1
|
Wu R, Song Y, Wu S, Chen Y. Promising therapeutic approaches of utrophin replacing dystrophin in the treatment of Duchenne muscular dystrophy. FUNDAMENTAL RESEARCH 2022; 2:885-893. [PMID: 38933385 PMCID: PMC11197810 DOI: 10.1016/j.fmre.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/01/2022] [Accepted: 07/11/2022] [Indexed: 10/17/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a serious genetic neuromuscular rare disease that is prevalent and caused by the mutation/deletion of the X-linked DMD gene that encodes dystrophin. Utrophin is a dystrophin homologous protein on human chromosome 6. Dystrophin and utrophin are highly homologous. They can recruit many dystrophin-glycoprotein complex (DGC)-related proteins and co-localize at the sarcolemma in the early stage of human embryonic development. Moreover, utrophin is overexpressed naturally at the mature myofiber sarcolemma in DMD patients. Therefore, utrophin is considered the most promising homologous protein to replace dystrophin. This review summarizes various modulating drugs and gene therapy approaches for utrophin replacement. As a universal method to treat DMD disease, utrophin has a promising therapeutic prospect and deserves further investigation.
Collapse
Affiliation(s)
- Ruo Wu
- State Key Laboratory of Primate Biomedical Research & Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Yafeng Song
- Institute of Sport and Health Science, Beijing Sport University, No.48 Xinxi Road, Haidian District, Beijing 100084, China
| | - Shiwen Wu
- Department of Neurology, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Yongchang Chen
- State Key Laboratory of Primate Biomedical Research & Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| |
Collapse
|
2
|
Soluble Heparin Binding Epidermal Growth Factor-Like Growth Factor Is a Regulator of GALGT2 Expression and GALGT2-Dependent Muscle and Neuromuscular Phenotypes. Mol Cell Biol 2019; 39:MCB.00140-19. [PMID: 31036568 DOI: 10.1128/mcb.00140-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 04/26/2019] [Indexed: 02/08/2023] Open
Abstract
GALGT2 (also B4GALNT2) encodes a glycosyltransferase that is normally confined to the neuromuscular and myotendinous junction in adult skeletal muscle. GALGT2 overexpression in muscle can inhibit muscular dystrophy in mouse models of the disease by inducing the overexpression of surrogate muscle proteins, including utrophin, agrin, laminins, and integrins. Despite its well-documented biological properties, little is known about the endogenous regulation of muscle GALGT2 expression. Here, we demonstrate that epidermal growth factor receptor (EGFR) ligands can activate the human GALGT2 promoter. Overexpression of one such ligand, soluble heparin-binding EGF-like growth factor (sHB-EGF), also stimulated mouse muscle Galgt2 gene expression and expression of GALGT2-inducible surrogate muscle genes. Deletion analysis of the GALGT2 promoter identified a 45-bp region containing a TFAP4-binding site that was required for sHB-EGF activation. sHB-EGF increased TFAP4 binding to this site in muscle cells and increased endogenous Tfap4 gene expression. sHB-EGF also increased muscle EGFR protein expression and activated EGFR-Akt signaling. sHB-EGF expression was concentrated at the neuromuscular junction, and Hbegf deletion reduced Galgt2-dependent synaptic glycosylation. Hbegf deletion also mimicked Galgt2-dependent neuromuscular and muscular dystrophy phenotypes. These data demonstrate that sHB-EGF is an endogenous regulator of muscle Galgt2 gene expression and can mimic Galgt2-dependent muscle phenotypes.
