1
|
Iotchev IB, Szabó D, Turcsán B, Bognár Z, Kubinyi E. Sleep-spindles as a marker of attention and intelligence in dogs. Neuroimage 2024; 303:120916. [PMID: 39505225 DOI: 10.1016/j.neuroimage.2024.120916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/24/2024] [Accepted: 11/04/2024] [Indexed: 11/08/2024] Open
Abstract
The sleep spindle-generating thalamo-cortical circuitry supports attention capacity in awake humans and animals, but using sleep spindles to predict differences in attention has not been tried in either. Of the more commonly examined cognitive correlates of spindle occurrence and amplitude, post-sleep recall, and general intelligence, only post-sleep recall had been studied in dogs, rats and mice. Here, we examined a sample of companion dogs (N = 58) for whom polysomnographic recordings and several cognitive tests were performed on two occasions each, with a three-month break in-between. Five of the tests were used to extract a factor analogous to human g (general mental ability). A sixth test in the battery measured sustained attention. Both attention and g-factor scores were linked to higher slow spindle occurrence and absolute sigma power detected in polysomnographic recordings over the central electrode. These effects persisted across measurement occasions. Higher intrinsic spindle frequency was, in turn, linked to lower g-factor scores but displayed no relationship with attention scores. The overlap in localization and direction for the effects of slow spindle density (spindles/minute) and sigma power supports that they tap into the same underlying cognition-relevant aspects of spindling. Given earlier large sample and meta-analysis validations of sigma power as a reliable predictor of cognitive performance in humans, we thus conclude that the currently handled method for quantifying spindle density in dogs indeed measures cognition-relevant spindle activity by virtue of its agreement with the sigma power alternative.
Collapse
Affiliation(s)
- Ivaylo Borislavov Iotchev
- Department of Ethology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/c, Budapest 1117, Hungary.
| | - Dóra Szabó
- Department of Ethology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/c, Budapest 1117, Hungary
| | - Borbála Turcsán
- Department of Ethology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/c, Budapest 1117, Hungary; MTA-ELTE, Lendület "Momentum" Companion Animal Research Group, Budapest 1117, Hungary
| | - Zsófia Bognár
- Department of Ethology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/c, Budapest 1117, Hungary; MTA-ELTE, Lendület "Momentum" Companion Animal Research Group, Budapest 1117, Hungary
| | - Eniko Kubinyi
- Department of Ethology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/c, Budapest 1117, Hungary; MTA-ELTE, Lendület "Momentum" Companion Animal Research Group, Budapest 1117, Hungary; ELTE NAP Canine Brain Research Group, Budapest, Hungary
| |
Collapse
|
2
|
Spruyt K. Neurocognitive Effects of Sleep Disruption in Children and Adolescents. Psychiatr Clin North Am 2024; 47:27-45. [PMID: 38302211 DOI: 10.1016/j.psc.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
A main childhood task is learning. In this task, the role of sleep is increasingly demonstrated. Although most literature examining this role focuses on preadolescence and middle adolescence, some studies apply napping designs in preschoolers. Studies overall conclude that without proper sleep a child's cognitive abilities suffer, but questions on how and to what extent linger. Observational studies show the hazards of potential confounders such as an individual's resilience to poor sleep as well as developmental risk factors (eg, disorders, stressors). A better understanding of cognitive sleep neuroscience may have a big impact on pediatric sleep research and clinical applications.
Collapse
Affiliation(s)
- Karen Spruyt
- Université Paris Cité, INSERM - NeuroDiderot, Paris, France.
