1
|
Kukushkin NV, Carney RE, Tabassum T, Carew TJ. The massed-spaced learning effect in non-neural human cells. Nat Commun 2024; 15:9635. [PMID: 39511210 PMCID: PMC11544106 DOI: 10.1038/s41467-024-53922-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024] Open
Abstract
The massed-spaced effect is a hallmark feature of memory formation. We now demonstrate this effect in two separate non-neural, immortalized cell lines stably expressing a short-lived luciferase reporter controlled by a CREB-dependent promoter. We emulate training using repeated pulses of forskolin and/or phorbol ester, and, as a proxy for memory, measure luciferase expression at various points after training. Four spaced pulses of either agonist elicit stronger and more sustained luciferase expression than a single "massed" pulse. Spaced pulses also result in stronger and more sustained activation of molecular factors critical for memory formation, ERK and CREB, and inhibition of ERK or CREB blocks the massed-spaced effect. Our findings show that canonical features of memory do not necessarily depend on neural circuitry, but can be embedded in the dynamics of signaling cascades conserved across different cell types.
Collapse
Affiliation(s)
- N V Kukushkin
- Liberal Studies, New York University, New York, NY, 10003, USA.
- Center for Neural Science, New York University, New York, NY, 10003, USA.
| | - R E Carney
- Center for Neural Science, New York University, New York, NY, 10003, USA
| | - T Tabassum
- Center for Neural Science, New York University, New York, NY, 10003, USA
| | - T J Carew
- Center for Neural Science, New York University, New York, NY, 10003, USA.
| |
Collapse
|
2
|
Precise timing of ERK phosphorylation/dephosphorylation determines the outcome of trial repetition during long-term memory formation. Proc Natl Acad Sci U S A 2022; 119:e2210478119. [PMID: 36161885 DOI: 10.1073/pnas.2210478119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two-trial learning in Aplysia reveals nonlinear interactions between training trials: A single trial has no effect, but two precisely spaced trials induce long-term memory. Extracellularly regulated kinase (ERK) activity is essential for intertrial interactions, but the mechanism remains unresolved. A combination of immunochemical and optogenetic tools reveals unexpected complexity of ERK signaling during the induction of long-term synaptic facilitation by two spaced pulses of serotonin (5-hydroxytryptamine, 5HT). Specifically, dual ERK phosphorylation at its activating TxY motif is accompanied by dephosphorylation at the pT position, leading to a buildup of inactive, singly phosphorylated pY-ERK. Phosphorylation and dephosphorylation occur concurrently but scale differently with varying 5HT concentrations, predicting that mixed two-trial protocols involving both "strong" and "weak" 5HT pulses should be sensitive to the precise order and timing of trials. Indeed, long-term synaptic facilitation is induced only when weak pulses precede strong, not vice versa. This may represent a physiological mechanism to prioritize memory of escalating threats.
Collapse
|
3
|
Costanzo F, Alfieri P, Caciolo C, Bergonzini P, Perrino F, Zampino G, Leoni C, Menghini D, Digilio MC, Tartaglia M, Vicari S, Carlesimo GA. Recognition Memory in Noonan Syndrome. Brain Sci 2021; 11:169. [PMID: 33572736 PMCID: PMC7910957 DOI: 10.3390/brainsci11020169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/23/2021] [Accepted: 01/24/2021] [Indexed: 11/17/2022] Open
Abstract
Noonan syndrome (NS) and the clinically related NS with multiple lentiginous (NMLS) are genetic conditions characterized by upregulated RAS mitogen activated protein kinase (RAS-MAPK) signaling, which is known to impact hippocampus-dependent memory formation and consolidation. The aim of the present study was to provide a detailed characterization of the recognition memory of children and adolescents with NS/NMLS. We compared 18 children and adolescents affected by NS and NMLS with 22 typically developing (TD) children, matched for chronological age and non-verbal Intelligence Quotient (IQ), in two different experimental paradigms, to assess familiarity and recollection: a Process Dissociation Procedure (PDP) and a Task Dissociation Procedure (TDP). Differences in verbal skills between groups, as well as chronological age, were considered in the analysis. Participants with NS and NSML showed reduced recollection in the PDP and impaired associative recognition in the TDP, compared to controls. These results indicate poor recollection in the recognition memory of participants with NS and NSML, which cannot be explained by intellectual disability or language deficits. These results provide evidence of the role of mutations impacting RAS-MAPK signaling in the disruption of hippocampal memory formation and consolidation.
Collapse
Affiliation(s)
- Floriana Costanzo
- Child and Adolescent Psychiatric Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (P.A.); (C.C.); (P.B.); (D.M.); (S.V.)
| | - Paolo Alfieri
- Child and Adolescent Psychiatric Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (P.A.); (C.C.); (P.B.); (D.M.); (S.V.)
| | - Cristina Caciolo
- Child and Adolescent Psychiatric Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (P.A.); (C.C.); (P.B.); (D.M.); (S.V.)
| | - Paola Bergonzini
- Child and Adolescent Psychiatric Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (P.A.); (C.C.); (P.B.); (D.M.); (S.V.)
| | - Francesca Perrino
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health, Institute of Pediatrics, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Catholic University of the Sacred Heart, 00168 Rome, Italy; (F.P.); (G.Z.); (C.L.)
- Rehabilitation Center UILMD Lazio Onlus, 00167 Rome, Italy
| | - Giuseppe Zampino
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health, Institute of Pediatrics, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Catholic University of the Sacred Heart, 00168 Rome, Italy; (F.P.); (G.Z.); (C.L.)
| | - Chiara Leoni
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health, Institute of Pediatrics, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Catholic University of the Sacred Heart, 00168 Rome, Italy; (F.P.); (G.Z.); (C.L.)
| | - Deny Menghini
- Child and Adolescent Psychiatric Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (P.A.); (C.C.); (P.B.); (D.M.); (S.V.)
| | - Maria Cristina Digilio
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.C.D.); (M.T.)
- Medical Genetics, Academic Department of Pediatrics, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.C.D.); (M.T.)
| | - Stefano Vicari
- Child and Adolescent Psychiatric Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (P.A.); (C.C.); (P.B.); (D.M.); (S.V.)
- Department of Life Science and Public Health, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Giovanni Augusto Carlesimo
- Laboratory of Clinical and Behavioral Neurology, Santa Lucia Foundation, 00179 Rome, Italy;
- Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy
| |
Collapse
|