1
|
Zhou Y, Jiang Y. Current Advances in Genetic Testing for Spinal Muscular Atrophy. Curr Genomics 2023; 24:273-286. [PMID: 38235355 PMCID: PMC10790334 DOI: 10.2174/0113892029273388231023072050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/22/2023] [Accepted: 10/02/2023] [Indexed: 01/19/2024] Open
Abstract
Spinal muscular atrophy (SMA) is one of the most common genetic disorders worldwide, and genetic testing plays a key role in its diagnosis and prevention. The last decade has seen a continuous flow of new methods for SMA genetic testing that, along with traditional approaches, have affected clinical practice patterns to some degree. Targeting different application scenarios and selecting the appropriate technique for genetic testing have become priorities for optimizing the clinical pathway for SMA. In this review, we summarize the latest technological innovations in genetic testing for SMA, including MassArray®, digital PCR (dPCR), next-generation sequencing (NGS), and third-generation sequencing (TGS). Implementation recommendations for rationally choosing different technical strategies in the tertiary prevention of SMA are also explored.
Collapse
Affiliation(s)
- Yulin Zhou
- United Diagnostic and Research Center for Clinical Genetics, Women and Children’s Hospital, School of Medicine & School of Public Health, Xiamen University, Xiamen, Fujian 361003, P.R. China
- Biobank, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Yu Jiang
- United Diagnostic and Research Center for Clinical Genetics, Women and Children’s Hospital, School of Medicine & School of Public Health, Xiamen University, Xiamen, Fujian 361003, P.R. China
- Biobank, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, Fujian 361003, P.R. China
| |
Collapse
|
2
|
Lumpkin CJ, Harris AW, Connell AJ, Kirk RW, Whiting JA, Saieva L, Pellizzoni L, Burghes AHM, Butchbach MER. Evaluation of the orally bioavailable 4-phenylbutyrate-tethered trichostatin A analogue AR42 in models of spinal muscular atrophy. Sci Rep 2023; 13:10374. [PMID: 37365234 PMCID: PMC10293174 DOI: 10.1038/s41598-023-37496-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 06/22/2023] [Indexed: 06/28/2023] Open
Abstract
Proximal spinal muscular atrophy (SMA) is a leading genetic cause for infant death in the world and results from the selective loss of motor neurons in the spinal cord. SMA is a consequence of low levels of SMN protein and small molecules that can increase SMN expression are of considerable interest as potential therapeutics. Previous studies have shown that both 4-phenylbutyrate (4PBA) and trichostatin A (TSA) increase SMN expression in dermal fibroblasts derived from SMA patients. AR42 is a 4PBA-tethered TSA derivative that is a very potent histone deacetylase inhibitor. SMA patient fibroblasts were treated with either AR42, AR19 (a related analogue), 4PBA, TSA or vehicle for 5 days and then immunostained for SMN localization. AR42 as well as 4PBA and TSA increased the number of SMN-positive nuclear gems in a dose-dependent manner while AR19 did not show marked changes in gem numbers. While gem number was increased in AR42-treated SMA fibroblasts, there were no significant changes in FL-SMN mRNA or SMN protein. The neuroprotective effect of this compound was then assessed in SMNΔ7 SMA (SMN2+/+;SMNΔ7+/+;mSmn-/-) mice. Oral administration of AR42 prior to disease onset increased the average lifespan of SMNΔ7 SMA mice by ~ 27% (20.1 ± 1.6 days for AR42-treated mice vs. 15.8 ± 0.4 days for vehicle-treated mice). AR42 treatment also improved motor function in these mice. AR42 treatment inhibited histone deacetylase (HDAC) activity in treated spinal cord although it did not affect SMN protein expression in these mice. AKT and GSK3β phosphorylation were both significantly increased in SMNΔ7 SMA mouse spinal cords. In conclusion, presymptomatic administration of the HDAC inhibitor AR42 ameliorates the disease phenotype in SMNΔ7 SMA mice in a SMN-independent manner possibly by increasing AKT neuroprotective signaling.