| |
Collapse
|
3
|
Iotchev IB, Bognár Z, Tóth K, Reicher V, Kis A, Kubinyi E. Sleep-physiological correlates of brachycephaly in dogs. Brain Struct Funct 2023; 228:2125-2136. [PMID: 37742302 PMCID: PMC10587206 DOI: 10.1007/s00429-023-02706-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/31/2023] [Indexed: 09/26/2023]
Abstract
The shape of the cranium is one of the most notable physical changes induced in domestic dogs through selective breeding and is measured using the cephalic index (CI). High CI (a ratio of skull width to skull length > 60) is characterized by a short muzzle and flat face and is referred to as brachycephaly. Brachycephalic dogs display some potentially harmful changes in neuroanatomy, and there are implications for differences in behavior, as well. The path from anatomy to cognition, however, has not been charted in its entirety. Here, we report that sleep-physiological markers of white-matter loss (high delta power, low frontal spindle frequency, i.e., spindle waves/s), along with a spectral profile for REM (low beta, high delta) associated with low intelligence in humans, are each linked to higher CI values in the dog. Additionally, brachycephalic subjects spent more time sleeping, suggesting that the sleep apnea these breeds usually suffer from increases daytime sleepiness. Within sleep, more time was spent in the REM sleep stage than in non-REM, while REM duration was correlated positively with the number of REM episodes across dogs. It is currently not clear if the patterns of sleep and sleep-stage duration are mainly caused by sleep-impairing troubles in breathing and thermoregulation, present a juvenile-like sleeping profile, or are caused by neuro-psychological conditions secondary to the effects of brachycephaly, e.g., frequent REM episodes are known to appear in human patients with depression. While future studies should more directly address the interplay of anatomy, physiology, and behavior within a single experiment, this represents the first description of how the dynamics of the canine brain covary with CI, as measured in resting companion dogs using a non-invasive sleep EEG methodology. The observations suggest that the neuroanatomical changes accompanying brachycephaly alter neural systems in a way that can be captured in the sleep EEG, thus supporting the utility of the latter in the study of canine brain health and function.
Collapse
Affiliation(s)
| | - Zsófia Bognár
- Department of Ethology, Eötvös Loránd University, Budapest, Hungary
- Doctoral School of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Katinka Tóth
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Vivien Reicher
- Doctoral School of Biology, Eötvös Loránd University, Budapest, Hungary
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- Developmental and Translational Neuroscience Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Anna Kis
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- ELTE-ELKH NAP Comparative Ethology Research Group, Budapest, Hungary
| | - Enikő Kubinyi
- Department of Ethology, Eötvös Loránd University, Budapest, Hungary
- MTA-ELTE Lendület "Momentum" Companion Animal Research Group, Budapest, Hungary
- ELTE NAP Canine Brain Research Group, Budapest, Hungary
| |
Collapse
|
4
|
Kurz EM, Conzelmann A, Barth GM, Renner TJ, Zinke K, Born J. How do children with autism spectrum disorder form gist memory during sleep? A study of slow oscillation-spindle coupling. Sleep 2021; 44:zsaa290. [PMID: 33367905 PMCID: PMC8193554 DOI: 10.1093/sleep/zsaa290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Sleep is assumed to support memory through an active systems consolidation process that does not only strengthen newly encoded representations but also facilitates the formation of more abstract gist memories. Studies in humans and rodents indicate a key role of the precise temporal coupling of sleep slow oscillations (SO) and spindles in this process. The present study aimed at bolstering these findings in typically developing (TD) children, and at dissecting particularities in SO-spindle coupling underlying signs of enhanced gist memory formation during sleep found in a foregoing study in children with autism spectrum disorder (ASD) without intellectual impairment. Sleep data from 19 boys with ASD and 20 TD boys (9-12 years) were analyzed. Children performed a picture-recognition task and the Deese-Roediger-McDermott (DRM) task before nocturnal sleep (encoding) and in the next morning (retrieval). Sleep-dependent benefits for visual-recognition memory were comparable between groups but were greater for gist abstraction (recall of DRM critical lure words) in ASD than TD children. Both groups showed a closely comparable SO-spindle coupling, with fast spindle activity nesting in SO-upstates, suggesting that a key mechanism of memory processing during sleep is fully functioning already at childhood. Picture-recognition at retrieval after sleep was positively correlated to frontocortical SO-fast-spindle coupling in TD children, and less in ASD children. Critical lure recall did not correlate with SO-spindle coupling in TD children but showed a negative correlation (r = -.64, p = .003) with parietal SO-fast-spindle coupling in ASD children, suggesting other mechanisms specifically conveying gist abstraction, that may even compete with SO-spindle coupling.
