1
|
Wang L, Zhou Y, Wei T, Huang H. Two homozygous adjacent novel missense mutations in DYSF gene caused dysferlinopathy due to splicing abnormalities. Front Genet 2024; 15:1404611. [PMID: 38903757 PMCID: PMC11188463 DOI: 10.3389/fgene.2024.1404611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/18/2024] [Indexed: 06/22/2024] Open
Abstract
Background: Dysferlinopathy is an autosomal recessive disorder caused by mutations in the DYSF gene. This study reported two homozygous adjacent missense mutations in the DYSF gene, presenting clinically with bilateral lower limb weakness and calf swelling. Two homozygous adjacent missense mutations in the DYSF gene may be associated with the development of dysferlinopathy, but the exact mechanism needs further investigation. Methods: A retrospective analysis of clinical data from a dysferlinopathy-affected family was conducted. Peripheral blood samples were collected from members of this family for whole-exome sequencing (WES) and copy number variation analysis. Sanger sequencing was employed to confirm potential pathogenic variants. The Human Splicing Finder, SpliceAI, and varSEAK database were used to predict the effect of mutations on splicing function. The pathogenic mechanism of aberrant splicing in dysferlinopathy due to two homozygous adjacent missense mutations in the DYSF gene was determined by an in vivo splicing assay and an in vitro minigene assay. Results: The proband was a 42-year-old woman who presented with weakness of the lower limbs for 2 years and edema of the lower leg. Two homozygous DYSF variants, c.5628C>A p. D1876E and c.5633A>T p. Y1878F, were identified in the proband. Bioinformatics databases suggested that the mutation c.5628C>A of DYSF had no significant impact on splicing signals. Human Splicing Finder Version 2.4.1 suggested that the c.5633A>T of DYSF mutation caused alteration of auxiliary sequences and significant alteration of the ESE/ESS motif ratio. VarSEAK and SpliceAI suggested that the c.5633A>T of DYSF mutation had no splicing effect. Both an in vivo splicing assay and an in vitro minigene assay showed two adjacent mutations: c.5628C>A p. D1876E and c.5633A>T p. Y1878F in the DYSF gene leading to an Exon50 jump that resulted in a 32-aa amino acid deletion within the protein. Point mutation c.5628C>A p. D1876E in the DYSF gene affected splicing in vitro, while point mutation c.5633A>T p. Y1878F in the DYSF gene did not affect splicing function. Conclusion: This study confirmed for the first time that two homozygous mutations of DYSF were associated with the occurrence of dysferlinopathy. The c.5628C>A p. D1876E mutation in DYSF affected the splicing function and may be one of the contributing factors to the pathogenicity.
Collapse
Affiliation(s)
- Lun Wang
- Jinzhou Medical University Graduate Training Base, Suizhou Central Hospital Affiliated to Hubei University of Medicine, Suizhou, Hubei, China
| | - Yan Zhou
- Department of Basic Medicine, School of Medicine, Jingchu University of Technology, Jingmen, Hubei, China
| | - Tiantian Wei
- Daytime Surgical Ward, Suizhou Hospital, Hubei University of Medicine, Suizhou, Hubei, China
| | - Hongyao Huang
- Jinzhou Medical University Graduate Training Base, Suizhou Central Hospital Affiliated to Hubei University of Medicine, Suizhou, Hubei, China
- Department of Laboratory, Suizhou Hospital, Hubei University of Medicine, Suizhou, Hubei, China
| |
Collapse
|
2
|
Belhassen I, Laroussi S, Sakka S, Rekik S, Lahkim L, Dammak M, Authier FJ, Mhiri C. Dysferlinopathy in Tunisia: clinical spectrum, genetic background and prognostic profile. Neuromuscul Disord 2023; 33:718-727. [PMID: 37716854 DOI: 10.1016/j.nmd.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/08/2023] [Accepted: 08/13/2023] [Indexed: 09/18/2023]
Abstract
Dysferlinopathy is a rare group of hereditary muscular dystrophy with an autosomal recessive mode of inheritance caused by a mutation in the DYSF gene. It encodes for the dysferlin protein, which has a crucial role in multiple cellular processes, including muscle fiber membrane repair. This deficit has heterogeneous clinical presentations. In this study, we collected 20 Tunisian patients with a sex ratio of 1 and a median age of 50.5 years old (Interquartile range (IQR) = [36,5-54,75]). They were followed for periods ranging from 5 to 48 years. The median age at onset was 17 years old (IQR = [16,8-28,4]). Five major phenotypes were identified: Limb-girdle muscular dystrophy (LGMDR2) (35%), a proximodistal phenotype (35%), Miyoshi myopathy (10%), Distal myopathy with anterior tibial onset (DMAT) (10%), and asymptomatic HyperCKemia (10%). At the last evaluation, more than half of patients (55%) were on wheelchair. Loss of ambulation occurred generally during the fourth decade. After 20 years of disease progression, two patients with a proximodistal phenotype (10%) developed dilated cardiomyopathy and mitral valve regurgitation. Restrictive respiratory syndrome was observed in three patients (DMAT: 1 patient, proximodistal phenotype: 1 patient, LGMDR2: 1 patient). Genetic study disclosed five mutations. We observed clinical heterogeneity between families and even within the same family. Disease progression was mainly slow to intermediate regardless of the phenotype.
