1
|
Béchir N, Pecchi É, Vilmen C, Bernard M, Bendahan D, Giannesini B. Activin type IIB receptor blockade does not limit adenosine triphosphate supply in mouse skeletal muscle in Vivo. Muscle Nerve 2019; 58:834-842. [PMID: 30025155 DOI: 10.1002/mus.26306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 07/10/2018] [Accepted: 07/15/2018] [Indexed: 11/09/2022]
Abstract
INTRODUCTION Postnatal activin/myostatin type IIB receptor (ActRIIB) blockade increases skeletal muscle mass and strength but also increases muscle fatigability and impairs oxidative metabolism. The objective of this study was to determine in vivo whether this increased fatigability is due to energy supply limitation. METHODS The impact of 8-week ActRIIB blockade with soluble receptor (sActRIIB-Fc) on muscle function and adenosine triphosphate (ATP) fluxes was investigated noninvasively by using multimodal magnetic resonance and indirect calorimetry measurements in wild-type mice. RESULTS Activin/myostatin type IIB receptor blockade reduced (-41%) the muscle apparent mitochondrial capacity and increased (+11%) the basal body energy expenditure. During a fatiguing exercise, ActRIIB blockade decreased both oxidative ATP production rate (-32%) and fatigue resistance (-36%), but these changes affected neither the total ATP production rate nor the contractile ATP cost. DISCUSSION These findings demonstrate that the increased fatigability after ActRIIB blockade is not due to limitation in energy supply and/or disturbance in contractile ATP cost. Muscle Nerve 58:834-842, 2018.
Collapse
Affiliation(s)
- Nelly Béchir
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France
| | | | | | | | | | | |
Collapse
|
2
|
Béchir N, Pecchi E, Vilmen C, Le Fur Y, Amthor H, Bernard M, Bendahan D, Giannesini B. ActRIIB blockade increases force-generating capacity and preserves energy supply in exercising mdx mouse muscle in vivo. FASEB J 2016; 30:3551-3562. [PMID: 27416839 DOI: 10.1096/fj.201600271rr] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 06/28/2016] [Indexed: 11/11/2022]
Abstract
Postnatal blockade of the activin type IIB receptor (ActRIIB) represents a promising therapeutic strategy for counteracting dystrophic muscle wasting. However, its impact on muscle function and bioenergetics remains poorly documented in physiologic conditions. We have investigated totally noninvasively the effect of 8-wk administration of either soluble ActRIIB signaling inhibitor (sActRIIB-Fc) or vehicle PBS (control) on gastrocnemius muscle force-generating capacity, energy metabolism, and anatomy in dystrophic mdx mice using magnetic resonance (MR) imaging and dynamic [31P]-MR spectroscopy ([31P]-MRS) in vivo ActRIIB inhibition increased muscle volume (+33%) without changing fiber-type distribution, and increased basal animal oxygen consumption (+22%) and energy expenditure (+23%). During an in vivo standardized fatiguing exercise, maximum and total absolute contractile forces were larger (+40 and 24%, respectively) in sActRIIB-Fc treated animals, whereas specific force-generating capacity and fatigue resistance remained unaffected. Furthermore, sActRIIB-Fc administration did not alter metabolic fluxes, ATP homeostasis, or contractile efficiency during the fatiguing bout of exercise, although it dramatically reduced the intrinsic mitochondrial capacity for producing ATP. Overall, sActRIIB-Fc treatment increased muscle mass and strength without altering the fundamental weakness characteristic of dystrophic mdx muscle. These data support the clinical interest of ActRIIB blockade for reversing dystrophic muscle wasting.-Béchir, N., Pecchi, E., Vilmen, C., Le Fur, Y., Amthor, H., Bernard, M., Bendahan, D., Giannesini, B. ActRIIB blockade increases force-generating capacity and preserves energy supply in exercising mdx mouse muscle in vivo.
