1
|
Reconsolidation of a post-ingestive nutrient memory requires mTOR in the central amygdala. Mol Psychiatry 2021; 26:2820-2836. [PMID: 32873898 DOI: 10.1038/s41380-020-00874-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/04/2020] [Accepted: 08/21/2020] [Indexed: 01/22/2023]
Abstract
The central control of feeding behavior and metabolic homeostasis has been proposed to involve a form of post-ingestive nutrient learning independent of the gustatory value of food. However, after such learning, it is unknown which brain regions or circuits are activated to retrieve the stored memory and whether this memory undergoes reconsolidation that depends on protein synthesis after its reactivation through retrieval. In the present study, using a conditioned-flavor-preference paradigm by associating flavors with intra-gastric infusion of glucose to minimize the evaluation of the taste of food, we show that retrieval of the post-ingestive nutrient-conditioned flavor memory stimulates multiple brain regions in mice, including the central nucleus of the amygdala (CeA). Moreover, memory retrieval activated the mammalian target of rapamycin complex 1 (mTORC1) in the CeA, while site-specific or systemic inhibition of mTORC1 immediately after retrieval prevented the subsequent expression of the post-ingestive nutrient-associated flavor memory, leading to a long-lasting suppression of reinstatement. Taken together, our findings suggest that the reconsolidation process of a post-ingestive nutrient memory modulates food preferences.
Collapse
|
2
|
Graybeal AJ, Meena Shah, Willis JL. Manipulation of fatty acid composition in a high-fat meal does not result in differential alterations in appetite or food intake in normal weight females: A single-blind randomized crossover study. Appetite 2020; 160:105085. [PMID: 33387588 DOI: 10.1016/j.appet.2020.105085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 11/16/2022]
Abstract
A behavioral concept that generates a path to obesity is eating in the absence of hunger (EAH). One strategy that may be effective in preventing EAH is the manipulation of dietary fatty acid (FA) composition. However, it remains unclear which FA has the greatest impact on both appetite and EAH. Therefore, the purpose of this study was to examine the effect of different dietary FA compositions (monounsaturated, MUFA; polyunsaturated, PUFA; saturated, SFA) on subjective ratings of appetite and subsequent ad libitum eating after a 3 h postprandial period. Sixteen apparently healthy normal weight females between ages 18-40 completed this randomized, single-blind, crossover study. Participants consumed a HF meal (65% energy from fat) rich in SFA, MUFA, and PUFA with an energy content corresponding to 35% of their measured resting metabolic rate on three separate occasions. Visual analog scales were collected while fasted and every 30 min for 3 h during a postprandial period to measure feelings of hunger, fullness, and desire to eat (DTE). Participants were provided an ad libitum buffet meal 3 h after the HF meal. There were no statistically significant differences for ratings of hunger, fullness, or DTE across conditions. Further, there was no significant difference in energy intake during the ad libitum lunch. We conclude that the manipulation of FA composition in a HF meal does not differentially affect appetite sensations or subsequent energy intake.
Collapse
Affiliation(s)
- Austin J Graybeal
- Department of Kinesiology, Harris College of Nursing & Health Sciences, Texas Christian University, Fort Worth, TX, 76129, USA
| | - Meena Shah
- Department of Kinesiology, Harris College of Nursing & Health Sciences, Texas Christian University, Fort Worth, TX, 76129, USA
| | - Jada L Willis
- Department of Nutritional Sciences, College of Science & Engineering, Texas Christian University, Fort Worth, TX, 76129, USA.