Collapse
Affiliation(s)
- Ikhlass Belhassen
- Laboratory of Neurogenetics, Parkinson's Disease and Cerebrovascular Disease (LR-12-SP-19), Habib Bourguiba University Hospital, University of Sfax, Tunisia
| | - Sirine Laroussi
- Laboratory of Neurogenetics, Parkinson's Disease and Cerebrovascular Disease (LR-12-SP-19), Habib Bourguiba University Hospital, University of Sfax, Tunisia; Department of Neurology, Habib Bourguiba University Hospital, Faculty of Medicine of Sfax, Sfax, Tunisia.
| | - Salma Sakka
- Department of Neurology, Habib Bourguiba University Hospital, Faculty of Medicine of Sfax, Sfax, Tunisia
| | - Sabrine Rekik
- Laboratory of Neurogenetics, Parkinson's Disease and Cerebrovascular Disease (LR-12-SP-19), Habib Bourguiba University Hospital, University of Sfax, Tunisia
| | - Laila Lahkim
- Pathology Laboratory, Habib Bourguiba University Hospital, Sfax, Tunisia
| | - Mariem Dammak
- Laboratory of Neurogenetics, Parkinson's Disease and Cerebrovascular Disease (LR-12-SP-19), Habib Bourguiba University Hospital, University of Sfax, Tunisia; Clinical Investigation Center, Habib Bourguiba University Hospital, Sfax, Tunisia; Department of Neurology, Habib Bourguiba University Hospital, Faculty of Medicine of Sfax, Sfax, Tunisia
| | | | - Chokri Mhiri
- Laboratory of Neurogenetics, Parkinson's Disease and Cerebrovascular Disease (LR-12-SP-19), Habib Bourguiba University Hospital, University of Sfax, Tunisia; Clinical Investigation Center, Habib Bourguiba University Hospital, Sfax, Tunisia; Department of Neurology, Habib Bourguiba University Hospital, Faculty of Medicine of Sfax, Sfax, Tunisia
| |
Collapse
|
3
|
Park J, Moon YJ, Kim DS. Miyoshi Muscular Dystrophy Type 1 with Mutated DYSF Gene Misdiagnosed as Becker Muscular Dystrophy: A Case Report and Literature Review. Genes (Basel) 2023; 14:200. [PMID: 36672942 PMCID: PMC9859596 DOI: 10.3390/genes14010200] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/28/2022] [Accepted: 01/11/2023] [Indexed: 01/13/2023] Open
Abstract
Dysferlinopathy covers a spectrum of muscle disorder categorized by two major phenotypes, namely Miyoshi muscular dystrophy type 1 (MMD1, OMIM #254130) and limb-girdle muscular dystrophy autosomal recessive 2 (LGMDR2, OMIM #253601), and two minor symptoms, including asymptomatic hyperCKemia and distal myopathy with anterior tibial onset (DMAT, OMIM #606768). We report the first Korean MMD1 misdiagnosed as Becker muscular dystrophy (BMD), which was caused by a combination of compound heterozygous c.663 + 1G > C and p.Trp992Arg of the DYSF gene. A 70-year-old male previously diagnosed with BMD was admitted for genetic counseling. Since he was clinically suspected to have dysferlinopathy but not BMD, targeted panel sequencing was performed to discover the potential hereditary cause of the suspected muscular dystrophy in the proband. Consequently, two pathogenic single nucleotide variants of the DYSF gene, c.663 + 1G > C (rs398123800) and p.Trp992Arg (rs750028300), associated with dysferlinopathy were identified. These variants were previously reported with variant allele frequencies of 0.000455 (c.663 + 1G > C) and 0.000455 (c.2974T > C; p.Trp992Arg) in the Korean population. This report emphasizes the need for common variant screening in the diagnostic algorithms of certain muscle disorders or gene panels with potential pathogenic effects and high rates of recurrent variants.