Collapse
Affiliation(s)
- Casey J Lumpkin
- Division of Neurology, Nemours Children's Hospital Delaware, 4462 E400 DuPont Experimental Station, 200 Powder Mill Road, Wilmington, DE, 19803, USA
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Ashlee W Harris
- Division of Neurology, Nemours Children's Hospital Delaware, 4462 E400 DuPont Experimental Station, 200 Powder Mill Road, Wilmington, DE, 19803, USA
| | - Andrew J Connell
- Division of Neurology, Nemours Children's Hospital Delaware, 4462 E400 DuPont Experimental Station, 200 Powder Mill Road, Wilmington, DE, 19803, USA
| | - Ryan W Kirk
- Division of Neurology, Nemours Children's Hospital Delaware, 4462 E400 DuPont Experimental Station, 200 Powder Mill Road, Wilmington, DE, 19803, USA
| | - Joshua A Whiting
- Division of Neurology, Nemours Children's Hospital Delaware, 4462 E400 DuPont Experimental Station, 200 Powder Mill Road, Wilmington, DE, 19803, USA
| | - Luciano Saieva
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Livio Pellizzoni
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
- Department of Neurology, Columbia University, New York, NY, USA
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, USA
| | - Arthur H M Burghes
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Matthew E R Butchbach
- Division of Neurology, Nemours Children's Hospital Delaware, 4462 E400 DuPont Experimental Station, 200 Powder Mill Road, Wilmington, DE, 19803, USA.
- Department of Biological Sciences, University of Delaware, Newark, DE, USA.
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Kanda S, Moulton E, Butchbach MER. Effects of Inhibitors of SLC9A-Type Sodium-Proton Exchangers on Survival Motor Neuron 2 ( SMN2) mRNA Splicing and Expression. Mol Pharmacol 2022; 102:92-105. [PMID: 35667685 PMCID: PMC9341265 DOI: 10.1124/molpharm.122.000529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/09/2022] [Indexed: 11/22/2022] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive, pediatric-onset disorder caused by the loss of spinal motor neurons, thereby leading to muscle atrophy. SMA is caused by the loss of or mutations in the survival motor neuron 1 (SMN1) gene. SMN1 is duplicated in humans to give rise to the paralogous survival motor neuron 2 (SMN2) gene. This paralog is nearly identical except for a cytosine to thymine transition within an exonic splicing enhancer element within exon 7. As a result, the majority of SMN2 transcripts lack exon 7 (SMNΔ7), which produces a truncated and unstable SMN protein. Since SMN2 copy number is inversely related to disease severity, it is a well established target for SMA therapeutics development. 5-(N-ethyl-N-isopropyl)amiloride (EIPA), an inhibitor of sodium/proton exchangers (NHEs), has previously been shown to increase exon 7 inclusion and SMN protein levels in SMA cells. In this study, NHE inhibitors were evaluated for their ability to modulate SMN2 expression. EIPA as well as 5-(N,N-hexamethylene)amiloride (HMA) increase exon 7 inclusion in SMN2 splicing reporter lines as well as in SMA fibroblasts. The EIPA-induced exon 7 inclusion occurs via a unique mechanism that does not involve previously identified splicing factors. Transcriptome analysis identified novel targets, including TIA1 and FABP3, for further characterization. EIPA and HMA are more selective at inhibiting the NHE5 isoform, which is expressed in fibroblasts as well as in neuronal cells. These results show that NHE5 inhibition increases SMN2 expression and may be a novel target for therapeutics development. SIGNIFICANCE STATEMENT: This study demonstrates a molecular mechanism by which inhibitors of the sodium-protein exchanger increase the alternative splicing of SMN2 in spinal muscular atrophy cells. NHE5 selective inhibitors increase the inclusion of full-length SMN2 mRNAs by targeting TIA1 and FABP3 expression, which is distinct from other small molecule regulators of SMN2 alternative splicing. This study provides a novel means to increase full-length SMN2 expression and a novel target for therapeutics development.
