1
|
Chen ZH, Han YY, Shang YJ, Zhuang SY, Huang JN, Wu BY, Li CH. Cordycepin Ameliorates Synaptic Dysfunction and Dendrite Morphology Damage of Hippocampal CA1 via A1R in Cerebral Ischemia. Front Cell Neurosci 2022; 15:783478. [PMID: 35002628 PMCID: PMC8740211 DOI: 10.3389/fncel.2021.783478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 12/01/2021] [Indexed: 01/18/2023] Open
Abstract
Cordycepin exerted significant neuroprotective effects and protected against cerebral ischemic damage. Learning and memory impairments after cerebral ischemia are common. Cordycepin has been proved to improve memory impairments induced by cerebral ischemia, but its underlying mechanism has not been revealed yet. The plasticity of synaptic structure and function is considered to be one of the neural mechanisms of learning and memory. Therefore, we investigated how cordycepin benefits dendritic morphology and synaptic transmission after cerebral ischemia and traced the related molecular mechanisms. The effects of cordycepin on the protection against ischemia were studied by using global cerebral ischemia (GCI) and oxygen-glucose deprivation (OGD) models. Behavioral long-term potentiation (LTP) and synaptic transmission were observed with electrophysiological recordings. The dendritic morphology and histological assessment were assessed by Golgi staining and hematoxylin-eosin (HE) staining, respectively. Adenosine A1 receptors (A1R) and adenosine A2A receptors (A2AR) were evaluated with western blotting. The results showed that cordycepin reduced the GCI-induced dendritic morphology scathing and behavioral LTP impairment in the hippocampal CA1 area, improved the learning and memory abilities, and up-regulated the level of A1R but not A2AR. In the in vitro experiments, cordycepin pre-perfusion could alleviate the hippocampal slices injury and synaptic transmission cripple induced by OGD, accompanied by increased adenosine content. In addition, the protective effect of cordycepin on OGD-induced synaptic transmission damage was eliminated by using an A1R antagonist instead of A2AR. These findings revealed that cordycepin alleviated synaptic dysfunction and dendritic injury in ischemic models by modulating A1R, which provides new insights into the pharmacological mechanisms of cordycepin for ameliorating cognitive impairment induced by cerebral ischemia.
Collapse
Affiliation(s)
- Zhao-Hui Chen
- School of Life Science, South China Normal University, Guangzhou, China
| | - Yuan-Yuan Han
- School of Life Science, South China Normal University, Guangzhou, China.,Panyu Central Hospital, Guangzhou, China
| | - Ying-Jie Shang
- School of Life Science, South China Normal University, Guangzhou, China
| | - Si-Yi Zhuang
- School of Life Science, South China Normal University, Guangzhou, China
| | - Jun-Ni Huang
- School of Life Science, South China Normal University, Guangzhou, China
| | - Bao-Yan Wu
- Ministry of Education (MOE) Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Chu-Hua Li
- School of Life Science, South China Normal University, Guangzhou, China
| |
Collapse
|
2
|
Yang Q, Zhang Y, Zhang L, Li X, Dong R, Song C, Cheng L, Shi M, Zhao H. Combination of tea polyphenols and proanthocyanidins prevents menopause-related memory decline in rats via increased hippocampal synaptic plasticity by inhibiting p38 MAPK and TNF-α pathway. Nutr Neurosci 2021; 25:1909-1927. [PMID: 33871312 DOI: 10.1080/1028415x.2021.1913929] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Many studies have examined the beneficial effects of tea polyphenols (TP) and proanthocyanidins (PC) on the memory impairment in different animal models. However, the combined effects of them on synaptic, memory dysfunction and molecular mechanisms have been poorly studied, especially in the menopause-related memory decline in rats. METHODS In this rat study, TP and PC were used to investigate their protective effects on memory decline caused by inflammation. We characterized the learning and memory abilities, synaptic plasticity, AMPAR, phosphorylation of the p38 protein, TNF-ɑ, structural synaptic plasticity-related indicators in the hippocampus. RESULTS The results showed that deficits of learning and memory in OVX + D-gal rats, which was accompanied by dendrites and synaptic morphology damage, and increased expression of Aβ1-42 and inflammation. The beneficial effects of TP and PC treatment were found to prevent memory loss and significantly improve synaptic structure and functional plasticity. TP+PC combination shows more obvious advantages than intervention alone. TP and PC treatment improved behavioral performance, the hippocampal LTP damage and the shape and number of dendrites, dendritic spines and synapses, reduced the burden of Aβ and decreased the inflammation in hippocampus. In addition, TP and PC treatment decreased the expressions of Iba-1, TNF-α, TNFR1, and TRAF2. CONCLUSIONS These results provided a novel evidence TP combined with PC inhibits p38 MAPK pathway, suppresses the inflammation in hippocampus, and increase the externalization of AMPAR, which may be one of the mechanisms to improve synaptic plasticity and memory in the menopause-related memory decline rats.