Collapse
Affiliation(s)
- Joonhong Park
- Department of Laboratory Medicine, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| | - Young Jae Moon
- Department of Orthopedic Surgery, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
- Department of Biochemistry and Molecular Biology, Jeonbuk National University Medical School, Jeonju 54907, Republic of Korea
| | - Dal Sik Kim
- Department of Laboratory Medicine, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| |
Collapse
|
4
|
Ivanova A, Smirnikhina S, Lavrov A. Dysferlinopathies: clinical and genetic variability. Clin Genet 2022; 102:465-473. [PMID: 36029111 DOI: 10.1111/cge.14216] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 11/30/2022]
Abstract
Dysferlinopathies are a clinically heterogeneous group of diseases caused by mutations in the DYSF gene encoding the dysferlin protein. Dysferlin is mostly expressed in muscle tissues and is localized in the sarcolemma, where it performs its main function of resealing and maintaining of the integrity of the cell membrane. At least four forms of dysferlinopathies have been described: Miyoshi myopathy, limb-girdle muscular dystrophy type 2B, distal myopathy with anterior tibial onset, and isolated hyperCKemia. Here we review the clinical features of different forms of dysferlinopathies and attempt to identify genotype-phenotype correlations. Because of the great clinical variability and rarety of the disease and mutations little is known, how different phenotypes develop as a result of different mutations. However missense mutations seem to induce more severe disease than LoF, which is typical for many muscle dystrophies. The role of several specific mutations and possible gene modifiers is also discussed in the paper.
Collapse
Affiliation(s)
- Alisa Ivanova
- Research Centre for Medical Genetics, Moskvorechye 1, Moscow, Russia
| | | | - Alexander Lavrov
- Research Centre for Medical Genetics, Moskvorechye 1, Moscow, Russia
| |
Collapse
|
5
|
Folland C, Johnsen R, Gomez AB, Trajanoski D, Davis MR, Moore U, Straub V, Barresi R, Guglieri M, Hayhurst H, Schaefer AM, Laing NG, Lamont PJ, Ravenscroft G. Identification of a novel heterozygous DYSF variant in a large family with a dominantly-inherited dysferlinopathy. Neuropathol Appl Neurobiol 2022; 48:e12846. [PMID: 35962550 DOI: 10.1111/nan.12846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/29/2022] [Accepted: 08/07/2022] [Indexed: 11/27/2022]
Abstract
AIMS Dysferlinopathy is an autosomal recessive muscular dystrophy, caused by bi-allelic variants in the gene encoding dysferlin (DYSF). Onset typically occurs in the second to third decade and is characterised by slowly progressive skeletal muscle weakness and atrophy of the proximal and/or distal muscles of the four limbs. There are rare cases of symptomatic DYSF variant carriers. Here, we report a large family with a dominantly inherited hyperCKaemia and late-onset muscular dystrophy. METHODS AND RESULTS Genetic analysis identified a co-segregating novel DYSF variant [NM_003494.4:c.6207del p.(Tyr2070Metfs*4)]. No secondary variants in DYSF or other dystrophy-related genes were identified on whole genome sequencing and analysis of the proband's DNA. Skeletal muscle involvement was milder and later onset than typical dysferlinopathy presentations; these clinical signs manifested in four individuals, all between the fourth and sixth decades of life. All individuals heterozygous for the c.6207del variant had hyperCKaemia. Histological analysis of skeletal muscle biopsies across three generations showed clear dystrophic signs, including inflammatory infiltrates, regenerating myofibres, increased variability in myofibre size, and internal nuclei. Muscle magnetic resonance imaging revealed fatty replacement of muscle in two individuals. Western blot and immunohistochemical analysis of muscle biopsy demonstrated consistent reduction of dysferlin staining. Allele-specific quantitative PCR analysis of DYSF mRNA from patient muscle found that the variant, localised to the extreme C-terminus of dysferlin, does not activate post-transcriptional mRNA decay. CONCLUSIONS We propose that this inheritance pattern may be underappreciated and that other late-onset muscular dystrophy cases with mono-allelic DYSF variants, particularly C-terminal premature truncation variants, may represent dominant forms of disease.