| |
Collapse
|
3
|
Grau-Perales A, Gallo M. The auditory context-dependent attenuation of taste neophobia depends on D1 dopamine receptor activity in mice. Behav Brain Res 2020; 391:112687. [DOI: 10.1016/j.bbr.2020.112687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 12/15/2022]
|
4
|
Alejandro Borja GP, Alejandro Navarro E, Beatriz GC, Ignacio M, Milagros G. Accumbens and amygdala in taste recognition memory: The role of d1 dopamine receptors. Neurobiol Learn Mem 2020; 174:107277. [PMID: 32707274 DOI: 10.1016/j.nlm.2020.107277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 06/29/2020] [Accepted: 07/06/2020] [Indexed: 11/25/2022]
Abstract
The attenuation of taste neophobia (AN) is a good model for studying the structural and neurochemical mechanisms of the emotional component of memory because taste recognition memory exhibits the unique feature of being necessarily linked to hedonic properties. Whilst novel tastes elicit cautious neophobic responses, taste exposures which are not followed by aversive consequences attenuate neophobia as the taste becomes safe and palatable. Given the involvement of the nucleus accumbens in reward and of the amygdala in emotional memories, we applied c-Fos immunohistochemistry as an index of neural activity in Wistar rats that were exposed to a vinegar solution for one, two or six days. An inverse pattern of accumbens nucleus vs amygdala activity was found on the second exposure day on which AN occurred. The number of c-Fos positive cells in the nucleus accumbens shell increased whilst the number of c-Fos positive cells in the basolateral amygdala decreased. Further analyses revealed a positive correlation between AN and the number of c-Fos positive cells in the accumbens shell but a negative correlation in the basolateral amygdala. Furthermore the accumbens-amygdala interplay relevant for AN seems to be mediated by dopamine D1 receptors (D1DR). The injection of SCH23390 (D1DR antagonist) in both the accumbens shell and the basolateral amygdala on the second taste exposure resulted in selectively impaired AN but had opposite long term effects. This finding supports the relevance of a dopaminergic network mediated by D1DRs in the nucleus accumbens shell and basolateral amygdala which is critical for adding the emotional component during the formation of taste memory.
Collapse
Affiliation(s)
- Grau-Perales Alejandro Borja
- Department of Psychobiology, Institute of Neurosciences, Center for Biomedical Research (CIBM), University of Granada, Spain.
| | - Expósito Alejandro Navarro
- Department of Psychobiology, Institute of Neurosciences, Center for Biomedical Research (CIBM), University of Granada, Spain
| | - Gómez-Chacón Beatriz
- Department of Psychobiology, Institute of Neurosciences, Center for Biomedical Research (CIBM), University of Granada, Spain
| | - Morón Ignacio
- Department of Psychobiology, Centre of Investigation of Mind and Behaviour (CIMCYC), University of Granada, Spain
| | - Gallo Milagros
- Department of Psychobiology, Institute of Neurosciences, Center for Biomedical Research (CIBM), University of Granada, Spain
| |
Collapse
|
5
|
Kraft TT, Huang D, LaMagna S, Warshaw D, Natanova E, Sclafani A, Bodnar RJ. Acquisition and expression of fat-conditioned flavor preferences are differentially affected by NMDA receptor antagonism in BALB/c and SWR mice. Eur J Pharmacol 2017; 799:26-32. [PMID: 28132914 DOI: 10.1016/j.ejphar.2017.01.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/24/2017] [Accepted: 01/25/2017] [Indexed: 10/20/2022]
Abstract
Conditioned flavor preferences are elicited by fat (Intralipid) in inbred mouse strains with BALB/c and SWR mice displaying among the most robust preferences. Dopamine D1 and opioid receptor antagonism differentially reduces the acquisition (learning) and expression (maintenance) of fat-conditioned flavor preferences in these two strains. Because noncompetitive NMDA receptor antagonism with MK-801 differentially altered sugar-conditioned flavor preferences in these strains, and because NMDA receptors are involved in fat intake, the present study examined whether MK-801 differentially altered expression and acquisition of fat (Intralipid)-conditioned flavor preferences in BALB/c and SWR mice. In expression studies, food-restricted male mice alternately consumed a flavored (CS+, e.g., cherry, 5 sessions) 5% Intralipid solution and a differently-flavored (CS-, e.g., grape, 5 sessions) 0.5% Intralipid solution. Two-bottle CS choice tests occurred following vehicle or MK-801 (100, 200µg/kg). MK-801 blocked expression of Intralipid-CFP at both doses in BALB/c mice, but only at the 100µg/kg dose in SWR mice. In acquisition studies, groups of BALB/c (0, 100µg/kg) and SWR (0, 100µg/kg) male mice were treated prior to the ten acquisition training sessions followed by six 2-bottle CS choice tests without injections. MK-801 eliminated acquisition of Intralipid-conditioned flavor preferences in BALB/c mice, and actually changed the preference to an avoidance response in SWR mice. Thus, NMDA receptor signaling appears essential especially for the learning of fat-conditioned flavor preferences in both mouse strains.