Collapse
|
3
|
Amirouche A, Tadesse H, Lunde JA, Bélanger G, Côté J, Jasmin BJ. Activation of p38 signaling increases utrophin A expression in skeletal muscle via the RNA-binding protein KSRP and inhibition of AU-rich element-mediated mRNA decay: implications for novel DMD therapeutics. Hum Mol Genet 2013; 22:3093-111. [PMID: 23575223 DOI: 10.1093/hmg/ddt165] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Several therapeutic approaches are currently being developed for Duchenne muscular dystrophy (DMD) including upregulating the levels of endogenous utrophin A in dystrophic fibers. Here, we examined the role of post-transcriptional mechanisms in controlling utrophin A expression in skeletal muscle. We show that activation of p38 leads to an increase in utrophin A independently of a transcriptional induction. Rather, p38 controls the levels of utrophin A mRNA by extending the half-life of transcripts via AU-rich elements (AREs). This mechanism critically depends on a decrease in the functional availability of KSRP, an RNA-binding protein known to promote decay of ARE-containing transcripts. In vitro and in vivo binding studies revealed that KSRP interacts with specific AREs located within the utrophin A 3' UTR. Electroporation experiments to knockdown KSRP led to an increase in utrophin A in wild-type and mdx mouse muscles. In pre-clinical studies, treatment of mdx mice with heparin, an activator of p38, causes a pronounced increase in utrophin A in diaphragm muscle fibers. Together, these studies identify a pathway that culminates in the post-transcriptional regulation of utrophin A through increases in mRNA stability. Furthermore, our results constitute proof-of-principle showing that pharmacological activation of p38 may prove beneficial as a novel therapeutic approach for DMD.
Collapse
Affiliation(s)
- Adel Amirouche
- Faculty of Medicine, Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, University of Ottawa, ON, Canada K1H 8M5
| | | | | | | | | | | |
Collapse
|
4
|
Moorwood C, Khurana TS. Duchenne muscular dystrophy drug discovery - the application of utrophin promoter activation screening. Expert Opin Drug Discov 2013; 8:569-81. [PMID: 23473647 DOI: 10.1517/17460441.2013.777040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Duchenne muscular dystrophy (DMD) is a devastating genetic muscle wasting disease caused by mutations in the DMD gene that in turn lead to an absence of dystrophin. Currently, there is no definitive therapy for DMD. Gene- and cell-based therapies designed to replace dystrophin have met some degree of success, as have strategies that seek to improve the dystrophic pathology independent of dystrophin. AREAS COVERED In this review the authors focus on utrophin promoter activation-based strategies and their implications on potential therapeutics for DMD. These strategies in common are designed to identify drugs/small molecules that can activate the utrophin promoter and would allow the functional substitution of dystrophin by upregulating utrophin expression in dystrophic muscle. The authors provide an overview of utrophin biology with a focus on regulation of the utrophin promoter and discuss current attempts in identifying utrophin promoter-activating molecules using high-throughput screening (HTS). EXPERT OPINION The characterisation of utrophin promoter regulatory mechanisms coupled with advances in HTS have allowed researchers to undertake screens and identify a number of promising lead compounds that may prove useful for DMD. In principle, these pharmacological compounds offer significant advantages from a translational viewpoint for developing DMD therapeutics.
