1
|
Finsterer J. Calpainopathy Can Manifest Itself in Not Only Skeletal Muscle but Also the Brain and Myocardium. Intern Med 2025; 64:327. [PMID: 38811215 DOI: 10.2169/internalmedicine.3919-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/31/2024] Open
|
2
|
Zhao H, Li H, Meng L, Du P, Mo X, Gong M, Chen J, Liao Y. Disrupting heroin-associated memory reconsolidation through actin polymerization inhibition in the nucleus accumbens core. Int J Neuropsychopharmacol 2024; 28:pyae065. [PMID: 39716383 DOI: 10.1093/ijnp/pyae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 12/23/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND Understanding drug addiction as a disorder of maladaptive learning, where drug-associated or environmental cues trigger drug cravings and seeking, is crucial for developing effective treatments. Actin polymerization, a biochemical process, plays a crucial role in drug-related memory formation, particularly evident in conditioned place preference paradigms involving drugs like morphine and methamphetamine. However, the role of actin polymerization in the reconsolidation of heroin-associated memories remains understudied. METHODS This study employed a rodent model of self-administered heroin to investigate the involvement of actin polymerization in the reconsolidation of heroin-associated memories. Rats underwent ten days of intravenous heroin self-administration paired with conditioned cues. Subsequently, a 10-day extinction phase aimed to reduce heroin-seeking behaviors. Following this, rats participated in a 15-minute retrieval trial with or without cues. Immediately post-retrieval, rats received bilateral injections of the actin polymerization inhibitor Latrunculin A (Lat A) into the nucleus accumbens core (NACc), a critical brain region for memory reconsolidation. RESULTS Immediate administration of Lat A into the NACc post-retrieval significantly reduced cue-induced and heroin-primed reinstatement of heroin-seeking behavior for at least 28 days. However, administering Lat A 6-hour post-retrieval or without a retrieval trial, as well as administering Jasplakionlide prior to memory reactivation did not affect heroin-seeking behaviors. CONCLUSIONS Inhibiting actin polymerization during the reconsolidation window disrupts heroin-associated memory reconsolidation, leading to decreased heroin-seeking behavior and prevention of relapse. These effects are contingent upon the presence of a retrieval trial and exhibit temporal specificity, shedding light on addiction mechanisms and potential therapeutic interventions.
Collapse
Affiliation(s)
- Haiting Zhao
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Haoyu Li
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Li Meng
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Peng Du
- Department of Neurosurgery, The Second Affiliated Hospital, Xinjiang Medical University, Urumqi, China
| | - Xin Mo
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mengqi Gong
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiaxin Chen
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yiwei Liao
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
3
|
Mabry S, Bradshaw JL, Gardner JJ, Wilson EN, Sunuwar J, Yeung H, Shrestha S, Cunningham JT, Cunningham RL. The impact of chronic intermittent hypoxia on enzymatic activity in memory-associated brain regions of male and female rats. RESEARCH SQUARE 2024:rs.3.rs-5449794. [PMID: 39711575 PMCID: PMC11661378 DOI: 10.21203/rs.3.rs-5449794/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Background Obstructive sleep apnea (OSA) is an intermittent hypoxia disorder associated with cognitive dysfunction, including learning and memory impairments. There is evidence that alterations in protease activity and neuronal activation as associated with cognitive dysfunction, are dependent on sex, and may be brain region-specific. However, the mechanisms mediating OSA-induced cognitive impairments are unclear. Therefore, we used a rat model of OSA, chronic intermittent hypoxia (CIH), to investigate protease activity (e.g., calpain and caspase-3) and neuronal activation (early growth response protein 1, EGR-1) in brain regions associated with learning and memory. We used a rat model of OSA known as chronic intermittent hypoxia (CIH) to investigate protease activity (calpain and caspase-3) and neuronal activation (early growth response protein 1, EGR-1) in brain regions associated with learning and memory. Methods Male and female Sprague Dawley rats were exposed to CIH or room air (normoxic) for 14 days. We quantified protease activity and cleaved spectrin products, along with EGR-1 protein expression in hippocampal subregions (CA1, CA3), cortical regions [entorhinal cortex (ETC), retrosplenial cortex (RSC), cerebellar cortex (CC)], and subcortical regions [raphe nucleus (RN), locus coeruleus (LC)] associated with learning and memory. Within each group, Pearson correlations of calpain activity, caspase-3 activity, and EGR-1 expression were performed between brain regions. Sex differences within normoxic and CIH correlations were examined. Results CIH dysregulated calpain activity in male ETC and female CA1 and RSC. CIH dysregulated caspase-3 activity in male RN and female CA1 and RSC. CIH decreased calpain and caspase-3 cleavage products in male ETC. CIH decreased calpain-cleaved spectrin in male RSC but increased these products in female RSC. EGR-1 expression was decreased in male and female RN. Correlational analysis revealed CIH increased excitatory connections in males and increased inhibitory connections in females. EGR-1 expression in males shifted from negative to positive correlations. Conclusions Overall, these data show that CIH dysregulates protease activity and impairs neuronal function in a brain region- and sex-dependent manner. This indicates that males and females exhibit sex-specific vulnerabilities to mild OSA. These findings concur with our previous behavioral studies that demonstrated memory impairment in CIH-exposed rats.