Collapse
Affiliation(s)
- Qian Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Yusen Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Luping Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Xuemin Li
- Center for Disease Control and Prevention in Shanxi Province, Taiyuan, People's Republic of China
| | - Ruirui Dong
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Chenmeng Song
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Le Cheng
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Mengqian Shi
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Haifeng Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, People's Republic of China
| |
Collapse
|
3
|
Mai ZF, Cao ZP, Huang SY, Yan WW, Huang JN, Wu BY, Li CH. The metaplastic effects of cordycepin in hippocampal CA1 area of rats. Eur J Pharmacol 2021; 897:173946. [PMID: 33607106 DOI: 10.1016/j.ejphar.2021.173946] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/28/2021] [Accepted: 02/11/2021] [Indexed: 11/24/2022]
Abstract
Metaplasticity is referred to adjustment in the requirements for induction of synaptic plasticity based on the prior history of activity. Synaptic plasticity, including long-term potentiation (LTP) and long-term depression (LTD), has been considered to be the neural processes underlying learning and memory. Previous observations that cordycepin (an adenosine derivative) improved learning and memory seemed to be contradictory to the findings that cordycepin inhibited LTP. Therefore, we speculated that the conflicting reports of cordycepin might be related to metaplasticity. In the current study, population spike (PS) in hippocampal CA1 area of rats was recorded by using electrophysiological method in vivo. The results showed that cordycepin reduced PS amplitude in hippocampal CA1 with a concentration-dependent relationship, and high frequency stimulation (HFS) failed to induce LTP when cordycepin was intrahippocampally administrated but improved LTP magnitude when cordycepin was pre-treated. Cordycepin increased LTD induced by activating N-Methyl-D-aspartate (NMDA) receptors and subsequently facilitated LTP induced by HFS. Furthermore, we found that 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), an adenosine A1 receptors antagonist, could block the roles of cordycepin on LTD and LTP. Collectively, cordycepin was able to modulate metaplasticity in hippocampal CA1 area of rats through adenosine A1 receptors. These findings would be helpful to reconcile the conflicting reports in the literatures and provided new insights into the mechanisms underlying cognitive function promotions with cordycepin treatment.
Collapse
Affiliation(s)
- Zi-Fan Mai
- School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Zhi-Ping Cao
- School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Shu-Yi Huang
- School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Wen-Wen Yan
- School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Jun-Ni Huang
- School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Bao-Yan Wu
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| | - Chu-Hua Li
- School of Life Science, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
4
|
Effect of Tetramethylpyrazine on Neuroplasticity after Transient Focal Cerebral Ischemia Reperfusion in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:1587241. [PMID: 33531914 PMCID: PMC7834793 DOI: 10.1155/2021/1587241] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/23/2020] [Accepted: 01/07/2021] [Indexed: 11/22/2022]
Abstract
Tetramethylpyrazine (TMP) has been widely used in ischemic stroke in China. The regulation of neuroplasticity may underlie the recovery of some neurological functions in ischemic stroke. Middle cerebral artery occlusion (MCAO) model was established in this study. Rats were divided into three groups: sham group, model group, and TMP group. The neurological function was evaluated using modified neurological severity score (mNSS). Following the neurological function test, expression of synaptophysin (SYP) and growth-associated protein 43 (GAP-43) were analyzed through immunohistochemistry at 3 d, 7 d, 14 d, and 28 d after MCAO. Finally, the synaptic structural plasticity was investigated using transmission electron microscopy (TEM). The TMP group showed better neurological function comparing to the model group. SYP levels increased gradually in ischemic penumbra (IP) in the model group and could be enhanced by TMP treatment at 7 d, 14 d, and 28 d, whereas GAP-43 levels increased from 3 d to 7 d and thereafter decreased gradually from 14 d to 28 d in the model group, which showed no significant improvement in the TMP group. The results of TEM showed a flatter synaptic interface, a thinner postsynaptic density (PSD), and a wider synaptic cleft in the model group, and the first two alterations could be ameliorated by TMP. Then, a Pearson's correlation test revealed mNSS markedly correlated with SYP and synaptic ultrastructures. Taken together, TMP is capable of promoting functional outcome after ischemic stroke, and the mechanisms may be partially associated with regulation of neuroplasticity.