Collapse
Affiliation(s)
- Sambee Kanda
- Division of Neurology, Nemours Children's Hospital Delaware, Wilmington, Delaware (S.K., E.M., M.E.R.B.); Department of Biological Sciences, University of Delaware, Newark, Delaware (S.K., M.E.R.B.); Center for Pediatric Research, Nemours Biomedical Research, Nemours Children's Hospital Delaware, Wilmington, Delaware (M.E.R.B.); and Department of Pediatrics, Thomas Jefferson University, Philadelphia, Pennsylvania (M.E.R.B.)
| | - Emily Moulton
- Division of Neurology, Nemours Children's Hospital Delaware, Wilmington, Delaware (S.K., E.M., M.E.R.B.); Department of Biological Sciences, University of Delaware, Newark, Delaware (S.K., M.E.R.B.); Center for Pediatric Research, Nemours Biomedical Research, Nemours Children's Hospital Delaware, Wilmington, Delaware (M.E.R.B.); and Department of Pediatrics, Thomas Jefferson University, Philadelphia, Pennsylvania (M.E.R.B.)
| | - Matthew E R Butchbach
- Division of Neurology, Nemours Children's Hospital Delaware, Wilmington, Delaware (S.K., E.M., M.E.R.B.); Department of Biological Sciences, University of Delaware, Newark, Delaware (S.K., M.E.R.B.); Center for Pediatric Research, Nemours Biomedical Research, Nemours Children's Hospital Delaware, Wilmington, Delaware (M.E.R.B.); and Department of Pediatrics, Thomas Jefferson University, Philadelphia, Pennsylvania (M.E.R.B.)
| |
Collapse
|
4
|
Butchbach MER. Genomic Variability in the Survival Motor Neuron Genes ( SMN1 and SMN2): Implications for Spinal Muscular Atrophy Phenotype and Therapeutics Development. Int J Mol Sci 2021; 22:ijms22157896. [PMID: 34360669 PMCID: PMC8348669 DOI: 10.3390/ijms22157896] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 02/07/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a leading genetic cause of infant death worldwide that is characterized by loss of spinal motor neurons leading to muscle weakness and atrophy. SMA results from the loss of survival motor neuron 1 (SMN1) gene but retention of its paralog SMN2. The copy numbers of SMN1 and SMN2 are variable within the human population with SMN2 copy number inversely correlating with SMA severity. Current therapeutic options for SMA focus on increasing SMN2 expression and alternative splicing so as to increase the amount of SMN protein. Recent work has demonstrated that not all SMN2, or SMN1, genes are equivalent and there is a high degree of genomic heterogeneity with respect to the SMN genes. Because SMA is now an actionable disease with SMN2 being the primary target, it is imperative to have a comprehensive understanding of this genomic heterogeneity with respect to hybrid SMN1–SMN2 genes generated by gene conversion events as well as partial deletions of the SMN genes. This review will describe this genetic heterogeneity in SMA and its impact on disease phenotype as well as therapeutic efficacy.
Collapse
Affiliation(s)
- Matthew E. R. Butchbach
- Center for Applied Clinical Genomics, Nemours Children’s Health Delaware, Wilmington, DE 19803, USA;
- Center for Pediatric Research, Nemours Children’s Health Delaware, Wilmington, DE 19803, USA
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
5
|
Diouf B, Wing C, Panetta JC, Eddins D, Lin W, Yang W, Fan Y, Pei D, Cheng C, Delaney SM, Zhang W, Bonten EJ, Crews KR, Paugh SW, Li L, Freeman BB, Autry RJ, Beard JA, Ferguson DC, Janke LJ, Ness KK, Chen T, Zakharenko SS, Jeha S, Pui CH, Relling MV, Eileen Dolan M, Evans WE. Identification of small molecules that mitigate vincristine-induced neurotoxicity while sensitizing leukemia cells to vincristine. Clin Transl Sci 2021; 14:1490-1504. [PMID: 33742760 PMCID: PMC8301581 DOI: 10.1111/cts.13012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/11/2021] [Accepted: 02/17/2021] [Indexed: 12/16/2022] Open
Abstract
Vincristine (VCR) is one of the most widely prescribed medications for treating solid tumors and acute lymphoblastic leukemia (ALL) in children and adults. However, its major dose-limiting toxicity is peripheral neuropathy that can disrupt curative therapy. Peripheral neuropathy can also persist into adulthood, compromising quality of life of childhood cancer survivors. Reducing VCR-induced neurotoxicity without compromising its anticancer effects would be ideal. Here, we show that low expression of NHP2L1 is associated with increased sensitivity of primary leukemia cells to VCR, and that concomitant administration of VCR with inhibitors of NHP2L1 increases VCR cytotoxicity in leukemia cells, prolongs survival of ALL xenograft mice, but decreases VCR effects on human-induced pluripotent stem cell-derived neurons and mitigates neurotoxicity in mice. These findings offer a strategy for increasing VCR's antileukemic effects while reducing peripheral neuropathy in patients treated with this widely prescribed medication.