Collapse
Affiliation(s)
- Eva-Maria Kurz
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Psychiatry and Psychotherapy, Tübingen, Germany
- Graduate Training Centre of Neuroscience, International Max Planck Research School, University of Tübingen, Tübingen, Germany
| | - Annette Conzelmann
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Psychiatry and Psychotherapy, Tübingen, Germany
- PFH – Private University of Applied Sciences, Department of Psychology (Clinical Psychology II), Göttingen, Germany
| | - Gottfried Maria Barth
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Psychiatry and Psychotherapy, Tübingen, Germany
| | - Tobias J Renner
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Psychiatry and Psychotherapy, Tübingen, Germany
| | - Katharina Zinke
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Institute for Diabetes Research & Metabolic Diseases of the Helmholtz Center Munich at the University Tübingen (IDM), Tübingen, Germany
| |
Collapse
|
5
|
Sulkamo S, Hagström K, Huupponen E, Isokangas S, Lapinlampi AM, Alakuijala A, Saarenpää-Heikkilä O, Himanen SL. Sleep Spindle Features and Neurobehavioral Performance in Healthy School-Aged Children. J Clin Neurophysiol 2021; 38:149-155. [PMID: 31800466 DOI: 10.1097/wnp.0000000000000655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
PURPOSE In adults, central fast-frequency sleep spindles are involved in learning and memory functions. The density of local spindles is higher than global spindles, emphasizing the importance of local plastic neural processes. In children, findings on the association of spindles with cognition are more variable. Hence, we aim to study whether the local spindles are also important for neurobehavioral performance in children. METHODS We studied the correlations between local (occurring in only one channel: Fp1, Fp2, C3, or C4), bilateral, and diffuse (occurring in all four channels) spindles and neurobehavioral performance in 17 healthy children (median age 9.6 years). RESULTS Local spindles were not as frequent as bilateral spindles (P-values < 0.05). Central spindle types had significant correlations with sensorimotor and language functions (e.g., the density of bilateral central spindles correlated positively with the Object Assembly in NEPSY, r = 0.490). Interestingly, frontopolar spindles correlated with behavior (e.g., the more bilateral the frontopolar spindles, the less hyperactive the children, r = -0.618). CONCLUSIONS In children, the local spindles, but also more widespread central spindles, seem to be involved in the cognitive processes. Based on our findings, it is important that ageadjusted frequency limits are used in studies evaluating the frequencies of spindles in children.
Collapse
Affiliation(s)
- Saramia Sulkamo
- Department of Clinical Neurophysiology, Medical Imaging Centre and Hospital Pharmacy, Tampere University Hospital, Tampere, Finland
- Department of Clinical Neurophysiology, HUS Medical Imaging Center, Helsinki University Hospital, Helsinki, Finland
| | - Kati Hagström
- Faculty of Social Sciences, Tampere University, Tampere, Finland
| | - Eero Huupponen
- Department of Clinical Neurophysiology, Medical Imaging Centre and Hospital Pharmacy, Tampere University Hospital, Tampere, Finland
| | - Sirkku Isokangas
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Anna-Maria Lapinlampi
- Department of Clinical Neurophysiology, Medical Imaging Centre and Hospital Pharmacy, Tampere University Hospital, Tampere, Finland
| | - Anniina Alakuijala
- Department of Clinical Neurophysiology, HUS Medical Imaging Center, Helsinki University Hospital, Helsinki, Finland
- Department of Neurological Sciences, University of Helsinki, Helsinki, Finland ; and
| | | | - Sari-Leena Himanen
- Department of Clinical Neurophysiology, Medical Imaging Centre and Hospital Pharmacy, Tampere University Hospital, Tampere, Finland
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
6
|
Durrant SJ, Johnson JM. Sleep’s Role in Schema Learning and Creative Insights. CURRENT SLEEP MEDICINE REPORTS 2021. [DOI: 10.1007/s40675-021-00202-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Abstract
Purpose of Review
A recent resurgence of interest in schema theory has influenced research on sleep-dependent memory consolidation and led to a new understanding of how schemata might be activated during sleep and play a role in the reorganisation of memories. This review is aimed at synthesising recent findings into a coherent narrative and draw overall conclusions.
Recent Findings
Rapid consolidation of schematic memories has been shown to benefit from an interval containing sleep. These memories have shown reduced reliance on the hippocampus following consolidation in both humans and rodents. Using a variety of methodologies, notably including the DRM paradigm, it has been shown that activation of a schema can increase the rate of false memory as a result of activation of semantic associates during slow wave sleep (SWS). Memories making use of a schema have shown increased activity in the medial prefrontal cortex, which may reflect both the schematic activation itself and a cognitive control component selecting an appropriate schema to use. SWS seems to be involved in assimilation of new memories within existing semantic frameworks and in making memories more explicit, while REM sleep may be more associated with creating entirely novel associations while keeping memories implicit.