Collapse
|
5
|
Contribution of D1R-expressing neurons of the dorsal dentate gyrus and Ca v1.2 channels in extinction of cocaine conditioned place preference. Neuropsychopharmacology 2020; 45:1506-1517. [PMID: 31905369 PMCID: PMC7360569 DOI: 10.1038/s41386-019-0597-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/30/2019] [Accepted: 12/19/2019] [Indexed: 12/29/2022]
Abstract
Cocaine-associated contextual cues can trigger relapse behavior by recruiting the hippocampus. Extinction of cocaine-associated contextual memories can reduce cocaine-seeking behavior, however the molecular mechanisms within the hippocampus that underlie contextual extinction behavior and subsequent reinstatement remain poorly understood. Here, we extend our previous findings for a role of Cav1.2 L-type Ca2+ channels in dopamine 1 receptor (D1R)-expressing cells in extinction of cocaine conditioned place preference (CPP) in adult male mice. We report that attenuated cocaine CPP extinction in mice lacking Cav1.2 channels in D1R-expressing cells (D1cre, Cav1.2fl/fl) can be rescued through chemogenetic activation of D1R-expressing cells within the dorsal dentate gyrus (dDG), but not the dorsal CA1 (dCA1). This is supported by the finding that Cav1.2 channels are required in excitatory cells of the dDG, but not in the dCA1, for cocaine CPP extinction. Examination of the role of S1928 phosphorylation of Cav1.2, a protein kinase A (PKA) site using S1928A Cav1.2 phosphomutant mice revealed no extinction deficit, likely due to homeostatic scaling up of extinction-dependent S845 GluA1 phosphorylation in the dDG. However, phosphomutant mice failed to show cocaine-primed reinstatement which can be reversed by chemogenetic manipulation of excitatory cells in the dDG during extinction training. These findings outline an essential role for the interaction between D1R, Cav1.2, and GluA1 signaling in the dDG for extinction of cocaine-associated contextual memories.
Collapse
|
6
|
Han YY, Chen ZH, Shang YJ, Yan WW, Wu BY, Li CH. Cordycepin improves behavioral-LTP and dendritic structure in hippocampal CA1 area of rats. J Neurochem 2019; 151:79-90. [PMID: 31314908 DOI: 10.1111/jnc.14826] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 12/21/2022]
Abstract
Cordycepin, an adenosine analog, has been reported to improve cognitive function, but which seems to be inconsistent with the reports showing that cordycepin inhibited long-term potentiation (LTP). Behavioral-LTP is usually used to study long-term synaptic plasticity induced by learning tasks in freely moving animals. In order to investigate simultaneously the effects of cordycepin on LTP and behavior in rats, we applied the model of behavioral-LTP induced by Y-maze learning task through recording population spikes in hippocampal CA1 region. Golgi staining and Sholl analysis were employed to assess the morphological structure of dendrites in pyramidal cells of hippocampal CA1 area, and western blotting was used to examine the level of adenosine A1 receptors and A2A receptors (A2AR). We found that cordycepin significantly improved behavioral-LTP magnitude, accompanied by increases in the total length of dendrites, the number of intersections and spine density but did not affect Y-maze learning task. Furthermore, cordycepin obviously reduced A2AR level without altering adenosine A1 receptors level; and the agonist of A2AR (CGS 21680) rather than antagonist (SCH 58261) could reverse the potentiation of behavioral-LTP induced by cordycepin. These results suggested that cordycepin improved behavioral-LTP and morphological structure of dendrite in hippocampal CA1 but did not contribute to the improvement of learning and memory. And cordycepin improved behavioral-LTP may be through reducing the level of A2AR in hippocampus. Collectively, the effects of cordycepin on cognitive function and LTP were complex and involved multiple mechanisms.
Collapse
Affiliation(s)
- Yuan-Yuan Han
- School of Life Science, South China Normal University, Guangzhou, China
| | - Zhao-Hui Chen
- School of Life Science, South China Normal University, Guangzhou, China
| | - Ying-Jie Shang
- School of Life Science, South China Normal University, Guangzhou, China
| | - Wen-Wen Yan
- School of Life Science, South China Normal University, Guangzhou, China
| | - Bao-Yan Wu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Chu-Hua Li
- School of Life Science, South China Normal University, Guangzhou, China
| |
Collapse
|