Collapse
Affiliation(s)
- Nelly Béchir
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Centre de Résonance Magnétique Biologique et Médicale, Unité Mixte de Recherche 7339, Marseille, France
| | - Emilie Pecchi
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Centre de Résonance Magnétique Biologique et Médicale, Unité Mixte de Recherche 7339, Marseille, France
| | - Christophe Vilmen
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Centre de Résonance Magnétique Biologique et Médicale, Unité Mixte de Recherche 7339, Marseille, France
| | - Yann Le Fur
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Centre de Résonance Magnétique Biologique et Médicale, Unité Mixte de Recherche 7339, Marseille, France
| | - Helge Amthor
- Université de Versailles Saint-Quentin-en-Yvelines, Unités de Formation et de Recherche des Sciences de la Santé, INSERM U1179, Laboratoire International Associé, Biologie Appliquée Handicap Neuromusculaire, Cellules Souches Mésenchymateuses, Saint Quentin en Yvelines Therapeutics, Montigny-le-Bretonneux, France; and Service Génétique Médicale, Centre Hospitalier Universitaire Necker-Enfants Malades, Université Paris Descartes, Paris, France
| | - Monique Bernard
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Centre de Résonance Magnétique Biologique et Médicale, Unité Mixte de Recherche 7339, Marseille, France
| | - David Bendahan
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Centre de Résonance Magnétique Biologique et Médicale, Unité Mixte de Recherche 7339, Marseille, France
| | - Benoît Giannesini
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Centre de Résonance Magnétique Biologique et Médicale, Unité Mixte de Recherche 7339, Marseille, France;
| |
Collapse
|
3
|
Béchir N, Pecchi É, Relizani K, Vilmen C, Le Fur Y, Bernard M, Amthor H, Bendahan D, Giannesini B. Mitochondrial impairment induced by postnatal ActRIIB blockade does not alter function and energy status in exercising mouse glycolytic muscle in vivo. Am J Physiol Endocrinol Metab 2016; 310:E539-49. [PMID: 26837807 DOI: 10.1152/ajpendo.00370.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 01/24/2016] [Indexed: 11/22/2022]
Abstract
Because it leads to a rapid and massive muscle hypertrophy, postnatal blockade of the activin type IIB receptor (ActRIIB) is a promising therapeutic strategy for counteracting muscle wasting. However, the functional consequences remain very poorly documented in vivo. Here, we have investigated the impact of 8-wk ActRIIB blockade with soluble receptor (sActRIIB-Fc) on gastrocnemius muscle anatomy, energy metabolism, and force-generating capacity in wild-type mice, using totally noninvasive magnetic resonance imaging (MRI) and dynamic(31)P-MRS. Compared with vehicle (PBS) control, sActRIIB-Fc treatment resulted in a dramatic increase in body weight (+29%) and muscle volume (+58%) calculated from hindlimb MR imaging, but did not alter fiber type distribution determined via myosin heavy chain isoform analysis. In resting muscle, sActRIIB-Fc treatment induced acidosis and PCr depletion, thereby suggesting reduced tissue oxygenation. During an in vivo fatiguing exercise (6-min repeated maximal isometric contraction electrically induced at 1.7 Hz), maximal and total absolute forces were larger in sActRIIB-Fc treated animals (+26 and +12%, respectively), whereas specific force and fatigue resistance were lower (-30 and -37%, respectively). Treatment with sActRIIB-Fc further decreased the maximal rate of oxidative ATP synthesis (-42%) and the oxidative capacity (-34%), but did not alter the bioenergetics status in contracting muscle. Our findings demonstrate in vivo that sActRIIB-Fc treatment increases absolute force-generating capacity and reduces mitochondrial function in glycolytic gastrocnemius muscle, but this reduction does not compromise energy status during sustained activity. Overall, these data support the clinical interest of postnatal ActRIIB blockade.
