow us to distinguish between obliterated and unexpressed but activated long-term memories after amnesic treatments, weak trainings and forgetting. In the hypothesis discussed, memory expressibility--the outcome of experience-dependent changes in the potential to behave--is considered as a flexible and modulable attribute of long-term memories. Expression seems to be just one of the possible fates of re-activated memories.
Collapse
Affiliation(s)
- A Delorenzi
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología y Biología Molecular, IFIByNE-CONICET, Pabellón II, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria (C1428EHA), Argentina.
| | - F J Maza
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología y Biología Molecular, IFIByNE-CONICET, Pabellón II, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria (C1428EHA), Argentina.
| | - L D Suárez
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología y Biología Molecular, IFIByNE-CONICET, Pabellón II, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria (C1428EHA), Argentina.
| | - K Barreiro
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología y Biología Molecular, IFIByNE-CONICET, Pabellón II, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria (C1428EHA), Argentina.
| | - V A Molina
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, IFEC-CONICET (X5000HUA), Argentina.
| | - J Stehberg
- Laboratorio de Neurobiología, Departamento de Ciencias Biológicas, Universidad Andrés Bello, Chile.
| |
Collapse
|
22
|
Neuropharmacology of memory consolidation and reconsolidation: Insights on central cholinergic mechanisms. ACTA ACUST UNITED AC 2014; 108:286-91. [PMID: 24819880 DOI: 10.1016/j.jphysparis.2014.04.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/16/2014] [Accepted: 04/29/2014] [Indexed: 11/23/2022]
Abstract
Central cholinergic system is critically involved in all known memory processes. Endogenous acetylcholine release by cholinergic neurons is necessary for modulation of acquisition, encoding, consolidation, reconsolidation, extinction, retrieval and expression. Experiments from our laboratory are mainly focused on elucidating the mechanisms by which acetylcholine modulates memory processes. Blockade of hippocampal alpha-7-nicotinic receptors (α7-nAChRs) with the antagonist methyllycaconitine impairs memory reconsolidation. However, the administration of a α7-nAChR agonist (choline) produce a paradoxical modulation, causing memory enhancement in mice trained with a weak footshock, but memory impairment in animals trained with a strong footshock. All these effects are long-lasting, and depend on the age of the memory trace. This review summarizes and discusses some of our recent findings, particularly regarding the involvement of α7-nAChRs on memory reconsolidation.
Collapse
|
23
|
Barreiro KA, Suárez LD, Lynch VM, Molina VA, Delorenzi A. Memory expression is independent of memory labilization/reconsolidation. Neurobiol Learn Mem 2013; 106:283-91. [DOI: 10.1016/j.nlm.2013.10.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 09/25/2013] [Accepted: 10/12/2013] [Indexed: 01/10/2023]
|
24
|
Reichelt AC, Lee JLC. Memory reconsolidation in aversive and appetitive settings. Front Behav Neurosci 2013; 7:118. [PMID: 24058336 PMCID: PMC3766793 DOI: 10.3389/fnbeh.2013.00118] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 08/20/2013] [Indexed: 11/16/2022] Open
Abstract
Memory reconsolidation has been observed across species and in a number of behavioral paradigms. The majority of memory reconsolidation studies have been carried out in Pavlovian fear conditioning and other aversive memory settings, with potential implications for the treatment of post-traumatic stress disorder. However, there is a growing literature on memory reconsolidation in appetitive reward-related memory paradigms, including translational models of drug addiction. While there appears to be substantial similarity in the basic phenomenon and underlying mechanisms of memory reconsolidation across unconditioned stimulus valence, there are also notable discrepancies. These arise both when comparing aversive to appetitive paradigms and also across different paradigms within the same valence of memory. We review the demonstration of memory reconsolidation across different aversive and appetitive memory paradigms, the commonalities and differences in underlying mechanisms and the conditions under which each memory undergoes reconsolidation. We focus particularly on whether principles derived from the aversive literature are applicable to appetitive settings, and also whether the expanding literature in appetitive paradigms is informative for fear memory reconsolidation.
Collapse
Affiliation(s)
- Amy C Reichelt
- School of Psychology, University of Birmingham Birmingham, UK
| | | |
Collapse
|
25
|
The temporal dynamics of enhancing a human declarative memory during reconsolidation. Neuroscience 2013; 246:397-408. [DOI: 10.1016/j.neuroscience.2013.04.033] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 04/16/2013] [Accepted: 04/16/2013] [Indexed: 11/23/2022]
|