Collapse
Affiliation(s)
- Tamar T Kraft
- CUNY Neuroscience Collaborative, CUNY Graduate Center, New York, NY, USA
| | - Donald Huang
- Department of Psychology, Queens College, CUNY, New York, NY, USA
| | - Sam LaMagna
- Department of Psychology, Queens College, CUNY, New York, NY, USA
| | - Deena Warshaw
- Department of Psychology, Queens College, CUNY, New York, NY, USA
| | - Elona Natanova
- Department of Psychology, Queens College, CUNY, New York, NY, USA
| | - Anthony Sclafani
- CUNY Neuroscience Collaborative, CUNY Graduate Center, New York, NY, USA; Department of Psychology, Brooklyn College, CUNY, New York, NY, USA
| | - Richard J Bodnar
- CUNY Neuroscience Collaborative, CUNY Graduate Center, New York, NY, USA; Department of Psychology, Queens College, CUNY, New York, NY, USA.
| |
Collapse
|
6
|
Bodnar RJ. Conditioned flavor preferences in animals: Merging pharmacology, brain sites and genetic variance. Appetite 2016; 122:17-25. [PMID: 27988368 DOI: 10.1016/j.appet.2016.12.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 12/07/2016] [Accepted: 12/13/2016] [Indexed: 12/13/2022]
Abstract
The elucidation of the behavioral, neurochemical, neuroanatomical and genetic substrates mediating the development of conditioned flavor preferences (CFP) is one of the multi-faceted scientific contributions that Dr. Anthony Sclafani has made to the study of food intake. This review summarizes the results of thirty-five publications over nearly twenty years of collaborations between the Sclafani and Bodnar laboratories. This includes the different approaches employed to study the orosensory (flavor-flavor) and post-ingestive (flavor-nutrient) processes underlying CFP including its acquisition (learning) and expression. It describes how CFP is elicited by different sugars (sucrose, glucose, fructose) and fats (corn oil) in rats, and how strain-specific CFP effects can be observed through the use of inbred mouse strains to evaluate genetic variance. The roles of pharmacological substrates (dopamine, glutamate, opioids, acetylcholine, GABA, cannabinoids) mediating sugar- and fat-CFP acquisition and expression are elucidated. Finally, neuroanatomical sites of action (nucleus accumbens, amygdala, medial prefrontal and orbital frontal cortices, lateral hypothalamus) are evaluated at which dopamine signaling mediates acquisition and expression of different forms of CFP.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology, Queens College and the Behavioral and Cognitive Neuroscience Cluster of the Psychology Doctoral Program, The Graduate Center, City University of New York, New York, NY, United States.
| |
Collapse
|
7
|
NMDA receptor antagonism differentially reduces acquisition and expression of sucrose- and fructose-conditioned flavor preferences in BALB/c and SWR mice. Pharmacol Biochem Behav 2016; 148:76-83. [DOI: 10.1016/j.pbb.2016.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 05/18/2016] [Accepted: 06/14/2016] [Indexed: 11/17/2022]
|
8
|
Burke MV, Small DM. Effects of the modern food environment on striatal function, cognition and regulation of ingestive behavior. Curr Opin Behav Sci 2016; 9:97-105. [PMID: 29619405 DOI: 10.1016/j.cobeha.2016.02.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Emerging evidence from human and animal studies suggest that consumption of palatable foods rich in fat and/or carbohydrates may produce deleterious influences on brain function independently of body weight or metabolic disease. Here we consider two mechanisms by which diet can impact striatal circuits to amplify food cue reactivity and impair inhibitory control. First, we review findings demonstrating that the energetic properties of foods regulate nucleus accumbens food cue reactivity, a demonstrated predictor of weight gain susceptibility, which is then sensitized by chronic consumption of an energy dense diet. Second, we consider evidence for diet-induced adaptations in dorsal striatal dopamine signaling that is associated with impaired inhibitory control and negative outcome learning.