Collapse
Affiliation(s)
- Steve Mabry
- University of North Texas Health Science Center
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Kudrinskaya VM, Ivlev AP, Obukhova DA, Maystrenko VA, Tiutiunnik TV, Traktirov DS, Karpenko MN, Ivleva IS. Spatial memory impairment is associated with decreased dopamine-β-hydroxylase activity in the brains of rats exposed to manganese chloride. Toxicol Mech Methods 2024; 34:1035-1044. [PMID: 39021086 DOI: 10.1080/15376516.2024.2379012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/04/2024] [Accepted: 07/06/2024] [Indexed: 07/20/2024]
Abstract
Chronic exposure to manganese compounds leads to accumulation of the manganese in the basal ganglia and hippocampus. High levels of manganese in these structures lead to oxidative stress, neuroinflammation, imbalance of brain neurotransmitters, and hyperactivation of calpains mediating neurotoxicity and causing motor and cognitive impairment. The purpose of this work was to study the effect of excess manganese chloride intake on rats' spatial memory and on dopamine-β-hydroxylase (DβH) activity under conditions of calpain activity suppression. Rats were divided into 3 groups of 10 animals each. Group 1 received MnCl2 (30 days, 5 mg/kg/day, intranasally), group 2 received MnCl2 (30 days, 5 mg/kg/day, intranasally) and calpain inhibitor Cast (184-210) (30 days, 5 µg/kg/day, intranasally), and group 3 received sterile saline (30 days in a volume of 20 μl, intranasally). The spatial working memory was assessed using Morris water maze test. DβH activity was determined by HPLC. We have shown that in response to excessive intake of MnCl2, there was a development of cognitive impairments in rats, which was accompanied by a decrease in DβH activity in the hippocampus. The severity of cognitive impairment was reduced by inhibiting the activity of m-calpain. The protective effect of calpain inhibitors was achieved not through an effect on DβH activity. Thus, the development of therapeutic regimens for the treatment of manganism using dopaminomimetics and/or by inhibiting calpains, must be performed taking into account the manganese-induced decrease of DβH activity and the inability to influence this process with calpain inhibitors.
Collapse
Affiliation(s)
| | - Andrey Pavlovich Ivlev
- Sechenov Institute of Evolutionary Physiology and Biochemistry Russian Academy of Sciences, St. Petersburg, Russia
| | | | | | | | | | | | - Irina Sergeevna Ivleva
- Department of Physiology (Pavlov's), Institute of Experimental Medicine, St. Petersburg, Russia
| |
Collapse
|
5
|
Montiel I, Bello-Medina PC, Prado-Alcalá RA, Quirarte GL, Verdín-Ruvalcaba LA, Marín-Juárez TA, Medina AC. Involvement of kinases in memory consolidation of inhibitory avoidance training. Rev Neurosci 2024:revneuro-2024-0093. [PMID: 39323086 DOI: 10.1515/revneuro-2024-0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/08/2024] [Indexed: 09/27/2024]
Abstract
The inhibitory avoidance (IA) task is a paradigm widely used to investigate the molecular and cellular mechanisms involved in the formation of long-term memory of aversive experiences. In this review, we discuss studies on different brain structures in rats associated with memory consolidation, such as the hippocampus, striatum, and amygdala, as well as some cortical areas, including the insular, cingulate, entorhinal, parietal and prefrontal cortex. These studies have shown that IA training triggers the release of neurotransmitters, hormones, growth factors, etc., that activate intracellular signaling pathways related to protein kinases, which induce intracellular non-genomic changes or transcriptional mechanisms in the nucleus, leading to the synthesis of proteins. We have summarized the temporal dynamics and crosstalk among protein kinase A, protein kinase C, mitogen activated protein kinase, extracellular-signal-regulated kinase, and Ca2+/calmodulin-dependent protein kinase II described in the hippocampus. Protein kinase activity has been associated with structural changes and synaptic strengthening, resulting in memory storage. However, little is known about the molecular mechanisms involved in intense IA training, which protects memory from typical amnestic treatments, such as protein synthesis inhibitors, and induces increased spinogenesis, suggesting an unexplored mechanism independent of the genomic pathway. This highly emotional experience causes an extinction-resistant memory, as has been observed in some pathological states such as post-traumatic stress disorder. We propose that the changes in spinogenesis observed after intense IA training could be generated by protein kinases via non-genomic pathways.