Collapse
Affiliation(s)
- Chiara Folland
- Centre for Medical Research, University of Western Australia, Harry Perkins Institute of Medical Research, Perth, WA, Australia
| | - Russell Johnsen
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, Australia
| | - Adriana Botero Gomez
- Department of Diagnostic Genomics, Department of Health, PathWest Laboratory Medicine, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Daniel Trajanoski
- Department of Diagnostic Genomics, Department of Health, PathWest Laboratory Medicine, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Mark R Davis
- Department of Diagnostic Genomics, Department of Health, PathWest Laboratory Medicine, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Ursula Moore
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Volker Straub
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | | | - Michela Guglieri
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Hannah Hayhurst
- Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Andrew M Schaefer
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Nigel G Laing
- Centre for Medical Research, University of Western Australia, Harry Perkins Institute of Medical Research, Perth, WA, Australia
| | | | - Gianina Ravenscroft
- Centre for Medical Research, University of Western Australia, Harry Perkins Institute of Medical Research, Perth, WA, Australia
| |
Collapse
|
6
|
Targeted RNAseq Improves Clinical Diagnosis of Very Early-Onset Pediatric Immune Dysregulation. J Pers Med 2022; 12:jpm12060919. [PMID: 35743704 PMCID: PMC9224647 DOI: 10.3390/jpm12060919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 02/05/2023] Open
Abstract
Despite increased use of whole exome sequencing (WES) for the clinical analysis of rare disease, overall diagnostic yield for most disorders hovers around 30%. Previous studies of mRNA have succeeded in increasing diagnoses for clearly defined disorders of monogenic inheritance. We asked if targeted RNA sequencing could provide similar benefits for primary immunodeficiencies (PIDs) and very early-onset inflammatory bowel disease (VEOIBD), both of which are difficult to diagnose due to high heterogeneity and variable severity. We performed targeted RNA sequencing of a panel of 260 immune-related genes for a cohort of 13 patients (seven suspected PID cases and six VEOIBD) and analyzed variants, splicing, and exon usage. Exonic variants were identified in seven cases, some of which had been previously prioritized by exome sequencing. For four cases, allele specific expression or lack thereof provided additional insights into possible disease mechanisms. In addition, we identified five instances of aberrant splicing associated with four variants. Three of these variants had been previously classified as benign in ClinVar based on population frequency. Digenic or oligogenic inheritance is suggested for at least two patients. In addition to validating the use of targeted RNA sequencing, our results show that rare disease research will benefit from incorporating contributing genetic factors into the diagnostic approach.
Collapse
|
7
|
Zhong H, Yu M, Lin P, Zhao Z, Zheng X, Xi J, Zhu W, Zheng Y, Zhang W, Lv H, Yan C, Hu J, Wang Z, Lu J, Zhao C, Luo S, Yuan Y. Molecular landscape of DYSF mutations in dysferlinopathy: From a Chinese multicenter analysis to a worldwide perspective. Hum Mutat 2021; 42:1615-1623. [PMID: 34559919 DOI: 10.1002/humu.24284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 08/10/2021] [Accepted: 09/04/2021] [Indexed: 01/07/2023]
Abstract
Dysferlinopathy is one of the most common subgroup of autosomal recessive limb-girdle muscular dystrophies that is caused by mutations in DYSF gene. However, there is currently no worldwide comprehensive genetic analysis of DYSF variants. Through a national multicenter collaborative effort in China, we identified 222 DYSF variants with 40 novel variants from 245 patients. We then integrated DYSF variants from disease-related genetic databases including LOVD (n = 1020) and Clinvar (n = 1179), to depict the global landscape of disease-related DYSF variants. Normal-population-derived DSYF variants from gnomAD (n = 4318) and ChinaMAP (n = 13,330) were also analyzed in comparison. In Chinese patients, gender instead of genotype showed influence on the onset age of dysferlinopathy, with males showing an earlier age of onset. After integrative analysis, we identified two hotspot DYSF mutations, c.2997G>T in world patients and c.1375dup in Chinese patients, respectively. Both the pathogenic and likely pathogenic variants scattered on the whole gene length of DYSF. However, three specific domains (C2F-C2G-TM, DysF, and C2B-Ferl-C2C) contained variants at higher frequencies than reported in both the databases and Chinese patients. This study comprehensively collected available DYSF variant data, which may pave way for genetic counselling and future clinical trial design for gene therapies in dysferlinopathy.
Collapse
Affiliation(s)
- Huahua Zhong
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China
| | - Meng Yu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Pengfei Lin
- Department of Neurology, Shandong University Qilu Hospital, Jinan, Shandong Province, China
| | - Zhe Zhao
- Department of Neuromuscular Disorders, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Xueying Zheng
- Department of Biostatistics, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Jianying Xi
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China
| | - Wenhua Zhu
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China
| | - Yiming Zheng
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Wei Zhang
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - He Lv
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Chuanzhu Yan
- Department of Neurology, Shandong University Qilu Hospital, Jinan, Shandong Province, China
| | - Jing Hu
- Department of Neuromuscular Disorders, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Jiahong Lu
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China
| | - Chongbo Zhao
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China
| | - Sushan Luo
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing, China
| |
Collapse
|
8
|
Seo K, Kim EK, Choi J, Kim DS, Shin JH. Functional recovery of a novel knockin mouse model of dysferlinopathy by readthrough of nonsense mutation. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 21:702-709. [PMID: 34141825 PMCID: PMC8181533 DOI: 10.1016/j.omtm.2021.04.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/27/2021] [Indexed: 12/04/2022]
Abstract
Biallelic mutations in the dysferlin gene cause limb-girdle muscular dystrophy 2B or Miyoshi distal myopathy. We found that nonsense mutations are the most common mutation type among Korean patients with dysferlinopathy; more than half of the patients have at least one nonsense allele, which may be amenable to readthrough therapy. We generated a knockin mouse, dqx, harboring DYSF p.Q832∗ mutation. Homozygous dqx mice lacked dysferlin in skeletal muscle, while 2 weeks of oral ataluren restored dysferlin expression and ameliorated skeletal muscle pathology. Their physical performance improved, and protection against eccentric contractions was noted. The improvement was most evident in mice treated with oral ataluren of 0.9 mg/mL. These improvements were sustained for 8 weeks in ataluren-treated dqx mice, while the parameters of A/J mice treated with ataluren over the same period did not improve. These results support that readthrough therapy by oral ataluren may also be applicable to dysferlinopathy patients with nonsense mutation.