Collapse
Affiliation(s)
- Mary V Burke
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, U.S.,John B. Pierce Laboratory, 290 Congress Avenue, New Haven, CT, U.S.,Modern Diet and Physiology Research Center, 290 Congress Avenue, New Haven, CT, U.S
| | - Dana M Small
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, U.S.,John B. Pierce Laboratory, 290 Congress Avenue, New Haven, CT, U.S.,Department of Psychiatry, Yale School of Medicine, New Haven, CT, U.S.,Department of Psychology, Yale University, New Haven, CT, U.S.,Modern Diet and Physiology Research Center, 290 Congress Avenue, New Haven, CT, U.S
| |
Collapse
|
9
|
Ueji K, Minematsu Y, Takeshita D, Yamamoto T. Saccharin Taste Conditions Flavor Preference in Weanling Rats. Chem Senses 2015; 41:135-41. [PMID: 26514409 DOI: 10.1093/chemse/bjv064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Innate and learned taste/flavor preferences to chemical stimuli in weanling rats are not fully understood. Our previous study showed that weanling rats could establish conditioned flavor preferences when low, but not high, concentrations of sucrose solutions were used as associative rewarding stimuli. Here, we examined whether 3-week-old rats could acquire flavor learning when the rewarding stimulus was saccharin, a non-nutritive artificial sweetener. In the acquisition session, they consumed water with a flavor (cherry or grape) and 0.1% sodium saccharin with another flavor (grape or cherry) for 15 min daily on alternative days over 6 consecutive days. The subsequent test session revealed significant preferences for the flavor previously associated with saccharin. However, they failed to retain the preference when retested in adulthood at the age of 20 weeks. These behavioral results were similar to those previously demonstrated when 2% sucrose was used as an associative sweetener. Although these 2 solutions were equally preferred, the taste quality may not be the same because the weanling rats showed neophobia to 0.1% saccharin and a larger chorda tympani response than 2% sucrose. The present study showed that a conditioned flavor preference was established to saccharin in weanling rats on the basis of flavor-taste association.
Collapse
Affiliation(s)
- Kayoko Ueji
- Department of Health and Nutrition, Faculty of Health Science, Kio University, 4-2-4 Umami-naka, Koryo, Kitakatsuragi, Nara 635-0832, Japan and
| | - Yuji Minematsu
- Health Science Research Center, Kio University, 4-2-4 Umami-naka, Koryo, Kitakatsuragi, Nara 635-0832, Japan
| | - Daisuke Takeshita
- Health Science Research Center, Kio University, 4-2-4 Umami-naka, Koryo, Kitakatsuragi, Nara 635-0832, Japan
| | - Takashi Yamamoto
- Department of Health and Nutrition, Faculty of Health Science, Kio University, 4-2-4 Umami-naka, Koryo, Kitakatsuragi, Nara 635-0832, Japan and Health Science Research Center, Kio University, 4-2-4 Umami-naka, Koryo, Kitakatsuragi, Nara 635-0832, Japan
| |
Collapse
|
10
|
Dela Cruz J, Coke T, Karagiorgis T, Sampson C, Icaza-Cukali D, Kest K, Ranaldi R, Bodnar R. c-Fos induction in mesotelencephalic dopamine pathway projection targets and dorsal striatum following oral intake of sugars and fats in rats. Brain Res Bull 2015; 111:9-19. [DOI: 10.1016/j.brainresbull.2014.11.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 11/04/2014] [Accepted: 11/13/2014] [Indexed: 11/27/2022]
|
11
|
Malkusz DC, Yenko I, Rotella FM, Banakos T, Olsson K, Dindyal T, Vig V, Bodnar RJ. Dopamine receptor signaling in the medial orbital frontal cortex and the acquisition and expression of fructose-conditioned flavor preferences in rats. Brain Res 2014; 1596:116-25. [PMID: 25446441 DOI: 10.1016/j.brainres.2014.11.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 11/10/2014] [Accepted: 11/12/2014] [Indexed: 11/16/2022]
Abstract
Systemic dopamine (DA) D1 (SCH23390: SCH) and D2 (raclopride: RAC) antagonists blocked fructose-conditioned flavor preference (CFP) acquisition and expression. Fructose-CFP acquisition was eliminated by medial prefrontal cortex (mPFC) SCH and mPFC or amygdala (AMY) RAC. Fructose-CFP expression was reduced following SCH or RAC in AMY or nucleus accumbens (NAc). The present study examined fructose-CFP acquisition and expression following SCH and RAC in the medial orbital frontal cortex (MOFC), another ventral tegmental area DA target. For fructose-CFP acquisition, five groups of rats received vehicle, SCH (24 or 48 nmol) or RAC (24 or 48 nmol) in the MOFC 0.5h prior to 8 training sessions with one flavor (CS+/Fs) mixed in 8% fructose and 0.2% saccharin, and another flavor (CS-/s) mixed in 0.2% saccharin. In six 2-bottle choice tests in 0.2% saccharin, similar fructose-CFP preferences occurred in groups trained with vehicle (76-77%), SCH24 (69-78%), SCH48 (70-74%) and RAC48 (85-92%). RAC24-trained rats displayed significant CS+ preferences during the first (79%) and third (71%), but not second (58%) test pair. For fructose-CFP expression, rats similarly trained with CS+/Fs and CS- solutions received 2-bottle choice tests following MOFC injections of SCH or RAC (12-48 nmol). CS+ preference expression was significantly reduced by RAC (48 nmol: 58%), but not SCH relative to vehicle (78%). A control group receiving RAC in the dorsolateral prefrontal cortex displayed fructose-CFP expression similar to vehicle. These data demonstrate differential frontal cortical DA mediation of fructose-CFP with mPFC D1 and D2 signaling exclusively mediating acquisition, and MOFC D2 signaling primarily mediating expression.