Collapse
Affiliation(s)
- Catherine Moorwood
- University of Pennsylvania School of Dental Medicine, Department of Anatomy & Cell Biology, 438 Levy Research Building, 240 S. 40th Street, Philadelphia, PA 19104, USA
| | | |
Collapse
|
5
|
Onori A, Pisani C, Strimpakos G, Monaco L, Mattei E, Passananti C, Corbi N. UtroUp is a novel six zinc finger artificial transcription factor that recognises 18 base pairs of the utrophin promoter and efficiently drives utrophin upregulation. BMC Mol Biol 2013; 14:3. [PMID: 23363418 PMCID: PMC3576267 DOI: 10.1186/1471-2199-14-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 12/12/2012] [Indexed: 02/08/2023] Open
Abstract
Background Duchenne muscular dystrophy (DMD) is the most common X-linked muscle degenerative disease and it is due to the absence of the cytoskeletal protein dystrophin. Currently there is no effective treatment for DMD. Among the different strategies for achieving a functional recovery of the dystrophic muscle, the upregulation of the dystrophin-related gene utrophin is becoming more and more feasible. Results We have previously shown that the zinc finger-based artificial transcriptional factor “Jazz” corrects the dystrophic pathology in mdx mice by upregulating utrophin gene expression. Here we describe a novel artificial transcription factor, named “UtroUp”, engineered to further improve the DNA-binding specificity. UtroUp has been designed to recognise an extended DNA target sequence on both the human and mouse utrophin gene promoters. The UtroUp DNA-binding domain contains six zinc finger motifs in tandem, which is able to recognise an 18-base-pair DNA target sequence that statistically is present only once in the human genome. To achieve a higher transcriptional activation, we coupled the UtroUp DNA-binding domain with the innovative transcriptional activation domain, which was derived from the multivalent adaptor protein Che-1/AATF. We show that the artificial transcription factor UtroUp, due to its six zinc finger tandem motif, possesses a low dissociation constant that is consistent with a strong affinity/specificity toward its DNA-binding site. When expressed in mammalian cell lines, UtroUp promotes utrophin transcription and efficiently accesses active chromatin promoting accumulation of the acetylated form of histone H3 in the utrophin promoter locus. Conclusions This novel artificial molecule may represent an improved platform for the development of future applications in DMD treatment.
Collapse
Affiliation(s)
- Annalisa Onori
- Institute of Molecular Biology and Pathology CNR, Department of Molecular Medicine, University Sapienza, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
6
|
[The regulation of UTROPHIN expression by EN1]. YI CHUAN = HEREDITAS 2011; 33:347-52. [PMID: 21482524 DOI: 10.3724/sp.j.1005.2011.00347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
To investigate possible factors up-regulating the expression of UTROPHIN, potential regulatory elements in the promoter of the human UTROPHIN was predicted by P-match software and verified by EMSA and ChIP. The mechanism of EN1 regulation of the human UTROPHIN expression was evaluated by RNA interference and real-time PCR analyses. Two potential EN1 binding sites in UTROPHIN promoter region were predicted by P-Match software but only the second site was verified to interact directly with EN1 by EMSA and ChIP. The results from RNA interference and real-time PCR showed that the mRNA level of UTROPHIN increased in HeLa cells after EN1 was knockdowned by siRNA. It indicated that EN1 might be a negative regulatory factor for UTROPHIN. Our study suggested that UTROPHIN might be a new target for DMD therapy.
Collapse
|
7
|
Miura P, Coriati A, Bélanger G, De Repentigny Y, Lee J, Kothary R, Holcik M, Jasmin BJ. The utrophin A 5'-UTR drives cap-independent translation exclusively in skeletal muscles of transgenic mice and interacts with eEF1A2. Hum Mol Genet 2010; 19:1211-20. [PMID: 20053670 DOI: 10.1093/hmg/ddp591] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The molecular mechanisms regulating expression of utrophin A are of therapeutic interest since upregulating its expression at the sarcolemma can compensate for the lack of dystrophin in animal models of Duchenne Muscular Dystrophy (DMD). The 5'-UTR of utrophin A has been previously shown to drive cap-independent internal ribosome entry site (IRES)-mediated translation in response to muscle regeneration and glucocorticoid treatment. To determine whether the utrophin A IRES displays tissue specific activity, we generated transgenic mice harboring control (CMV/betaGAL/CAT) or utrophin A 5'-UTR (CMV/betaGAL/UtrA/CAT) bicistronic reporter transgenes. Examination of multiple tissues from two CMV/betaGAL/UtrA/CAT lines revealed that the utrophin A 5'-UTR drives cap-independent translation of the reporter gene exclusively in skeletal muscles and no other examined tissues. This expression pattern suggested that skeletal muscle-specific factors are involved in IRES-mediated translation of utrophin A. We performed RNA-affinity chromatography experiments combined with mass spectrometry to identify trans-factors that bind the utrophin A 5'-UTR and identified eukaryotic elongation factor 1A2 (eEF1A2). UV-crosslinking experiments confirmed the specificity of this interaction. Regions of the utrophin A 5'-UTR that bound eEF1A2 also mediated cap-independent translation in C2C12 muscle cells. Cultured cells lacking eEF1A2 had reduced IRES activity compared with cells overexpressing eEF1A2. Together, these results suggest an important role for eEF1A2 in driving cap-independent translation of utrophin A in skeletal muscle. The trans-factors and signaling pathways driving skeletal-muscle specific IRES-mediated translation of utrophin A could provide unique targets for developing pharmacological-based DMD therapies.