Collapse
Affiliation(s)
- Ivan Montiel
- Institut Pasteur, Université Paris Cité, Neural Circuits for Spatial Navigation and Memory, Department of Neuroscience, F-75015, Paris, France
- Sorbonne Université, Collège Doctoral, F-75005, Paris, France
| | - Paola C Bello-Medina
- Facultad de Ciencias, Universidad del Tolima, Altos de Santa Helena, Ibagué, Tolima, Colombia
| | - Roberto A Prado-Alcalá
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro., 76230, Mexico
| | - Gina L Quirarte
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro., 76230, Mexico
| | - Luis A Verdín-Ruvalcaba
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro., 76230, Mexico
| | - Tzitzi A Marín-Juárez
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro., 76230, Mexico
| | - Andrea C Medina
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro., 76230, Mexico
| |
Collapse
|
6
|
Xie G, Qin Y, Wu N, Han X, Li J. Single-Nucleus Transcriptome Profiling from the Hippocampus of a PTSD Mouse Model and CBD-Treated Cohorts. Genes (Basel) 2024; 15:519. [PMID: 38674453 PMCID: PMC11050643 DOI: 10.3390/genes15040519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Post-traumatic stress disorder (PTSD) is the most common psychiatric disorder after a catastrophic event; however, the efficacious treatment options remain insufficient. Increasing evidence suggests that cannabidiol (CBD) exhibits optimal therapeutic effects for treating PTSD. To elucidate the cell-type-specific transcriptomic pathology of PTSD and the mechanisms of CBD against this disease, we conducted single-nucleus RNA sequencing (snRNA-seq) in the hippocampus of PTSD-modeled mice and CBD-treated cohorts. We constructed a mouse model by adding electric foot shocks following exposure to single prolonged stress (SPS+S) and tested the freezing time, anxiety-like behavior, and cognitive behavior. CBD was administrated before every behavioral test. The PTSD-modeled mice displayed behaviors resembling those of PTSD in all behavioral tests, and CBD treatment alleviated all of these PTSD-like behaviors (n = 8/group). Three mice with representative behavioral phenotypes were selected from each group for snRNA-seq 15 days after the SPS+S. We primarily focused on the excitatory neurons (ExNs) and inhibitory neurons (InNs), which accounted for 68.4% of the total cell annotations. A total of 88 differentially upregulated genes and 305 differentially downregulated genes were found in the PTSD mice, which were found to exhibit significant alterations in pathways and biological processes associated with fear response, synaptic communication, protein synthesis, oxidative phosphorylation, and oxidative stress response. A total of 63 overlapping genes in InNs were identified as key genes for CBD in the treatment of PTSD. Subsequent Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that the anti-PTSD effect of CBD was related to the regulation of protein synthesis, oxidative phosphorylation, oxidative stress response, and fear response. Furthermore, gene set enrichment analysis (GSEA) revealed that CBD also enhanced retrograde endocannabinoid signaling in ExNs, which was found to be suppressed in the PTSD group. Our research may provide a potential explanation for the pathogenesis of PTSD and facilitate the discovery of novel therapeutic targets for drug development. Moreover, it may shed light on the therapeutic mechanisms of CBD.
Collapse
Affiliation(s)
| | | | | | - Xiao Han
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (G.X.); (Y.Q.); (N.W.); (J.L.)
| | | |
Collapse
|
7
|
Popik B, Luft JG, Knak Guerra KT, de Oliveira Alvares L. Molecular mechanisms underpinning deconditioning-update in fear memory. Hippocampus 2023; 33:1267-1276. [PMID: 37795810 DOI: 10.1002/hipo.23579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/25/2023] [Accepted: 09/18/2023] [Indexed: 10/06/2023]
Abstract
Traumatic experiences are closely associated with some psychiatric conditions such as post-traumatic stress disorder. Deconditioning-update promotes robust and long-lasting attenuation of aversive memories. The deconditioning protocol consists of applying weak/neutral footshocks during reactivations, so that the original tone-shock association is replaced by an innocuous stimulus that does not produce significant fear response. Here, we present the molecular bases that can support this mechanism. To this end, we used pharmacological tools to inhibit the activity of ionotropic glutamate receptors (NMDA-GluN2B and CP-AMPA), the activity of proteases (calpains), and the receptors that control intracellular calcium storage (IP3 receptors), as well as the endocannabinoid system (CB1). Our results indicate that blocking these molecular targets prevents fear memory update by deconditioning. Therefore, this study uncovered the molecular substrate of deconditioning-update strategy, and, broadly, shed new light on the traumatic memory destabilization mechanisms that might be used to break the boundaries regarding reconsolidation-based approaches to deal with maladaptive memories.