Collapse
Affiliation(s)
- Nelly Béchir
- Aix-Marseille Université, CNRS, Centre de Résonance Magnétique Biologique et Médicale, UMR 7339, 13385, Marseille, France; and
| | - Émilie Pecchi
- Aix-Marseille Université, CNRS, Centre de Résonance Magnétique Biologique et Médicale, UMR 7339, 13385, Marseille, France; and
| | - Karima Relizani
- Université de Versailles Saint-Quentin-en-Yvelines, UFR des sciences de la santé, INSERM U1179, LIA BAHN CSM, SQY Therapeutics, 78180 Montigny-le-Bretonneux, France
| | - Christophe Vilmen
- Aix-Marseille Université, CNRS, Centre de Résonance Magnétique Biologique et Médicale, UMR 7339, 13385, Marseille, France; and
| | - Yann Le Fur
- Aix-Marseille Université, CNRS, Centre de Résonance Magnétique Biologique et Médicale, UMR 7339, 13385, Marseille, France; and
| | - Monique Bernard
- Aix-Marseille Université, CNRS, Centre de Résonance Magnétique Biologique et Médicale, UMR 7339, 13385, Marseille, France; and
| | - Helge Amthor
- Université de Versailles Saint-Quentin-en-Yvelines, UFR des sciences de la santé, INSERM U1179, LIA BAHN CSM, SQY Therapeutics, 78180 Montigny-le-Bretonneux, France
| | - David Bendahan
- Aix-Marseille Université, CNRS, Centre de Résonance Magnétique Biologique et Médicale, UMR 7339, 13385, Marseille, France; and
| | - Benoît Giannesini
- Aix-Marseille Université, CNRS, Centre de Résonance Magnétique Biologique et Médicale, UMR 7339, 13385, Marseille, France; and
| |
Collapse
|
4
|
Personius KE, Jayaram A, Krull D, Brown R, Xu T, Han B, Burgess K, Storey C, Shah B, Tawil R, Welle S. Grip force, EDL contractile properties, and voluntary wheel running after postdevelopmental myostatin depletion in mice. J Appl Physiol (1985) 2010; 109:886-94. [PMID: 20595537 DOI: 10.1152/japplphysiol.00300.2010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
There is no consensus about whether making muscles abnormally large by reducing myostatin activity affects force-generating capacity or the ability to perform activities requiring muscular endurance. We therefore examined grip force, contractile properties of extensor digitorum longus (EDL) muscles, and voluntary wheel running in mice in which myostatin was depleted after normal muscle development. Cre recombinase activity was induced to knock out exon 3 of the myostatin gene in 4-mo-old mice in which this exon was flanked by loxP sequences (Mstn[f/f]). Control mice with normal myostatin genes (Mstn[w/w]) received the same Cre-activating treatment. Myostatin depletion increased the mass of all muscles that were examined (gastrocnemius, quadriceps, tibialis anterior, EDL, soleus, triceps) by approximately 20-40%. Grip force, measured multiple times 2-22 wk after myostatin knockout, was not consistently greater in the myostatin-deficient mice. EDL contractile properties were determined 7-13 mo after myostatin knockout. Twitch force tended to be greater in myostatin-deficient muscles (+24%; P=0.09), whereas tetanic force was not consistently elevated (mean +11%; P=0.36), even though EDL mass was greater than normal in all myostatin-deficient mice (mean +36%; P<0.001). The force deficit induced by eccentric contractions was approximately twofold greater in myostatin-deficient than in normal EDL muscles (31% vs. 16% after five eccentric contractions; P=0.02). Myostatin-deficient mice ran 19% less distance (P<0.01) than control mice during the 12 wk following myostatin depletion, primarily because of fewer running bouts per night rather than diminished running speed or bout duration. Reduced specific tension (ratio of force to mass) and reduced running have been observed after muscle hypertrophy was induced by other means, suggesting that they are characteristics generally associated with abnormally large muscles rather than unique effects of myostatin deficiency.
Collapse
|