Collapse
Affiliation(s)
- P Miura
- Department of Cellular & Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Miura P, Chakkalakal JV, Boudreault L, Bélanger G, Hébert RL, Renaud JM, Jasmin BJ. Pharmacological activation of PPARbeta/delta stimulates utrophin A expression in skeletal muscle fibers and restores sarcolemmal integrity in mature mdx mice. Hum Mol Genet 2009; 18:4640-9. [PMID: 19744959 DOI: 10.1093/hmg/ddp431] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
A therapeutic strategy to treat Duchenne muscular dystrophy (DMD) involves identifying compounds that can elevate utrophin A expression in muscle fibers of affected patients. The dystrophin homologue utrophin A can functionally substitute for dystrophin when its levels are enhanced in the mdx mouse model of DMD. Utrophin A expression in skeletal muscle is regulated by mechanisms that promote the slow myofiber program. Since activation of peroxisome proliferator-activated receptor (PPAR) beta/delta promotes the slow oxidative phenotype in skeletal muscle, we initiated studies to determine whether pharmacological activation of PPARbeta/delta provides functional benefits to the mdx mouse. GW501516, a PPARbeta/delta agonist, was found to stimulate utrophin A mRNA levels in C2C12 muscle cells through an element in the utrophin A promoter. Expression of PPARbeta/delta was greater in skeletal muscles of mdx versus wild-type mice. We treated 5-7-week-old mdx mice with GW501516 for 4 weeks. This treatment increased the percentage of muscle fibers expressing slower myosin heavy chain isoforms and stimulated utrophin A mRNA levels leading to its increased expression at the sarcolemma. Expression of alpha1-syntrophin and beta-dystroglycan was restored to the sarcolemma. Improvement of mdx sarcolemmal integrity was evidenced by decreased intracellular IgM staining and decreased in vivo Evans blue dye (EBD) uptake. GW501516 treatment also conferred protection against eccentric contraction (ECC)-induced damage of mdx skeletal muscles, as shown by a decreased contraction-induced force drop and reduction of dye uptake during ECC. These results demonstrate that pharmacological activation of PPARbeta/delta might provide functional benefits to DMD patients through enhancement of utrophin A expression.
Collapse
Affiliation(s)
- Pedro Miura
- Department of Cellular & Molecular Medicine and Center for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada K1H 8M5
| | | | | | | | | | | | | |
Collapse
|
9
|
Desantis A, Onori A, Di Certo MG, Mattei E, Fanciulli M, Passananti C, Corbi N. Novel activation domain derived from Che-1 cofactor coupled with the artificial protein Jazz drives utrophin upregulation. Neuromuscul Disord 2009; 19:158-62. [PMID: 19162479 DOI: 10.1016/j.nmd.2008.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Revised: 10/31/2008] [Accepted: 11/10/2008] [Indexed: 10/21/2022]
Abstract
Our aim is to upregulate the expression level of the dystrophin related gene utrophin in Duchenne muscular dystrophy, thus complementing the lack of dystrophin functions. To this end, we have engineered synthetic zinc finger based transcription factors. We have previously shown that the artificial three-zinc finger protein named Jazz fused with the Vp16 activation domain, is able to bind utrophin promoter A and to increase the endogenous level of utrophin in transgenic mice. Here, we report on an innovative artificial protein, named CJ7, that consists of Jazz DNA binding domain fused to a novel activation domain derived from the regulatory multivalent adaptor protein Che-1/AATF. This transcriptional activation domain is 100 amino acids in size and it is very powerful as compared to the Vp16 activation domain. We show that CJ7 protein efficiently promotes transcription and accumulation of the acetylated form of histone H3 on the genomic utrophin promoter locus.