Summary
Sleep plays an important role in schematic memory consolidation, with more rapid consolidation, reduced hippocampal involvement, and increased prefrontal involvement as the key characteristics. Both SWS and REM sleep may have a role to play.
Collapse
|
7
|
Abstract
A main childhood task is learning. In this task, the role of sleep is increasingly demonstrated. Although most literature examining this role focuses on preadolescence and middle adolescence, some studies apply napping designs in preschoolers. Studies overall conclude that without proper sleep a child's cognitive abilities suffer, but questions on how and to what extent linger. Observational studies show the hazards of potential confounders such as an individual's resilience to poor sleep as well as developmental risk factors (eg, disorders, stressors). A better understanding of cognitive sleep neuroscience may have a big impact on pediatric sleep research and clinical applications.
Collapse
Affiliation(s)
- Karen Spruyt
- INSERM, University Claude Bernard, School of Medicine, Lyon, France.
| |
Collapse
|
8
|
Iotchev IB, Reicher V, Kovács E, Kovács T, Kis A, Gácsi M, Kubinyi E. Averaging sleep spindle occurrence in dogs predicts learning performance better than single measures. Sci Rep 2020; 10:22461. [PMID: 33384457 PMCID: PMC7775433 DOI: 10.1038/s41598-020-80417-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 12/17/2020] [Indexed: 11/12/2022] Open
Abstract
Although a positive link between sleep spindle occurrence and measures of post-sleep recall (learning success) is often reported for humans and replicated across species, the test–retest reliability of the effect is sometimes questioned. The largest to date study could not confirm the association, however methods for automatic spindle detection diverge in their estimates and vary between studies. Here we report that in dogs using the same detection method across different learning tasks is associated with observing a positive association between sleep spindle density (spindles/minute) and learning success. Our results suggest that reducing measurement error by averaging across measurements of density and learning can increase the visibility of this effect, implying that trait density (estimated through averaged occurrence) is a more reliable predictor of cognitive performance than estimates based on single measures.
Collapse
Affiliation(s)
| | - Vivien Reicher
- Department of Ethology, ELTE Eötvös Loránd University, 1117, Budapest, Hungary.,MTA-ELTE Comparative Ethology Research Group, 1117, Budapest, Hungary
| | - Enikő Kovács
- Department of Ethology, ELTE Eötvös Loránd University, 1117, Budapest, Hungary.,Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, 1117, Budapest, Hungary
| | - Tímea Kovács
- Department of Ethology, ELTE Eötvös Loránd University, 1117, Budapest, Hungary
| | - Anna Kis
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, 1117, Budapest, Hungary
| | - Márta Gácsi
- Department of Ethology, ELTE Eötvös Loránd University, 1117, Budapest, Hungary.,MTA-ELTE Comparative Ethology Research Group, 1117, Budapest, Hungary
| | - Enikő Kubinyi
- Department of Ethology, ELTE Eötvös Loránd University, 1117, Budapest, Hungary
| |
Collapse
|
9
|
|
10
|
Gorgoni M, D'Atri A, Scarpelli S, Reda F, De Gennaro L. Sleep electroencephalography and brain maturation: developmental trajectories and the relation with cognitive functioning. Sleep Med 2020; 66:33-50. [PMID: 31786427 DOI: 10.1016/j.sleep.2019.06.025] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 02/06/2023]
Affiliation(s)
- M Gorgoni
- Department of Psychology, University of Rome "Sapienza", Rome, Italy
| | - A D'Atri
- Department of Psychology, University of Rome "Sapienza", Rome, Italy
| | - S Scarpelli
- Department of Psychology, University of Rome "Sapienza", Rome, Italy
| | - F Reda
- Department of Psychology, University of Rome "Sapienza", Rome, Italy
| | - L De Gennaro
- Department of Psychology, University of Rome "Sapienza", Rome, Italy; IRCCS Santa Lucia Foundation, Rome, Italy.
| |
Collapse
|