Collapse
Affiliation(s)
- Barthelemy Diouf
- Hematological Malignancies Program and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Claudia Wing
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - John C Panetta
- Hematological Malignancies Program and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Donnie Eddins
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Wenwei Lin
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Wenjian Yang
- Hematological Malignancies Program and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Yiping Fan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Deqing Pei
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Cheng Cheng
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Shannon M Delaney
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Wei Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Erik J Bonten
- Hematological Malignancies Program and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Kristine R Crews
- Hematological Malignancies Program and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Steven W Paugh
- Hematological Malignancies Program and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Lie Li
- Hematological Malignancies Program and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Burgess B Freeman
- Preclinical Pharmacokinetics Shared Resource, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Robert J Autry
- Hematological Malignancies Program and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jordan A Beard
- Hematological Malignancies Program and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Daniel C Ferguson
- Hematological Malignancies Program and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Laura J Janke
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Kirsten K Ness
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Stanislav S Zakharenko
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Sima Jeha
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Ching-Hon Pui
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Mary V Relling
- Hematological Malignancies Program and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - M Eileen Dolan
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - William E Evans
- Hematological Malignancies Program and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
6
|
Detection of SMN1 to SMN2 gene conversion events and partial SMN1 gene deletions using array digital PCR. Neurogenetics 2021; 22:53-64. [PMID: 33415588 DOI: 10.1007/s10048-020-00630-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/26/2020] [Indexed: 12/15/2022]
Abstract
Proximal spinal muscular atrophy (SMA), a leading genetic cause of infant death worldwide, is an early-onset motor neuron disease characterized by loss of α-motor neurons and associated muscle atrophy. SMA is caused by deletion or other disabling mutations of survival motor neuron 1 (SMN1) but retention of one or more copies of the paralog SMN2. Within the SMA population, there is substantial variation in SMN2 copy number (CN); in general, those individuals with SMA who have a high SMN2 CN have a milder disease. Because SMN2 functions as a disease modifier, its accurate CN determination may have clinical relevance. In this study, we describe the development of array digital PCR (dPCR) to quantify SMN1 and SMN2 CNs in DNA samples using probes that can distinguish the single nucleotide difference between SMN1 and SMN2 in exon 8. This set of dPCR assays can accurately and reliably measure the number of SMN1 and SMN2 copies in DNA samples. In a cohort of SMA patient-derived cell lines, the assay confirmed a strong inverse correlation between SMN2 CN and disease severity. We can detect SMN1-SMN2 gene conversion events in DNA samples by comparing CNs at exon 7 and exon 8. Partial deletions of SMN1 can also be detected with dPCR by comparing CNs at exon 7 or exon 8 with those at intron 1. Array dPCR is a practical technique to determine, accurately and reliably, SMN1 and SMN2 CNs from SMA samples as well as identify gene conversion events and partial deletions of SMN1.
Collapse
|
7
|
Müller-Felber W, Vill K, Schwartz O, Gläser D, Nennstiel U, Wirth B, Burggraf S, Röschinger W, Becker M, Durner J, Eggermann K, Müller C, Hannibal I, Olgemöller B, Schara U, Blaschek A, Kölbel H. Infants Diagnosed with Spinal Muscular Atrophy and 4 SMN2 Copies through Newborn Screening - Opportunity or Burden? J Neuromuscul Dis 2020; 7:109-117. [PMID: 32144995 PMCID: PMC7175938 DOI: 10.3233/jnd-200475] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Although the value of newborn screening (NBS) for early detection and treatment opportunity in SMA patients is generally accepted, there is still an ongoing discussion about the best strategy in children with 4 and more copies of the SMN2 gene. This gene is known to be the most important but not the only disease modifier. In our SMA-NBS pilot project in Germany comprising 278,970 infants screened between January 2018 and November 2019 were 38 positive cases with a homozygous SMN1 deletion. 40% of them had 4 or more SMN2 copies. The incidence for homozygous SMN1 deletion was 1 : 7350, which is within the known range of SMA incidence in Germany. Of the 15 SMA children with 4 SMN2 copies, one child developed physical signs of SMA by the age of 8 months. Reanalysis of the SMN2 copy number by a different test method revealed 3 copies. Two children had affected siblings with SMA Type III, who were diagnosed only after detection of the index patient in the NBS. One had a positive family history with an affected aunt (onset of disease at the age of 3 years). Three families were lost to medical follow up; two because of socioeconomic reasons and one to avoid the psychological stress associated with the appointments. Decisions on how to handle patients with 4 SMN2 copies are discussed in the light of the experience gathered from our NBS pilot SMA program.