Collapse
Affiliation(s)
- Bruno Popik
- Neurobiology of Memory Lab, Biophysics Department, Biosciences Institute, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Jordana Griebler Luft
- Neurobiology of Memory Lab, Biophysics Department, Biosciences Institute, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Kétlyn Talise Knak Guerra
- LPBNC, Biophysics Department, Biosciences Institute, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Lucas de Oliveira Alvares
- Neurobiology of Memory Lab, Biophysics Department, Biosciences Institute, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
8
|
Popik B, Guerra KTK, Luft JG, Fernandes HS, de Oliveira Alvares L. Characterization of deconditioning-update on fear memory attenuation. Neurobiol Learn Mem 2023; 202:107763. [PMID: 37169214 DOI: 10.1016/j.nlm.2023.107763] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 04/03/2023] [Accepted: 05/03/2023] [Indexed: 05/13/2023]
Abstract
Fear memory expression can be attenuated by updating the footshock perception during the plastic state induced by retrieval, from a strong unconditioned stimulus to a very weak one through deconditioning. In this process, the original fear association of the conditioned stimulus with the footshock is substituted by an innocuous stimulus and the animals no longer express a fear response. In the present study, we explore the boundaries of this deconditioning-update strategy by the characterization of this phenomenon. We found that there is an optimal mismatch between the footshock intensity delivered in the training and in the reactivation. Likewise, we characterized the temporal window that the protocol is efficient in hindering fear response. Our findings contribute to a better understanding of the limits in which deconditioning acts in attenuating fear memory, so that an optimized protocol using this strategy can be planned in order to deal with emotional disorders.
Collapse
Affiliation(s)
- Bruno Popik
- Neurobiology of Memory Lab, Biophysics Department, Biosciences Institute, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Kétlyn Talise Knak Guerra
- Physiology Laboratory, Department Basic Sciences/Physiology, Federal University of Health Sciences of Porto Alegre, Brazil
| | - Jordana Griebler Luft
- Neurobiology of Memory Lab, Biophysics Department, Biosciences Institute, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Henrique Schaan Fernandes
- Neurobiology of Memory Lab, Biophysics Department, Biosciences Institute, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Lucas de Oliveira Alvares
- Neurobiology of Memory Lab, Biophysics Department, Biosciences Institute, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
9
|
Li L, Wang Q, Sun X, Li Z, Liu S, Zhang X, Zhou J, Zhang R, Liu K, Wang P, Niu J, Wen Y, Zhang L. Activation of RhoA pathway participated in the changes of emotion, cognitive function and hippocampal synaptic plasticity in juvenile chronic stress rats. Int J Biol Macromol 2023; 233:123652. [PMID: 36780962 DOI: 10.1016/j.ijbiomac.2023.123652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 01/16/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023]
Abstract
Neuropsychiatric diseases are related to early life stress (ELS), patients often have abnormal learning, memory and emotion. But the regulatory mechanism is unclear. Hippocampal synaptic plasticity (HSP) changes are important mechanism. RhoA pathway is known to regulate HSP by modulating of dendritic spines (DS), whether it's involved in HSP changes in ELS hasn't been reported. So we investigated whether and how RhoA participates in HSP regulation in ELS. The ELS model was established by separation-rearing in juvenile. Results of IntelliCage detection etc. showed simple learning and memory wasn't affected, but spatial, punitive learning and memories reduced, the desire to explore novel things reduced, the anxiety-like emotion increased. We further found hippocampus was activated, the hippocampal neurons dendritic complexities reduced, the proportion of mature DS decreased. The full-length transcriptome sequencing techniques was used to screen for differentially expressed genes involved in regulating HSP changes, we found RhoA gene was up-regulated. We detected RhoA protein, RhoA phosphorylation and downstream molecules expression changes, results shown RhoA and p-RhoA, p-ROCK2 expression increased, p-LIMK, p-cofilin expression and F-actin/G-actin ratio decreased. Our study revealed HSP changes in ELS maybe regulate by activation RhoA through ROCK2/LIMK/cofilin pathway regulated F-actin/G-actin balance and DS plasticity, affecting emotion and cognition.
Collapse
Affiliation(s)
- Lvmei Li
- Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of the National Key Laboratory, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China; Department of human anatomy and histoembryology, School of Basic Medical Sciences, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China
| | - Qiang Wang
- Science - Technology Centers, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China
| | - Xiangping Sun
- Department of Surgery, Ningxia Traditional Chinese Medicine Hospital, 114 West Beijing Road, Yinchuan, Ningxia 750021, China
| | - ZeLong Li
- Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of the National Key Laboratory, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China
| | - Shuwei Liu
- Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of the National Key Laboratory, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China; Department of human anatomy and histoembryology, School of Basic Medical Sciences, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China
| | - Xian Zhang
- Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of the National Key Laboratory, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China
| | - Jinyu Zhou
- Department of Epidemiology and Health Statistics, School of Public Health and Management, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China
| | - Rui Zhang
- Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of the National Key Laboratory, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China
| | - Kunmei Liu
- Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of the National Key Laboratory, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China
| | - Peng Wang
- Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of the National Key Laboratory, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China
| | - Jianguo Niu
- Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of the National Key Laboratory, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China; Department of human anatomy and histoembryology, School of Basic Medical Sciences, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China.
| | - Yujun Wen
- Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of the National Key Laboratory, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China; Department of human anatomy and histoembryology, School of Basic Medical Sciences, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China.
| | - Lianxiang Zhang
- Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of the National Key Laboratory, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China; Department of human anatomy and histoembryology, School of Basic Medical Sciences, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China.