Collapse
Affiliation(s)
- Agata Desantis
- Istituto di Biologia e Patologia Molecolari, CNR, c/o Regina Elena Cancer Institute, Via delle Messi d'Oro 156, 00158 Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
10
|
Odom GL, Gregorevic P, Allen JM, Finn E, Chamberlain JS. Microutrophin delivery through rAAV6 increases lifespan and improves muscle function in dystrophic dystrophin/utrophin-deficient mice. Mol Ther 2008; 16:1539-45. [PMID: 18665159 DOI: 10.1038/mt.2008.149] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Duchenne muscular dystrophy (DMD), the most prevalent lethal genetic disorder in children, is caused by mutations in the 2.2-MB dystrophin gene. Absence of dystrophin and the dystrophin-glycoprotein complex (DGC) from the sarcolemma leads to severe muscle wasting and eventual respiratory and/or cardiac failure. There is presently no effective therapy for DMD. Several lines of evidence have suggested that methods to increase expression of utrophin, a dystrophin paralog, show promise as a treatment for DMD. Adeno-associated viral (AAV) vectors are a promising vehicle for gene transfer to muscle, but microutrophin transgenes small enough to be carried by AAV have not been tested for function. In this study, we intravenously administered recombinant AAV (rAAV2/6) harboring a murine codon-optimized microutrophin (DeltaR4-R21/DeltaCT) transgene to adult dystrophin(-/-)/utrophin(-/-) (mdx:utrn(-/-)) double-knockout mice. Five-month-old mice demonstrated localization of microutrophin to the sarcolemma in all the muscles tested. These muscles displayed restoration of the DGC, increased myofiber size, and a considerable improvement in physiological performance when compared with untreated mdx:utrn(-/-) mice. Overall, microutrophin delivery alleviated most of the pathophysiological abnormalities associated with muscular dystrophy in the mdx:utrn(-/-) mouse model. This approach may hold promise as a treatment option for DMD because it avoids the potential immune responses that are associated with the delivery of exogenous dystrophin.
Collapse
Affiliation(s)
- Guy L Odom
- Department of Neurology, Senator Paul D Wellstone Muscular Dystrophy Cooperative Research Center, University of Washington School of Medicine, Seattle, Washington, USA
| | | | | | | | | |
Collapse
|
11
|
Chakkalakal JV, Miura P, Bélanger G, Michel RN, Jasmin BJ. Modulation of utrophin A mRNA stability in fast versus slow muscles via an AU-rich element and calcineurin signaling. Nucleic Acids Res 2008; 36:826-38. [PMID: 18084024 PMCID: PMC2241908 DOI: 10.1093/nar/gkm1107] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Revised: 11/19/2007] [Accepted: 11/26/2007] [Indexed: 12/12/2022] Open
Abstract
We examined the role of post-transcriptional mechanisms in controlling utrophin A mRNA expression in slow versus fast skeletal muscles. First, we determined that the half-life of utrophin A mRNA is significantly shorter in the presence of proteins isolated from fast muscles. Direct plasmid injection experiments using reporter constructs containing the full-length or truncated variants of the utrophin 3'UTR into slow soleus and fast extensor digitorum longus muscles revealed that a region of 265 nucleotides is sufficient to confer lower levels of reporter mRNA in fast muscles. Further analysis of this region uncovered a conserved AU-rich element (ARE) that suppresses expression of reporter mRNAs in cultured muscle cells. Moreover, stability of reporter mRNAs fused to the utrophin full-length 3'UTR was lower in the presence of fast muscle protein extracts. This destabilization effect seen in vivo was lost upon deletion of the conserved ARE. Finally, we observed that calcineurin signaling affects utrophin A mRNA stability through the conserved ARE. These results indicate that ARE-mediated mRNA decay is a key mechanism that regulates expression of utrophin A mRNA in slow muscle fibers. This is the first demonstration of ARE-mediated mRNA decay regulating the expression of a gene associated with the slow myogenic program.