Collapse
Affiliation(s)
- Wolfgang Müller-Felber
- Dr. v. Hauner Children's Hospital, Department of Pediatric Neurology and Developmental Medicine, LMU - University of Munich, Munich, Germany
| | - Katharina Vill
- Dr. v. Hauner Children's Hospital, Department of Pediatric Neurology and Developmental Medicine, LMU - University of Munich, Munich, Germany
| | - Oliver Schwartz
- Department of Pediatric Neurology, Muenster University Hospital, Münster, Germany
| | - Dieter Gläser
- Genetikum ®, Center for Human Genetics, Neu-Ulm, Germany
| | - Uta Nennstiel
- Screening Center of the Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
| | - Brunhilde Wirth
- Institute of Human Genetics, Center for Molecular Genetics Cologne and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany
| | | | | | | | - Jürgen Durner
- Labor Becker und Kollegen, Munich, Germany.,Department of Operative/Restorative Dentistry, Periodontology and Pedodontics, Ludwig-Maximilians-Universität München, Goethestr. 70, 80336 Munich, Germany
| | - Katja Eggermann
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Christine Müller
- Dr. v. Hauner Children's Hospital, Department of Pediatric Neurology and Developmental Medicine, LMU - University of Munich, Munich, Germany
| | - Iris Hannibal
- Dr. v. Hauner Children's Hospital, Department of Pediatric Neurology and Developmental Medicine, LMU - University of Munich, Munich, Germany
| | | | - Ulrike Schara
- Department of Pediatric Neurology, Developmental Neurology and Social Pediatrics, University of Essen, Germany
| | - Astrid Blaschek
- Dr. v. Hauner Children's Hospital, Department of Pediatric Neurology and Developmental Medicine, LMU - University of Munich, Munich, Germany
| | - Heike Kölbel
- Department of Pediatric Neurology, Developmental Neurology and Social Pediatrics, University of Essen, Germany
| |
Collapse
|
8
|
Jiang L, Lin R, Gallagher S, Zayac A, Butchbach MER, Hung P. Development and validation of a 4-color multiplexing spinal muscular atrophy (SMA) genotyping assay on a novel integrated digital PCR instrument. Sci Rep 2020; 10:19892. [PMID: 33199817 PMCID: PMC7670453 DOI: 10.1038/s41598-020-76893-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 11/02/2020] [Indexed: 01/30/2023] Open
Abstract
Digital PCR (dPCR) technology has been proven to be highly sensitive and accurate in detecting copy number variations (CNV). However, a higher-order multiplexing dPCR assay for measuring SMN1 and SMN2 copy numbers in spinal muscular atrophy (SMA) samples has not been reported. Described here is a rapid multiplex SMA dPCR genotyping assay run on a fully integrated dPCR instrument with five optical channels. The hydrolysis probe-based multiplex dPCR assay quantifies SMN1, SMN2, and the total SMN (SMN1 + SMN2) while using RPPH1 gene as an internal reference control. The quadruplex assay was evaluated with characterized control DNA samples and validated with 15 blinded clinical samples from a previously published study. SMN1 and SMN2 copy numbers were completely concordant with previous results for both the control and blinded samples. The dPCR-based SMA copy number determination was accomplished in 90 min with a walk-away workflow identical to real-time quantitative PCR (qPCR). In summary, presented here is a simple higher-order multiplexing solution on a novel digital PCR platform to meet the growing demand for SMA genotyping and prognostics.