Collapse
Affiliation(s)
- Danielle C Malkusz
- Behavioral and Cognitive Neuroscience Cluster, Psychology Doctoral Program, The Graduate Center, City University of New York, New York, NY, United States
| | - Ira Yenko
- Department of Psychology, Queens College, City University of New York, New York, NY, United States
| | - Francis M Rotella
- Behavioral and Cognitive Neuroscience Cluster, Psychology Doctoral Program, The Graduate Center, City University of New York, New York, NY, United States
| | - Theodore Banakos
- Department of Psychology, Queens College, City University of New York, New York, NY, United States
| | - Kerstin Olsson
- Department of Psychology, Queens College, City University of New York, New York, NY, United States
| | - Trisha Dindyal
- Department of Psychology, Queens College, City University of New York, New York, NY, United States
| | - Vishal Vig
- Department of Psychology, Queens College, City University of New York, New York, NY, United States
| | - Richard J Bodnar
- Behavioral and Cognitive Neuroscience Cluster, Psychology Doctoral Program, The Graduate Center, City University of New York, New York, NY, United States; Department of Psychology, Queens College, City University of New York, New York, NY, United States.
| |
Collapse
|
12
|
Dela Cruz JAD, Coke T, Icaza-Cukali D, Khalifa N, Bodnar RJ. Roles of NMDA and dopamine D1 and D2 receptors in the acquisition and expression of flavor preferences conditioned by oral glucose in rats. Neurobiol Learn Mem 2014; 114:223-30. [PMID: 25065714 DOI: 10.1016/j.nlm.2014.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 06/02/2014] [Accepted: 07/11/2014] [Indexed: 01/28/2023]
Abstract
Animals learn to prefer flavors associated with the intake of sugar (sucrose, fructose, glucose) and fat (corn oil: CO) solutions. Conditioned flavor preferences (CFP) have been elicited for sugars based on orosensory (flavor-flavor: e.g., fructose-CFP) and post-ingestive (flavor-nutrient: e.g., intragastric (IG) glucose-CFP) processes. Dopamine (DA) D1, DA D2 and NMDA receptor antagonism differentially eliminate the acquisition and expression of fructose-CFP and IG glucose-CFP. However, pharmacological analysis of fat (CO)-CFP, mediated by both flavor-flavor and flavor-nutrient processes, indicated that acquisition and expression of fat-CFP were minimally affected by systemic DA D1 and D2 antagonists, and were reduced by NMDA antagonism. Therefore, the present study examined whether systemic DA D1 (SCH23390), DA D2 (raclopride) or NMDA (MK-801) receptor antagonists altered acquisition and/or expression of CFP induced by oral glucose that should be mediated by both flavor-flavor and flavor-nutrient processes. Oral glucose-CFP was elicited following by training rats to drink one novel flavor (CS+, e.g., cherry) mixed in 8% glucose and another flavor (CS-, e.g., grape) mixed in 2% glucose. In expression studies, food-restricted rats drank these solutions in one-bottle sessions (2 h) over 10 days. Subsequent two-bottle tests with the CS+ and CS- flavors mixed in 2% glucose occurred 0.5 h after systemic administration of vehicle (VEH), SCH23390 (50-800 nmol/kg), raclopride (50-800 nmol/kg) or MK-801 (50-200 μg/kg). Rats displayed a robust CS+ preference following VEH treatment (94-95%) which was significantly though marginally attenuated by SCH23390 (67-70%), raclopride (77%) or MK-801 (70%) at doses that also markedly reduced overall CS intake. In separate acquisition studies, rats received VEH, SCH23390 (50-400 nmol/kg), raclopride (50-400 nmol/kg) or MK-801 (100 μg/kg) 0.5 h prior to ten 1-bottle training trials with CS+/8%G and CS-/2%G training solutions that was followed by six 2-bottle CS+ vs. CS- tests in 2% glucose conducted without injections. The significant and persistent CS+ preferences observed in the VEH (94-98%) group was significantly reduced by rats receiving SCH23390 at 400 nmol/kg (65-73%), raclopride at 200 or 400 nmol/kg (76-82%) or MK-801 at 100 μg/kg (68-69%). Thus, systemic DA D1 and DA D2 receptor antagonism produced smaller reductions in the expression of oral glucose-CFP relative to fructose-CFP or IG-glucose-CFP. Correspondingly, systemic DA D1, DA D2 and NMDA receptor antagonism also produced smaller reductions in the acquisition of oral glucose-CFP relative to fructose-CFP or IG-glucose-CFP. These data suggest, but do not prove, that the magnitude and persistence of these receptor antagonist effects upon sugar-CFP might depend upon the individual or combined engagement of flavor-flavor and flavor-nutrient processes.