Collapse
Affiliation(s)
- Joe V. Chakkalakal
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada K1H 8M5, Department of Chemistry and Biochemistry, Department of Exercise Science and Centre for Structural and Functional Genomics, Concordia University, The Richard J. Renaud Science Complex, Montreal, QC, Canada H4B 1R6 and Ottawa Health Research Institute, Molecular Medicine Program, Ottawa Hospital, General Campus, Ottawa, ON, Canada K1H 8L6
| | - Pedro Miura
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada K1H 8M5, Department of Chemistry and Biochemistry, Department of Exercise Science and Centre for Structural and Functional Genomics, Concordia University, The Richard J. Renaud Science Complex, Montreal, QC, Canada H4B 1R6 and Ottawa Health Research Institute, Molecular Medicine Program, Ottawa Hospital, General Campus, Ottawa, ON, Canada K1H 8L6
| | - Guy Bélanger
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada K1H 8M5, Department of Chemistry and Biochemistry, Department of Exercise Science and Centre for Structural and Functional Genomics, Concordia University, The Richard J. Renaud Science Complex, Montreal, QC, Canada H4B 1R6 and Ottawa Health Research Institute, Molecular Medicine Program, Ottawa Hospital, General Campus, Ottawa, ON, Canada K1H 8L6
| | - Robin N. Michel
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada K1H 8M5, Department of Chemistry and Biochemistry, Department of Exercise Science and Centre for Structural and Functional Genomics, Concordia University, The Richard J. Renaud Science Complex, Montreal, QC, Canada H4B 1R6 and Ottawa Health Research Institute, Molecular Medicine Program, Ottawa Hospital, General Campus, Ottawa, ON, Canada K1H 8L6
| | - Bernard J. Jasmin
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada K1H 8M5, Department of Chemistry and Biochemistry, Department of Exercise Science and Centre for Structural and Functional Genomics, Concordia University, The Richard J. Renaud Science Complex, Montreal, QC, Canada H4B 1R6 and Ottawa Health Research Institute, Molecular Medicine Program, Ottawa Hospital, General Campus, Ottawa, ON, Canada K1H 8L6
| |
Collapse
|
12
|
Mattei E, Corbi N, Di Certo MG, Strimpakos G, Severini C, Onori A, Desantis A, Libri V, Buontempo S, Floridi A, Fanciulli M, Baban D, Davies KE, Passananti C. Utrophin up-regulation by an artificial transcription factor in transgenic mice. PLoS One 2007; 2:e774. [PMID: 17712422 PMCID: PMC1942121 DOI: 10.1371/journal.pone.0000774] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Accepted: 07/23/2007] [Indexed: 12/27/2022] Open
Abstract
Duchenne Muscular Dystrophy (DMD) is a severe muscle degenerative disease, due to absence of dystrophin. There is currently no effective treatment for DMD. Our aim is to up-regulate the expression level of the dystrophin related gene utrophin in DMD, complementing in this way the lack of dystrophin functions. To this end we designed and engineered several synthetic zinc finger based transcription factors. In particular, we have previously shown that the artificial three zinc finger protein named Jazz, fused with the appropriate effector domain, is able to drive the transcription of a test gene from the utrophin promoter “A”. Here we report on the characterization of Vp16-Jazz-transgenic mice that specifically over-express the utrophin gene at the muscular level. A Chromatin Immunoprecipitation assay (ChIP) demonstrated the effective access/binding of the Jazz protein to active chromatin in mouse muscle and Vp16-Jazz was shown to be able to up-regulate endogenous utrophin gene expression by immunohistochemistry, western blot analyses and real-time PCR. To our knowledge, this is the first example of a transgenic mouse expressing an artificial gene coding for a zinc finger based transcription factor. The achievement of Vp16-Jazz transgenic mice validates the strategy of transcriptional targeting of endogenous genes and could represent an exclusive animal model for use in drug discovery and therapeutics.