Collapse
Affiliation(s)
- Lingxia Jiang
- Combinati Inc., 2450 Embarcadero Way, Palo Alto, CA, 94303, USA.
| | - Robert Lin
- Combinati Inc., 2450 Embarcadero Way, Palo Alto, CA, 94303, USA
| | - Steve Gallagher
- Combinati Inc., 2450 Embarcadero Way, Palo Alto, CA, 94303, USA
| | - Andrew Zayac
- Combinati Inc., 2450 Embarcadero Way, Palo Alto, CA, 94303, USA
| | - Matthew E R Butchbach
- Center for Applied Clinical Genomics, Nemours Biomedical Research, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE, USA
- Center for Pediatric Research, Nemours Biomedical Research, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE, USA
- Department of Pediatrics, Sidney Kimmel College of Medicine, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Paul Hung
- Combinati Inc., 2450 Embarcadero Way, Palo Alto, CA, 94303, USA
| |
Collapse
|
9
|
Characterization of Reference Materials for Spinal Muscular Atrophy Genetic Testing: A Genetic Testing Reference Materials Coordination Program Collaborative Project. J Mol Diagn 2020; 23:103-110. [PMID: 33197628 DOI: 10.1016/j.jmoldx.2020.10.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/14/2020] [Accepted: 10/14/2020] [Indexed: 01/21/2023] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive disorder predominately caused by bi-allelic loss of the SMN1 gene. Increased copies of SMN2, a low functioning nearly identical paralog, are associated with a less severe phenotype. SMA was recently recommended for inclusion in newborn screening. Clinical laboratories must accurately measure SMN1 and SMN2 copy number to identify SMA patients and carriers, and to identify individuals likely to benefit from therapeutic interventions. Having publicly available and appropriately characterized reference materials with various combinations of SMN1 and SMN2 copy number variants is critical to assure accurate SMA clinical testing. To address this need, the CDC-based Genetic Testing Reference Materials Coordination Program, in collaboration with members of the genetic testing community and the Coriell Institute for Medical Research, has characterized 15 SMA reference materials derived from publicly available cell lines. DNA samples were distributed to four volunteer testing laboratories for genotyping using three different methods. The characterized samples had zero to four copies of SMN1 and zero to five copies SMN2. The samples also contained clinically important allele combinations (eg, zero copies SMN1, three copies SMN2), and several had markers indicative of an SMA carrier. These and other reference materials characterized by the Genetic Testing Reference Materials Coordination Program are available from the Coriell Institute and are proposed to support the quality of clinical laboratory testing.
Collapse
|
10
|
Visconti P, Parodi F, Parodi B, Casarino L, Romano P, Buccarelli M, Pallini R, D'Alessandris QG, Montori A, Pilozzi E, Ricci-Vitiani L. Short tandem repeat profiling for the authentication of cancer stem-like cells. Int J Cancer 2020; 148:1489-1498. [PMID: 33128777 PMCID: PMC7894552 DOI: 10.1002/ijc.33370] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 11/18/2022]
Abstract
Colorectal and glioblastoma cancer stem‐like cells (CSCs) are essential for translational research. Cell line authentication by short tandem repeat (STR) profiling ensures reproducibility of results in oncology research. This technique enables to identify mislabeling or cross‐contamination of cell lines. In our study, we provide a reference dataset for a panel of colorectal and glioblastoma CSCs that allows authentication. Each cell line was entered into the cell Line Integrated Molecular Authentication database 2.1 to be compared to the STR profiles of 4485 tumor cell lines. This article also provides clinical data of patients from whom CSCs arose and data on the parent tumor stage and mutations. STR profiles and information of our CSCs are also available in the Cellosaurus database (ExPASy) as identified by unique research resource identifier codes. Human cell lines obtained from cancer stem‐like cells represent an invaluable model for studying tumor properties. Cell line authentication by short tandem repeat (STR) profiling is an important tool to identify the potential mislabeling or cross‐contamination of cell lines. Here, the authors characterized 18 colorectal cancer stem‐like cell lines from 17 patients and 103 glioblastoma cancer stem‐like cell lines from 95 patients by STR profiling to create a reference dataset that allows the authentication of these cell lines and their identification through a unique research resource identifier. The results will help further ensure the reliability and reproducibility of research experiments.