Collapse
Affiliation(s)
- J A D Dela Cruz
- Behavioral and Cognitive Neuroscience Cluster, Psychology Doctoral Program, The Graduate Center, City University of New York, United States
| | - T Coke
- Department of Psychology, Queens College, City University of New York, United States
| | - D Icaza-Cukali
- Department of Psychology, Queens College, City University of New York, United States
| | - N Khalifa
- Department of Psychology, Queens College, City University of New York, United States
| | - R J Bodnar
- Behavioral and Cognitive Neuroscience Cluster, Psychology Doctoral Program, The Graduate Center, City University of New York, United States; Department of Psychology, Queens College, City University of New York, United States.
| |
Collapse
|
13
|
Ackroff K, Sclafani A. Rapid post-oral stimulation of intake and flavor conditioning in rats by glucose but not a non-metabolizable glucose analog. Physiol Behav 2014; 133:92-8. [PMID: 24811140 DOI: 10.1016/j.physbeh.2014.04.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 04/29/2014] [Indexed: 01/24/2023]
Abstract
Mice adapted to drink a flavored saccharin solution (CS-) paired with intragastric (IG) self-infusions of water rapidly increase their intake of a new flavored solution (CS+) that is paired with IG glucose self-infusions. The present study extends this method to examine post-oral glucose appetition in rats. Food-restricted rats were trained to consume a CS- flavor (e.g., grape saccharin) paired with IG water in 5 daily 1-h tests. In the next 3 tests, they drank a CS+ (e.g., cherry saccharin) paired with IG glucose. Rats infused with 8% glucose increased intake significantly on CS+ Test 1, but those infused with 16% glucose showed only a small increase in intake, which may reflect a counteracting satiating effect. Both groups further increased CS+ intakes in Tests 2 and 3, and preferred (81%) the CS+ to the CS- in a two-bottle test without infusions. A second experiment investigated rats' responses to IG alpha-methyl-d-glucopyranoside (MDG), a non-metabolizable sugar analog which stimulates CS+ intake and preference in mice. The rats reduced their intake of the MDG-paired CS+ flavor over sessions, and preferred the CS- to the CS+ in the choice test. The glucose data show that rats, like mice, rapidly detect the sugar's positive post-oral effects that can stimulate intake within the first hour of exposure. The MDG avoidance may indicate a greater sensitivity to its post-oral inhibitory effects in rats than in mice, or perhaps slower clearance of MDG in rats. The test protocol described here can be used to investigate the peripheral and central processes involved in stimulation of intake by post-oral nutrients in rats.