Collapse
Affiliation(s)
- Kyowon Seo
- Neurology, Pusan National University Yangsan Hospital, Yangsan, Gyeongsangnamdo 50612, Republic of Korea
| | - Eun Kyoung Kim
- Neurology, Pusan National University Yangsan Hospital, Yangsan, Gyeongsangnamdo 50612, Republic of Korea
| | - Jaeil Choi
- Neurology, Pusan National University Yangsan Hospital, Yangsan, Gyeongsangnamdo 50612, Republic of Korea
| | - Dae-Seong Kim
- Neurology, Pusan National University Yangsan Hospital, Yangsan, Gyeongsangnamdo 50612, Republic of Korea
| | - Jin-Hong Shin
- Neurology, Pusan National University Yangsan Hospital, Yangsan, Gyeongsangnamdo 50612, Republic of Korea
| |
Collapse
|
9
|
Park HJ, Hong YB, Hong JM, Yun U, Kim SW, Shin HY, Kim SM, Choi YC. Null variants in DYSF result in earlier symptom onset. Clin Genet 2021; 99:396-406. [PMID: 33215690 DOI: 10.1111/cge.13887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/06/2020] [Accepted: 11/16/2020] [Indexed: 01/11/2023]
Abstract
We investigated the clinical, laboratory, and genetic spectra in Korean patients with dysferlinopathy to clarify its genotype-phenotype correlation. We retrospectively reviewed 101 patients from 96 unrelated families with pathogenic variants of DYSF. The most common initial phenotype was Miyoshi myopathy in 50 patients. Median ages at examination and symptom onset were 23 [interquartile range (IQR): 18-30] and 36 years [IQR: 27-48], respectively. We observed 38 variants, including nine novel variants. Four variants (c.2494C > T, c.1284 + 2 T > C, c.663 + 1G > C, and c.2997G > T) in DYSF accounted for 62% of total allele frequencies of pathogenic variants. To analyze the genotype-phenotype correlation, we compared the clinical phenotype between patients with null/null (N/N; n = 55) and null/missense variants (N/M; n = 35). The N/N group had an earlier symptom onset age (median: 20 years [IQR: 17-25]) than the N/M group (median: 29 years [IQR: 23-35], p < .001). Total manual muscle testing scores in lower extremities were lower in the N/N group (median: 80 [IQR: 56-92]) than in the N/M group (median: 89 [IQR: 78-98], p = .013). Our study is the first to report that null variants in DYSF result in an earlier symptom onset than missense variants.
Collapse
Affiliation(s)
- Hyung Jun Park
- Department of Neurology, Rehabilitation Institute of Neuromuscular Disease, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Young Bin Hong
- Department of Biochemistry, College of Medicine, Dong-A University, Busan, South Korea
| | - Ji-Man Hong
- Department of Neurology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, South Korea
| | - UnKyu Yun
- Department of Neurology, Rehabilitation Institute of Neuromuscular Disease, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Seung Woo Kim
- Department of Neurology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Ha Young Shin
- Department of Neurology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Seung Min Kim
- Department of Neurology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Young-Chul Choi
- Department of Neurology, Rehabilitation Institute of Neuromuscular Disease, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
10
|
Li Q, Tan C, Chen J, Zhang L. Next-generation sequencing identified a novel DYSF variant in a patient with limb-girdle muscular dystrophy type 2B: A case report. Medicine (Baltimore) 2020; 99:e22615. [PMID: 33031319 PMCID: PMC7544278 DOI: 10.1097/md.0000000000022615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
RATIONALE Limb-girdle muscular dystrophy (LGMD) is a genetic disease, which is characterized by muscle atrophy and weakness mainly involving proximal muscles. Accurate diagnosis of LGMD patient is very important for the appropriate management and long-term prognosis. PATIENT CONCERNS An 18-year-old woman presented with progressive weakness of limbs, persistent elevated serum creatine kinase, myogenic damages in electromyography, and dysferlin protein deficiency in muscle biopsy. Further next-generation sequencing (NGS) revealed a compound heterozygous variant in dysferlin gene (DYSF), including a novel frameshift variant of c.4010delT. DIAGNOSIS The patient was diagnosed with LGMD2B clinically and genetically. INTERVENTIONS Oral levocarnitine and coenzyme Q10 were prescribed to the patient. OUTCOMES After symptomatic treatments for 1 week, the patient's symptoms were not improved. LESSONS NGS might be a helpful tool for the diagnosis of LGMD. A novel variant of c.4010delT in DYSF was identified in this case, which broadens the genetic spectrum of LGMD2B.