Collapse
Affiliation(s)
- Elisabetta Mattei
- Istituto di Neurobiologia e Medicina Molecolare, Consiglio Nazionale delle Ricerche, European Brain Research Institute, Rome, Italy
- Italian Association for Cancer Research, Roman Oncogenomic Center, Rome, Italy
| | - Nicoletta Corbi
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Regina Elena Cancer Institute, Rome, Italy
| | - Maria Grazia Di Certo
- Istituto di Neurobiologia e Medicina Molecolare, Consiglio Nazionale delle Ricerche, European Brain Research Institute, Rome, Italy
- Department of Experimental Medicine, University of L'Aquila, L'Aquila, Italy
| | - Georgios Strimpakos
- Istituto di Neurobiologia e Medicina Molecolare, Consiglio Nazionale delle Ricerche, European Brain Research Institute, Rome, Italy
| | - Cinzia Severini
- Istituto di Neurobiologia e Medicina Molecolare, Consiglio Nazionale delle Ricerche, European Brain Research Institute, Rome, Italy
| | - Annalisa Onori
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Regina Elena Cancer Institute, Rome, Italy
| | - Agata Desantis
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Regina Elena Cancer Institute, Rome, Italy
- Department of Experimental Medicine, University of L'Aquila, L'Aquila, Italy
| | - Valentina Libri
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Regina Elena Cancer Institute, Rome, Italy
| | - Serena Buontempo
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Regina Elena Cancer Institute, Rome, Italy
| | - Aristide Floridi
- Department of Experimental Medicine, University of L'Aquila, L'Aquila, Italy
- Laboratory B, Regina Elena Cancer Institute, Rome, Italy
| | - Maurizio Fanciulli
- Italian Association for Cancer Research, Roman Oncogenomic Center, Rome, Italy
- Laboratory B, Regina Elena Cancer Institute, Rome, Italy
| | - Dilair Baban
- Department of Physiology, Anatomy and Genetics, Medical Research Council Functional Genetics Unit, University of Oxford, Oxford, United Kingdom
| | - Kay E. Davies
- Department of Physiology, Anatomy and Genetics, Medical Research Council Functional Genetics Unit, University of Oxford, Oxford, United Kingdom
| | - Claudio Passananti
- Italian Association for Cancer Research, Roman Oncogenomic Center, Rome, Italy
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Regina Elena Cancer Institute, Rome, Italy
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
13
|
Guillemot F, Cerutti I, Auffray C, Devignes MD. A transgenic mouse model engineered to investigate human brain-derived neurotrophic factor in vivo. Transgenic Res 2007; 16:223-37. [PMID: 17225071 DOI: 10.1007/s11248-006-9060-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Accepted: 11/21/2006] [Indexed: 02/07/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) is an attractive component for the treatment of various neurodegenerative diseases such as Alzheimer's or Parkinson's disease. Innovative non-invasive therapeutic approaches involve appropriate pharmacological induction of endogenous BDNF synthesis in brain. A transgenic mouse model has been established to study human BDNF gene expression and permit the screening of compounds capable of stimulating its activity. A 145-kb yeast artificial chromosome carrying the human BDNF gene has been engineered to produce the transgene which contains the extended BDNF promoter and 3' flanking regions and has integrated the enhanced green fluorescent protein (E-GFP) coding sequence in place of the BDNF coding exon. Five transgenic lines have been obtained through microinjection of the YAC into fertilized mouse oocytes. From the three lines expressing the transgene, one displays the specific pattern of BDNF expression. Faithful tissue-restricted transcription of BDNF 5' exons and localization of the fluorescent reporter gene product in the expected brain subregions are reported. This line constitutes an exploitable system for investigating human BDNF gene regulation in vivo.