| |
Collapse
|
10
|
Emerging roles of PHLPP phosphatases in the nervous system. Mol Cell Neurosci 2022; 123:103789. [PMID: 36343848 DOI: 10.1016/j.mcn.2022.103789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/15/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022] Open
Abstract
It has been more than a decade since the discovery of a novel class of phosphatase, the Pleckstrin Homology (PH) domain Leucine-rich repeat Protein Phosphatases (PHLPP). Over time, they have been recognized as crucial regulators of various cellular processes, such as memory formation, cellular survival and proliferation, maintenance of circadian rhythm, and others, with any deregulation in their expression or cellular localization causing havoc in any cellular system. With the ever-growing number of downstream substrates across multiple tissue systems, a web is emerging wherein the central point is PHLPP. A slight nick in the normal signaling cascade of the two isoforms of PHLPP, namely PHLPP1 and PHLPP2, has been recently found to invoke a variety of neurological disorders including Alzheimer's disease, epileptic seizures, Parkinson's disease, and others, in the neuronal system. Improper regulation of the two isoforms has also been associated with various disease pathologies such as diabetes, cardiovascular disorders, cancer, musculoskeletal disorders, etc. In this review, we have summarized all the current knowledge about PHLPP1 (PHLPP1α and PHLPP1β) and PHLPP2 and their emerging roles in regulating various neuronal signaling pathways to pave the way for a better understanding of the complexities. This would in turn aid in providing context for the development of possible future therapeutic strategies.
Collapse
|
11
|
Dai ZH, Xu X, Chen WQ, Nie LN, Liu Y, Sui N, Liang J. The role of hippocampus in memory reactivation: an implication for a therapeutic target against opioid use disorder. CURRENT ADDICTION REPORTS 2022; 9:67-79. [PMID: 35223369 PMCID: PMC8857535 DOI: 10.1007/s40429-022-00407-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2022] [Indexed: 12/29/2022]
Abstract
Purpose of the review The abuse of opioids induces many terrible problems in human health and social stability. For opioid-dependent individuals, withdrawal memory can be reactivated by context, which is then associated with extremely unpleasant physical and emotional feelings during opioid withdrawal. The reactivation of withdrawal memory is considered one of the most important reasons for opioid relapse, and it also allows for memory modulation based on the reconsolidation phenomenon. However, studies exploring withdrawal memory modulation during the reconsolidation window are lacking. By summarizing the previous findings about the reactivation of negative emotional memories, we are going to suggest potential neural regions and systems for modulating opioid withdrawal memory. Recent findings Here, we first present the role of memory reactivation in its modification, discuss how the hippocampus participates in memory reactivation, and discuss the importance of noradrenergic signaling in the hippocampus for memory reactivation. Then, we review the engagement of other limbic regions receiving noradrenergic signaling in memory reactivation. We suggest that noradrenergic signaling targeting hippocampus neurons might play a potential role in strengthening the disruptive effect of withdrawal memory extinction by facilitating the degree of memory reactivation. Summary This review will contribute to a better understanding of the mechanisms underlying reactivation-dependent memory malleability and will provide new therapeutic avenues for treating opioid use disorders.
Collapse
Affiliation(s)
- Zhong-hua Dai
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xing Xu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Wei-qi Chen
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
| | - Li-na Nie
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Ying Liu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Nan Sui
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Liang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
12
|
Schaan Fernandes H, Popik B, de Oliveira Alvares L. Effects of hippocampal IP 3R inhibition on contextual fear memory consolidation, retrieval, reconsolidation and extinction. Neurobiol Learn Mem 2022; 188:107587. [PMID: 35051621 DOI: 10.1016/j.nlm.2022.107587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/03/2022] [Accepted: 01/12/2022] [Indexed: 10/19/2022]
Abstract
Intracellular calcium stores (ICS) play a dynamic role in neuronal calcium (Ca2+) homeostasis both by buffering Ca2+ excess in the cytoplasm or providing an additional source of Ca2+ when concentration increase is needed. However, in spite of the large body of evidence showing Ca2+ as an essential second messenger in many signaling cascades underlying synaptic plasticity, the direct involvement of the intracellular Ca2+-release channels (ICRCs) in memory processing has been highly overlooked. Here we investigated the role of the ICRC inositol 1,4,5-trisphosphate receptor (IP3R) activity during different memory phases using pharmacological inhibition in the dorsal hippocampus during contextual fear conditioning. We first found that post-training administration of the IP3R antagonist 2-aminoethyl diphenylborinate (2-APB) impaired memory consolidation in a dose and time-dependent manner. Inhibiting IP3Rs also disrupted memory retrieval. Contextual fear memory reconsolidation or extinction, however, were not sensitive to IP3R blockade. Taken together, our results indicate that hippocampal IP3Rs play an important role in contextual fear memory consolidation and retrieval.