Collapse
|
11
|
Lee SJ, Choi E, Shin S, Park J. Genetically confirmed limb-girdle muscular dystrophy type 2B with DYSF mutation using gene panel sequencing: A case report. Medicine (Baltimore) 2020; 99:e20810. [PMID: 32664072 PMCID: PMC7360247 DOI: 10.1097/md.0000000000020810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
RATIONALE The limb-girdle muscular dystrophies (LGMDs) are a heterogeneous group of disorders characterized by progressive proximal muscle weakness and have more than 30 different subtypes linked to specific gene loci, which manifest as highly overlapping and heterogeneous phenotypes. PATIENT CONCERNS A 59-year-old male presented for evaluation of progressive muscle weakness since his late twenties. When he was 38 years old, he had muscle weakness in the upper extremities and had a waddling gait, hyper lordosis of lower back, and anterior pelvic tilt. His gait disturbance and muscle weakness slowly progressed. When he was 55 years old, he could not walk at all and had to use a wheelchair for ambulation. DIAGNOSIS Next-generation sequencing using a custom target capture-based gene panel including specific genes responsible for muscular dystrophy was performed. As a result, the proband was genetically diagnosed as LGMD type 2B, carrying 2 compound heterozygous mutations (NM_003494.3:c.1663C>T, p.Arg555Trp; rs377735262 and NM_003494.3:c.2997G>T, p.Trp999Cys; rs28937581) of the DYSF gene. INTERVENTIONS Physical and occupational therapy were prescribed properly for the first time Bracing and assistive devices were adapted specifically to the patient's deficiencies to preserve mobility and function and prevent contractures. OUTCOMES The patient with LGMD has periodic assessments of physical and occupational therapy for the prevention and management of comorbidities. However, in the 3 years after the gene panel sequencing diagnoses, his weakness was slowly progress and the patient still could not walk. LESSONS Gene panel sequencing allows for the correct recognition of different LGMD subtypes, improving timely treatment, management, and enrolment of molecularly diagnosed individuals in clinical trials.
Collapse
Affiliation(s)
| | - Eunseok Choi
- Department of Physical Medicine and Rehabilitation
| | - Soyoung Shin
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Joonhong Park
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
12
|
Izumi R, Takahashi T, Suzuki N, Niihori T, Ono H, Nakamura N, Katada S, Kato M, Warita H, Tateyama M, Aoki Y, Aoki M. The genetic profile of dysferlinopathy in a cohort of 209 cases: Genotype-phenotype relationship and a hotspot on the inner DysF domain. Hum Mutat 2020; 41:1540-1554. [PMID: 32400077 DOI: 10.1002/humu.24036] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 12/27/2022]
Abstract
Dysferlinopathy is a group of autosomal recessive muscular dystrophies caused by variants in the dysferlin gene (DYSF), with variable proximal and distal muscle involvement. We performed DYSF gene analyses of 200 cases suspected of having dysferlinopathy (Cohort 1), and identified diagnostic variants in 129/200 cases, including 19 novel variants. To achieve a comprehensive genetic profile of dysferlinopathy, we analyzed the variant data from 209 affected cases from unrelated 209 families, including 80 previously diagnosed and 129 newly diagnosed cases (Cohort 2). Among the 90 types of variants identified in 209 cases, the NM_003494.3: c.2997G>T; p.Trp999Cys, was the most frequent (96/420; 22.9%), followed by c.1566C>G; p.Tyr522* (45/420; 10.7%) on an allele base. p.Trp999Cys was found in 70/209 cases (33.5%), including 20/104 cases (19.2%) with the Miyoshi muscular phenotype and 43/82 cases (52.4%) with the limb-girdle phenotype. In the analysis of missense variants, p.Trp992Arg, p.Trp999Arg, p.Trp999Cys, p.Ser1000Phe, p.Arg1040Trp, and p.Arg1046His were located in the inner DysF domain, representing in 113/160 missense variants (70.6%). This large cohort highlighted the frequent missense variants located in the inner DysF domain as a hotspot for missense variants among our cohort of 209 cases (>95%, Japanese) and hinted at their potential as targets for future therapeutic strategies.