Collapse
Affiliation(s)
- Fabrice Guillemot
- Genexpress, Génomique Fonctionnelle et Biologie Systémique pour la Santé, CNRS et Université Pierre et Marie Curie Paris VI, LGN, UMR 7091, 7 rue Guy Moquet, BP8, 94801 Villejuif, France
| | | | | | | |
Collapse
|
14
|
Chakkalakal JV, Michel SA, Chin ER, Michel RN, Jasmin BJ. Targeted inhibition of Ca2+/calmodulin signaling exacerbates the dystrophic phenotype in mdx mouse muscle. Hum Mol Genet 2006; 15:1423-35. [PMID: 16551657 DOI: 10.1093/hmg/ddl065] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
In this study, we crossbred mdx mice with transgenic mice expressing a small peptide inhibitor for calmodulin (CaM), known as the CaM-binding protein (CaMBP), driven by the slow fiber-specific troponin I slow promoter. This strategy allowed us to determine the impact of interfering with Ca(2+)/CaM-based signaling in dystrophin-deficient slow myofibers. Consistent with impairments in the Ca(2+)/CaM-regulated enzymes calcineurin and Ca(2+)/CaM-dependent kinase, the nuclear accumulation of nuclear factor of activated T-cell c1 and myocyte enhancer factor 2C was reduced in slow fibers from mdx/CaMBP mice. We also detected significant reductions in the levels of peroxisome proliferator gamma co-activator 1alpha and GA-binding protein alpha mRNAs in slow fiber-rich soleus muscles of mdx/CaMBP mice. In parallel, we observed significantly lower expression of myosin heavy chain I mRNA in mdx/CaMBP soleus muscles. This correlated with fiber-type shifts towards a faster phenotype. Examination of mdx/CaMBP slow muscle fibers revealed significant reductions in A-utrophin, a therapeutically relevant protein that can compensate for the lack of dystrophin in skeletal muscle. In accordance with lower levels of A-utrophin, we noted a clear exacerbation of the dystrophic phenotype in mdx/CaMBP slow fibers as exemplified by several pathological indices. These results firmly establish Ca(2+)/CaM-based signaling as key to regulating expression of A-utrophin in muscle. Furthermore, this study illustrates the therapeutic potential of using targets of Ca(2+)/CaM-based signaling as a strategy for treating Duchenne muscular dystrophy (DMD). Finally, our results further support the concept that strategies aimed at promoting the slow oxidative myofiber program in muscle may be effective in altering the relentless progression of DMD.
Collapse
Affiliation(s)
- Joe V Chakkalakal
- Department of Cellular and Molecular Medicine, Centre for Neuromuscular Diseases, Faculty of Medicine, University of Ottawa, Ottawa, Ont., Canada K1H 8M5
| | | | | | | | | |
Collapse
|
15
|
Miura P, Jasmin BJ. Utrophin upregulation for treating Duchenne or Becker muscular dystrophy: how close are we? Trends Mol Med 2006; 12:122-9. [PMID: 16443393 DOI: 10.1016/j.molmed.2006.01.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Revised: 12/16/2005] [Accepted: 01/13/2006] [Indexed: 12/30/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a severe muscle-wasting disorder for which there is currently no effective treatment. This disorder is caused by mutations or deletions in the gene encoding dystrophin that prevent expression of dystrophin at the sarcolemma. A promising pharmacological treatment for DMD aims to increase levels of utrophin, a homolog of dystrophin, in muscle fibers of affected patients to compensate for the absence of dystrophin. Here, we review recent developments in our understanding of the regulatory pathways that govern utrophin expression, and highlight studies that have used activators of these pathways to alleviate the dystrophic symptoms in DMD animal models. The results of these preclinical studies are promising and bring us closer to implementing appropriate utrophin-based drug therapies for DMD patients.
Collapse
Affiliation(s)
- Pedro Miura
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | | |
Collapse
|