Collapse
Affiliation(s)
- Henrique Schaan Fernandes
- Laboratório de Neurobiologia da Memória, Biophysics Department, Biosciences Institute, Federal University of Rio Grande do Sul, 91,501-970 Porto Alegre, Brazil; Graduate Program in Neuroscience, Institute of Health Sciences, Federal University of Rio Grande do Sul, 90,046-900 Porto Alegre, Brazil
| | - Bruno Popik
- Laboratório de Neurobiologia da Memória, Biophysics Department, Biosciences Institute, Federal University of Rio Grande do Sul, 91,501-970 Porto Alegre, Brazil; Graduate Program in Neuroscience, Institute of Health Sciences, Federal University of Rio Grande do Sul, 90,046-900 Porto Alegre, Brazil
| | - Lucas de Oliveira Alvares
- Laboratório de Neurobiologia da Memória, Biophysics Department, Biosciences Institute, Federal University of Rio Grande do Sul, 91,501-970 Porto Alegre, Brazil; Graduate Program in Neuroscience, Institute of Health Sciences, Federal University of Rio Grande do Sul, 90,046-900 Porto Alegre, Brazil.
| |
Collapse
|
13
|
Yu XD, Mo YX, He Z, Reilly J, Tian SW, Shu X. Urocanic acid enhances memory consolidation and reconsolidation in novel object recognition task. Biochem Biophys Res Commun 2021; 579:62-68. [PMID: 34587556 DOI: 10.1016/j.bbrc.2021.09.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/22/2021] [Indexed: 10/20/2022]
Abstract
Urocanic acid (UCA) is an endogenous small molecule that is elevated in skin, blood and brain after sunlight exposure, mainly playing roles in the periphery systems. Few studies have investigated the role of UCA in the central nervous system. In particular, its role in memory consolidation and reconsolidation is still unclear. In the present study, we investigated the effect of intraperitoneal injection of UCA on memory consolidation and reconsolidation in a novel object recognition memory (ORM) task. In the consolidation version of the ORM task, the protocol involved three phases: habituation, sampling and test. UCA injection immediately after the sampling period enhanced ORM memory performance; UCA injection 6 h after sampling did not affect ORM memory performance. In the reconsolidation version of the ORM task, the protocol involved three phases: sampling, reactivation and test. UCA injection immediately after reactivation enhanced ORM memory performance; UCA injection 6 h after reactivation did not affect ORM memory performance; UCA injection 24 h after sampling without reactivation did not affect ORM memory performance. This UCA-enhanced memory performance was not due to its effects on nonspecific responses such as locomotor activity and exploratory behavior. The results suggest that UCA injection enhances consolidation and reconsolidation of an ORM task, which further extends previous research on UCA effects on learning and memory.
Collapse
Affiliation(s)
- Xu-Dong Yu
- School of Basic Medical Sciences, Shaoyang University, Shaoyang, 422000, PR China; Hunan Engineering Research Center of Development and Utilization of Traditional Chinese Medicine in Southwest Hunan, Shaoyang University, Shaoyang, 422000, PR China; Department of Physiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Yan-Xin Mo
- School of Basic Medical Sciences, Shaoyang University, Shaoyang, 422000, PR China; Hunan Engineering Research Center of Development and Utilization of Traditional Chinese Medicine in Southwest Hunan, Shaoyang University, Shaoyang, 422000, PR China
| | - Zhiming He
- School of Basic Medical Sciences, Shaoyang University, Shaoyang, 422000, PR China; Hunan Engineering Research Center of Development and Utilization of Traditional Chinese Medicine in Southwest Hunan, Shaoyang University, Shaoyang, 422000, PR China
| | - James Reilly
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, G4 0BA, UK
| | - Shao-Wen Tian
- Department of Physiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China; Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin, Guangxi, 541199, PR China.
| | - Xinhua Shu
- School of Basic Medical Sciences, Shaoyang University, Shaoyang, 422000, PR China; Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, G4 0BA, UK; Department of Vision Science, Glasgow Caledonian University, Glasgow, G4 0BA, UK.
| |
Collapse
|
14
|
Careaga MBL, Girardi CEN, Suchecki D. Propranolol failed to prevent severe stress-induced long-term behavioral changes in male rats. Prog Neuropsychopharmacol Biol Psychiatry 2021; 108:110079. [PMID: 32827609 DOI: 10.1016/j.pnpbp.2020.110079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/24/2020] [Accepted: 08/16/2020] [Indexed: 10/23/2022]
Abstract
Memories of adverse events can be maladaptive when they lead to exaggerated fear, as observed in post-traumatic stress disorder (PTSD). Fear conditioning and fear sensitization are learning processes thought to play a role in fear-related disorders, and only few animal studies have evaluated the relationship between the associative and non-associative fear memory components on the development and maintenance of PTSD-like behavioral changes. Here we assessed the effects of a single dose of propranolol (10 mg/kg) or saline after fear memory retrieval on the long-term behavioral responses induced by severe stress in male rats. Animals were submitted to contextual fear conditioning (delayed shock group) or not (non-shock group) and underwent fear memory retrieval followed by propranolol or saline administration two weeks later. Rats were then evaluated in different behavioral tests to assess the expression of the conditioned fear response, anxiety-like and exploratory behaviors, and fear response after the presentation of unknown acoustic stimulus. Post-retrieval propranolol did not disrupt the subsequent expression of neither conditioned fear response nor the exploratory deficit and fear sensitization response, indicating that propranolol failed to mitigate long-term behavioral changes induced by severe stress in rats.