Collapse
Affiliation(s)
- Rumiko Izumi
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Medical Genetics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Toshiaki Takahashi
- Department of Neurology, National Hospital Organization Sendai-Nishitaga Hospital, Sendai, Japan
| | - Naoki Suzuki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tetsuya Niihori
- Department of Medical Genetics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroya Ono
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Neurology, National Hospital Organization Iwate Hospital, Ichinoseki, Japan
| | - Naoko Nakamura
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shinichi Katada
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Masaaki Kato
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hitoshi Warita
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Maki Tateyama
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Neurology, National Hospital Organization Iwate Hospital, Ichinoseki, Japan
| | - Yoko Aoki
- Department of Medical Genetics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
13
|
Abstract
Ferlins are multiple-C2-domain proteins involved in Ca2+-triggered membrane dynamics within the secretory, endocytic and lysosomal pathways. In bony vertebrates there are six ferlin genes encoding, in humans, dysferlin, otoferlin, myoferlin, Fer1L5 and 6 and the long noncoding RNA Fer1L4. Mutations in DYSF (dysferlin) can cause a range of muscle diseases with various clinical manifestations collectively known as dysferlinopathies, including limb-girdle muscular dystrophy type 2B (LGMD2B) and Miyoshi myopathy. A mutation in MYOF (myoferlin) was linked to a muscular dystrophy accompanied by cardiomyopathy. Mutations in OTOF (otoferlin) can be the cause of nonsyndromic deafness DFNB9. Dysregulated expression of any human ferlin may be associated with development of cancer. This review provides a detailed description of functions of the vertebrate ferlins with a focus on muscle ferlins and discusses the mechanisms leading to disease development.
Collapse
|
14
|
Jalali-Sefid-Dashti M, Nel M, Heckmann JM, Gamieldien J. Exome sequencing identifies novel dysferlin mutation in a family with pauci-symptomatic heterozygous carriers. BMC MEDICAL GENETICS 2018; 19:95. [PMID: 29879922 PMCID: PMC5992709 DOI: 10.1186/s12881-018-0613-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 05/23/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND We investigated a South African family of admixed ancestry in which the first generation (G1) developed insidious progressive distal to proximal weakness in their twenties, while their offspring (G2) experienced severe unexpected symptoms of myalgia and cramps since adolescence. Our aim was to identify deleterious mutations that segregate with the affected individuals in this family. METHODS Exome sequencing was performed on five cases, which included three affected G1 siblings and two pauci-symptomatic G2 offspring. As controls we included an unaffected G1 sibling and a spouse of one of the G1 affected individuals. Homozygous or potentially compound heterozygous variants that were predicted to be functional and segregated with the affected G1 siblings, were further evaluated. Additionally, we considered variants in all genes segregating exclusively with the affected (G1) and pauci-symptomatic (G2) individuals to address the possibility of a pseudo-autosomal dominant inheritance pattern in this family. RESULTS All affected G1 individuals were homozygous for a novel truncating p.Tyr1433Ter DYSF (dysferlin) mutation, with their asymptomatic sibling and both pauci-symptomatic G2 offspring carrying only a single mutant allele. Sanger sequencing confirmed segregation of the variant. No additional potentially contributing variant was found in the DYSF or any other relevant gene in the pauci-symptomatic carriers. CONCLUSION Our finding of a truncating dysferlin mutation confirmed dysferlinopathy in this family and we propose that the single mutant allele is the primary contributor to the neuromuscular symptoms seen in the second-generation pauci-symptomatic carriers.
Collapse
Affiliation(s)
- Mahjoubeh Jalali-Sefid-Dashti
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Bellville, 7535, South Africa
| | - Melissa Nel
- Division of Neurology, Department of Medicine, University of Cape Town, Observatory, 7925, South Africa
| | - Jeannine M Heckmann
- E8-74, Neurology, New Groote Schuur Hospital Observatory, Cape Town, 7925, South Africa
| | - Junaid Gamieldien
- South African National Bioinformatics Institute, University of the Western Cape, Private Bag X17, Bellville, 7535, South Africa.