Collapse
Affiliation(s)
- Karen Ackroff
- Department of Psychology, Brooklyn College, City University of New York, Brooklyn, NY 11210, USA.
| | - Anthony Sclafani
- Department of Psychology, Brooklyn College, City University of New York, Brooklyn, NY 11210, USA
| |
Collapse
|
14
|
Role of NMDA, opioid and dopamine D1 and D2 receptor signaling in the acquisition of a quinine-conditioned flavor avoidance in rats. Physiol Behav 2014; 128:133-40. [DOI: 10.1016/j.physbeh.2014.01.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 11/04/2013] [Accepted: 01/17/2014] [Indexed: 11/20/2022]
|
15
|
Evaluation of saccharin intake and expression of fructose-conditioned flavor preferences following opioid receptor antagonism in the medial prefrontal cortex, amygdala or lateral hypothalamus in rats. Neurosci Lett 2014; 564:94-8. [DOI: 10.1016/j.neulet.2014.02.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/04/2014] [Accepted: 02/08/2014] [Indexed: 11/17/2022]
|
16
|
Amador NJ, Rotella FM, Bernal SY, Malkusz D, Cruz JAD, Badalia A, Duenas SM, Hossain M, Gerges M, Kandov S, Touzani K, Sclafani A, Bodnar RJ. Effect of dopamine D1 and D2 receptor antagonism in the lateral hypothalamus on the expression and acquisition of fructose-conditioned flavor preference in rats. Brain Res 2013; 1542:70-8. [PMID: 24211237 DOI: 10.1016/j.brainres.2013.10.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 10/02/2013] [Accepted: 10/16/2013] [Indexed: 01/30/2023]
Abstract
The attraction to sugar-rich foods is influenced by conditioned flavor preferences (CFP) produced by the sweet taste of sugar (flavor-flavor learning) and the sugar's post-oral actions (flavor-nutrient) learning. Brain dopamine (DA) circuits are involved in both types of flavor learning, but to different degrees. This study investigated the role of DA receptors in the lateral hypothalamus (LH) on the flavor-flavor learning produced the sweet taste of fructose. In an acquisition study, food-restricted rats received bilateral LH injections of a DA D1 receptor antagonist (SCH23390), a D2 antagonist (RAC, raclopride) or vehicle prior to 1-bottle training sessions with a flavored 8% fructose+0.2% saccharin solution (CS+/F) and a less-preferred flavored 0.2% saccharin solution (CS-). Drug-free 2-bottle tests were then conducted with the CS+ and CS- flavors presented in saccharin. The fructose-CFP did not differ among groups given vehicle (76%), 12 nmol SCH (78%), 24 nmol (82%) or 24 nmol RAC (90%) during training. In an expression study with rats trained drug-free, LH injections of 12 or 24 nmol SCH or 12-48 nmol RAC prior to 2-bottle tests did not alter CS+ preferences (77-90%) relative to vehicle injection (86%). Only a 48 nmol SCH dose suppressed the CS+ preference (61%). The minimal effect of LH DA receptor antagonism upon fructose flavor-flavor conditioning differs with the ability of LH SCH injections to block the acquisition of glucose flavor-nutrient learning.
Collapse
Affiliation(s)
- Nicole J Amador
- Department of Psychology, Queens College, City University of New York, NY, NY, United States
| | - Francis M Rotella
- Neuropsychology Doctoral Subprogram, Graduate Center, City University of New York, NY, NY, United States
| | - Sonia Y Bernal
- Neuropsychology Doctoral Subprogram, Graduate Center, City University of New York, NY, NY, United States
| | - Danielle Malkusz
- Neuropsychology Doctoral Subprogram, Graduate Center, City University of New York, NY, NY, United States
| | - Julie A Dela Cruz
- Neuropsychology Doctoral Subprogram, Graduate Center, City University of New York, NY, NY, United States
| | - Arzman Badalia
- Department of Psychology, Queens College, City University of New York, NY, NY, United States
| | - Sean M Duenas
- Department of Psychology, Queens College, City University of New York, NY, NY, United States
| | - Maruf Hossain
- Department of Psychology, Queens College, City University of New York, NY, NY, United States
| | - Meri Gerges
- Department of Psychology, Queens College, City University of New York, NY, NY, United States
| | - Salomon Kandov
- Department of Psychology, Queens College, City University of New York, NY, NY, United States
| | - Khalid Touzani
- Department of Psychology, Brooklyn College, City University of New York, NY, NY, United States
| | - Anthony Sclafani
- Neuropsychology Doctoral Subprogram, Graduate Center, City University of New York, NY, NY, United States; Cognition, Brain and Behavior Doctoral Subprogram, Graduate Center, City University of New York, NY, NY, United States; Department of Psychology, Brooklyn College, City University of New York, NY, NY, United States
| | - Richard J Bodnar
- Neuropsychology Doctoral Subprogram, Graduate Center, City University of New York, NY, NY, United States; Department of Psychology, Queens College, City University of New York, NY, NY, United States.
| |
Collapse
|