Collapse
Affiliation(s)
| | - Carlos Eduardo Neves Girardi
- Departamento de Psicobiologia, Universidade Federal de São Paulo/Escola Paulista de Medicina - UNIFESP/EPM, São Paulo, Brazil
| | - Deborah Suchecki
- Departamento de Psicobiologia, Universidade Federal de São Paulo/Escola Paulista de Medicina - UNIFESP/EPM, São Paulo, Brazil.
| |
Collapse
|
15
|
Couto-Pereira NDS, Lampert C, Vieira ADS, Lazzaretti C, Kincheski GC, Espejo PJ, Molina VA, Quillfeldt JA, Dalmaz C. Resilience and Vulnerability to Trauma: Early Life Interventions Modulate Aversive Memory Reconsolidation in the Dorsal Hippocampus. Front Mol Neurosci 2019; 12:134. [PMID: 31191245 PMCID: PMC6546926 DOI: 10.3389/fnmol.2019.00134] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 05/09/2019] [Indexed: 01/01/2023] Open
Abstract
Early life experiences program lifelong responses to stress. In agreement, resilience and vulnerability to psychopathologies, such as posttraumatic stress disorder (PTSD), have been suggested to depend on the early background. New therapies have targeted memory reconsolidation as a strategy to modify the emotional valence of traumatic memories. Here, we used animal models to study the molecular mechanism through which early experiences may later affect aversive memory reconsolidation. Handling (H)—separation of pups from dams for 10 min—or maternal separation (MS) — 3-h separation—were performed from PDN1–10, using non-handled (NH) litters as controls. Adult males were trained in a contextual fear conditioning (CFC) task; 24 h later, a short reactivation session was conducted in the conditioned or in a novel context, followed by administration of midazolam 3 mg/kg i.p. (mdz), known to disturb reconsolidation, or vehicle; a test session was performed 24 h after. The immunocontent of relevant proteins was studied 15 and 60 min after memory reactivation in the dorsal hippocampus (dHc) and basolateral amygdala complex (BLA). Mdz-treated controls (NH) showed decreased freezing to the conditioned context, consistent with reconsolidation impairment, but H and MS were resistant to labilization. Additionally, MS males showed increased freezing to the novel context, suggesting fear generalization; H rats showed lower freezing than the other groups, in accordance with previous suggestions of reduced emotionality facing adversities. Increased levels of Zif268, GluN2B, β-actin and polyubiquitination found in the BLA of all groups suggest that memory reconsolidation was triggered. In the dHc, only NH showed increased Zif268 levels after memory retrieval; also, a delay in ERK1/2 activation was found in H and MS animals. We showed here that reconsolidation of a contextual fear memory is insensitive to interference by a GABAergic drug in adult male rats exposed to different neonatal experiences; surprisingly, we found no differences in the reconsolidation process in the BLA, but the dHc appears to suffer temporal desynchronization in the engagement of reconsolidation. Our results support a hippocampal-dependent mechanism for reconsolidation resistance in models of early experiences, which aligns with current hypotheses for the etiology of PTSD.
Collapse
Affiliation(s)
- Natividade de Sá Couto-Pereira
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Programa de Pós-graduação em Neurociências, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Carine Lampert
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Aline Dos Santos Vieira
- Programa de Pós-graduação em Neurociências, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Camilla Lazzaretti
- Programa de Pós-graduação em Neurociências, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Grasielle Clotildes Kincheski
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Pablo Javier Espejo
- Instituto de Farmacología Experimental de Córdoba, Universidad Nacional de Cordoba (UNC), Cordoba, Argentina
| | - Victor Alejandro Molina
- Instituto de Farmacología Experimental de Córdoba, Universidad Nacional de Cordoba (UNC), Cordoba, Argentina
| | - Jorge Alberto Quillfeldt
- Programa de Pós-graduação em Neurociências, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Departamento de Biofísica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Carla Dalmaz
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Programa de Pós-graduação em Neurociências, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
16
|
Fear conditioning downregulates miR-138 expression in the hippocampus to facilitate the formation of fear memory. Neuroreport 2019; 29:1418-1424. [PMID: 30199441 DOI: 10.1097/wnr.0000000000001129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fear memory is important for the survival of animals and is associated with certain anxiety disorders, such as posttraumatic stress disorder. A thorough understanding of the molecular mechanisms of fear memory, especially associative fear memory, is imperative. MicroRNA-138 (miR-138) is a widely distributed microRNA in the brain and is locally enriched at synaptic sites. The role of miR-138 in the formation of fear memory is still largely unknown. In this study, a contextual fear conditioning (CFC) paradigm, bioinformatic methods, a luciferase assay, real-time PCR and western blot were used to evaluate the detailed effects of miR-138 on fear memory. We found that miR-138 transiently decreased in the dorsal hippocampus (DH) after CFC training. Upregulation or downregulation of miR-138 in the DH with miR-138 agomir or antagomir treatment significantly impaired or enhanced the formation of CFC memory, respectively. Moreover, the effects of miR-138 in the DH on the formation of CFC memory were achieved by changing the expression of the downstream target gene calpain 1 (Capn1). Taken together, both the in-vitro evidence and the in-vivo evidence presented in this study support the involvement of miR-138 in CFC memory formation, at least partly via the regulation of Capn1-mediated synaptic plasticity changes. Therapeutic use of miR-138/Capn1 is promising as an alternative option in the treatment of fear memory-related anxiety disorders.