| |
Collapse
|
15
|
Tang J, Song X, Ji G, Wu H, Sun S, Lu S, Li Y, Zhang C, Zhang H. A novel mutation in the DYSF gene in a patient with a presumed inflammatory myopathy. Neuropathology 2018; 38:433-437. [PMID: 29799141 DOI: 10.1111/neup.12474] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/05/2018] [Accepted: 04/09/2018] [Indexed: 01/30/2023]
Abstract
Dysferlinopathy, a progressive muscular dystrophy, results from mutations in the Dysferlin gene (DYSF, MIM*603009). Traditional diagnosis relies on the reduction or absence of dysferlin. However, altered dysferlin has been observed in other myopathies, leading to a precise diagnosis through molecular genetics. In this study, we report a patient who was previously misdiagnosed as inflammatory myopathy based on routine clinicopathological examinations alone. However, muscle biopsy specimens were analyzed further by immunohistochemistry of muscular dystrophy-related proteins, and gene-targeted next generation sequencing (NGS) was used to correctly identify muscular dystrophy. DNA was sequenced with NGS and the detected mutation was verified by Sanger sequencing. Our targeted NGS found a novel missense mutation (c.5392G > A) in the DYSF gene, allowing correct diagnosis of LGMD2B in our patient. We discovered of a novel missense mutation in the DYSF gene and have broadened the DYSF mutation spectrum, which may be correlated in patients with presumed dysferlinopathy, especially when lymphocytic infiltration is observed.
Collapse
Affiliation(s)
- Jin Tang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiahzuang, China
| | - Xueqin Song
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiahzuang, China
| | - Guang Ji
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiahzuang, China
| | - Hongran Wu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiahzuang, China
| | - Shuyan Sun
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiahzuang, China
| | - Shan Lu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiahzuang, China
| | - Yuan Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiahzuang, China
| | - Chi Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiahzuang, China
| | - Huiqing Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiahzuang, China
| |
Collapse
|
16
|
Fanin M, Angelini C. Progress and challenges in diagnosis of dysferlinopathy. Muscle Nerve 2016; 54:821-835. [DOI: 10.1002/mus.25367] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2016] [Indexed: 01/22/2023]
Affiliation(s)
- Marina Fanin
- Department of Neurosciences; University of Padova; Biomedical Campus “Pietro d'Abano”, via Giuseppe Orus 2B 35129 Padova Italy
| | | |
Collapse
|
17
|
Park HJ, Jang H, Kim JH, Lee JH, Shin HY, Kim SM, Park KD, Yim SV, Lee JH, Choi YC. Discovery of pathogenic variants in a large Korean cohort of inherited muscular disorders. Clin Genet 2016; 91:403-410. [PMID: 27363342 DOI: 10.1111/cge.12826] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 06/06/2016] [Accepted: 06/17/2016] [Indexed: 01/31/2023]
Abstract
Inherited muscular disorders (IMDs) are clinically and genetically heterogeneous genetic disorders. We investigated the mutational spectrum and genotype-phenotype correlations in Korean patients with IMD. We developed a targeted panel of 69 known IMD genes and recruited a total of 209 Korean patients with IMD. Targeted capture sequencing identified 994 different variants. Among them, 98 variants were classified as pathogenic/likely pathogenic variants; 38 were novel variations. A total of 39 patients had the pathogenic/likely pathogenic variants. Among them, 75 (36%) patients were genetically confirmed, and 18 (9%) patients had one heterozygous variant of recessive myopathy. However, two genetically confirmed patients had an additional heterozygous variant of another recessive myopathy. Four patients with one heterozygous variant of a recessive myopathy showed different phenotypes, compared with the known phenotype of the identified gene. The major causative genes of Korean patients with IMDs were DMD (19 patients), COL6A1 (9), DYSF (9), GNE (7), LMNA (7), CAPN3 (6), and RYR1 (5). This study showed the mutational and clinical spectra in Korean patients with IMD and confirmed the usefulness of strategies utilizing targeted sequencing.
Collapse
Affiliation(s)
- H J Park
- Department of Neurology, Mokdong Hospital, Ewha Womans University School of Medicine, Seoul, Korea.,Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - H Jang
- Department of Chemistry, Yonsei University, Seoul, Korea
| | - J H Kim
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Seoul, Korea
| | - J H Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - H Y Shin
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - S M Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - K D Park
- Department of Neurology, Mokdong Hospital, Ewha Womans University School of Medicine, Seoul, Korea
| | - S-V Yim
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Seoul, Korea
| | - J H Lee
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Y-C Choi
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
18
|
Md. SSG, Diego-Álvarez D, Buades C, Romera-López A, Pérez-Cabornero L, Valero-Hervás D, Cantalapiedra D, Bioinformatics, Felipe-Ponce V, Hernández-Poveda G, José Roca M, Casañs C, Fernández-Pedrosa V, M. CC, C. ÁA, P. JCT, C. ÓR, Marco G, Gil M, Miñambres R, Ballester A. DIAGNÓSTICO MOLECULAR DE ENFERMEDADES GENÉTICAS: DEL DIAGNÓSTICO GENÉTICO AL DIAGNÓSTICO GENÓMICO CON LA SECUENCIACIÓN MASIVA. REVISTA MÉDICA CLÍNICA LAS CONDES 2015. [DOI: 10.1016/j.rmclc.2015.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|