Collapse
|
17
|
Torquatto KI, Menegolla AP, Popik B, Casagrande MA, de Oliveira Alvares L. Role of calcium-permeable AMPA receptors in memory consolidation, retrieval and updating. Neuropharmacology 2019; 144:312-318. [DOI: 10.1016/j.neuropharm.2018.10.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/24/2018] [Accepted: 10/21/2018] [Indexed: 02/06/2023]
|
18
|
Abstract
Substance P (SP) is a highly conserved member of the tachykinin peptide family that is widely expressed throughout the animal kingdom. The numerous members of the tachykinin peptide family are involved in a multitude of neuronal signaling pathways, mediating sensations and emotional responses (Steinhoff et al. in Physiol Rev 94:265–301, 2014). In contrast to receptors for classical transmitters, such as glutamate (Parsons et al. in Handb Exp Pharmacol 249–303, 2005), only a minority of neurons in certain brain areas express neurokinin receptors (NKRs) (Mantyh in J Clin Psychiatry 63:6–10, 2002). SP is also expressed by a variety of non-neuronal cell types such as microglia, as well as immune cells (Mashaghi et al. in Cell Mol Life Sci 73:4249–4264, 2016). SP is an 11-amino acid neuropeptide that preferentially activates the neurokinin-1 receptor (NK1R). It transmits nociceptive signals via primary afferent fibers to spinal and brainstem second-order neurons (Cao et al. in Nature 392:390–394, 1998). Compounds that inhibit SP’s action are being investigated as potential drugs to relieve pain. More recently, SP and NKR have gained attention for their role in complex psychiatric processes. It is a key goal in the field of pain research to understand mechanisms involved in the transition between acute pain and chronic pain. The influence of emotional and cognitive inputs and feedbacks from different brain areas makes pain not only a perception but an experience (Zieglgänsberger et al. in CNS Spectr 10:298–308, 2005; Trenkwaldner et al. Sleep Med 31:78–85, 2017). This review focuses on functional neuronal plasticity in spinal dorsal horn neurons as a major relay for nociceptive information.
Collapse
|
19
|
Song Z, Chen H, Xu W, Wu S, Zhu G. Basolateral amygdala calpain is required for extinction of contextual fear-memory. Neurobiol Learn Mem 2018; 155:180-188. [PMID: 30086394 DOI: 10.1016/j.nlm.2018.08.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/25/2018] [Accepted: 08/03/2018] [Indexed: 02/07/2023]
Abstract
Extinction of fear-memory is essential for emotional and mental changes. However, the mechanisms underlying extinction of fear-memory are largely unknown. Calpain is a type of calcium-dependent protease that plays a critical role in memory consolidation and reconsolidation. Whether calpain functions in extinction of fear-memory is unknown, as are the molecular mechanisms. In this study, we investigated the pivotal role of calpain in extinction of fear-memory in mice, and assessed its mechanism. Conditioned stimulation/unconditioned stimulation-conditioned stimulation paradigms combined with pharmacological methods were employed to evaluate the action of calpain in memory extinction. Our data demonstrated that intraperitoneal or intra-basolateral amygdala (BLA) injection of calpain inhibitors could eliminate extinction of fear-memory in mice. Moreover, extinction of fear-memory paradigm-activated BLA calpain activity, which degraded suprachiasmatic nucleus circadian oscillatory protein (SCOP) and phosphatase and tensin homolog (PTEN), subsequently contributing to activation of a protein kinase B (AKT)-mammalian target of the rapamycin (mTor) signaling pathway. Additionally, cAMP-response element binding protein (CREB) phosphorylation was also augmented following extinction of fear-memory. Calpain inhibitor blocked the signaling pathway activation induced by extinction of fear-memory. Additionally, intra-BLA injection of rapamycin or cycloheximide also blocked the extinction of fear-memory. Conversely, intra-BLA injection of PTEN inhibitor, bpV, reversed the effect of calpeptin on extinction of fear-memory. Together, our data confirmed the function of BLA calpain in extinction of fear-memory, likely via degrading PTEN and activating AKT-mTor-dependent protein synthesis.
Collapse
Affiliation(s)
- Zhujin Song
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Hui Chen
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Wen Xu
- Department of Neurology, The first Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, Hefei 230001, China
| | - Shengbing Wu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China; Anhui Academy of Chinese Medicine, Hefei 230038, China
| | - Guoqi Zhu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China; Anhui Academy of Chinese Medicine, Hefei 230038, China.
| |
Collapse
|