Collapse
Affiliation(s)
- Paola Visconti
- IRCCS Ospedale Policlinico San Martino, Interlab Cell Line Collection (ICLC), Biological Resource Center (CRB-HSM), Genoa, Italy
| | - Federica Parodi
- IRCCS Ospedale Policlinico San Martino, Interlab Cell Line Collection (ICLC), Biological Resource Center (CRB-HSM), Genoa, Italy
| | - Barbara Parodi
- IRCCS Ospedale Policlinico San Martino, Interlab Cell Line Collection (ICLC), Biological Resource Center (CRB-HSM), Genoa, Italy
| | - Lucia Casarino
- Department of Legal and Forensic Medicine, University of Genoa, Genoa, Italy
| | - Paolo Romano
- IRCCS Ospedale Policlinico San Martino, Proteomics Service, Scientific Direction, Genoa, Italy
| | - Mariachiara Buccarelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Roberto Pallini
- Fondazione Policlinico Universitario A. Gemelli IRCCS - Institute of Neurosurgery, Catholic University School of Medicine, Rome, Italy
| | - Quintino Giorgio D'Alessandris
- Fondazione Policlinico Universitario A. Gemelli IRCCS - Institute of Neurosurgery, Catholic University School of Medicine, Rome, Italy
| | - Andrea Montori
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, University "La Sapienza", Rome, Italy
| | - Emanuela Pilozzi
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, University "La Sapienza", Rome, Italy
| | - Lucia Ricci-Vitiani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
11
|
Osman EY, Van Alstyne M, Yen PF, Lotti F, Feng Z, Ling KK, Ko CP, Pellizzoni L, Lorson CL. Minor snRNA gene delivery improves the loss of proprioceptive synapses on SMA motor neurons. JCI Insight 2020; 5:130574. [PMID: 32516136 DOI: 10.1172/jci.insight.130574] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 05/13/2020] [Indexed: 12/17/2022] Open
Abstract
Spinal muscular atrophy (SMA) is an inherited neuromuscular disorder caused by reduced expression of the survival motor neuron (SMN) protein. SMN has key functions in multiple RNA pathways, including the biogenesis of small nuclear ribonucleoproteins that are essential components of both major (U2-dependent) and minor (U12-dependent) spliceosomes. Here we investigated the specific contribution of U12 splicing dysfunction to SMA pathology through selective restoration of this RNA pathway in mouse models of varying phenotypic severity. We show that virus-mediated delivery of minor snRNA genes specifically improves select U12 splicing defects induced by SMN deficiency in cultured mammalian cells, as well as in the spinal cord and dorsal root ganglia of SMA mice without increasing SMN expression. This approach resulted in a moderate amelioration of several parameters of the disease phenotype in SMA mice, including survival, weight gain, and motor function. Importantly, minor snRNA gene delivery improved aberrant splicing of the U12 intron-containing gene Stasimon and rescued the severe loss of proprioceptive sensory synapses on SMA motor neurons, which are early signatures of motor circuit dysfunction in mouse models. Taken together, these findings establish the direct contribution of U12 splicing dysfunction to synaptic deafferentation and motor circuit pathology in SMA.
Collapse
Affiliation(s)
- Erkan Y Osman
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Meaghan Van Alstyne
- Center for Motor Neuron Biology and Disease, Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - Pei-Fen Yen
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Francesco Lotti
- Center for Motor Neuron Biology and Disease, Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - Zhihua Feng
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Karen Ky Ling
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Chien-Ping Ko
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Livio Pellizzoni
- Center for Motor Neuron Biology and Disease, Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - Christian L Lorson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
12
|
Chen X, Sanchis-Juan A, French CE, Connell AJ, Delon I, Kingsbury Z, Chawla A, Halpern AL, Taft RJ, Bentley DR, Butchbach MER, Raymond FL, Eberle MA. Spinal muscular atrophy diagnosis and carrier screening from genome sequencing data. Genet Med 2020; 22:945-953. [PMID: 32066871 PMCID: PMC7200598 DOI: 10.1038/s41436-020-0754-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/22/2020] [Accepted: 01/24/2020] [Indexed: 11/21/2022] Open
Abstract
Purpose Spinal muscular atrophy (SMA), caused by loss of the SMN1 gene, is a leading cause of early childhood death. Due to the near identical sequences of SMN1 and SMN2, analysis of this region is challenging. Population-wide SMA screening to quantify the SMN1 copy number (CN) is recommended by the American College of Medical Genetics and Genomics. Methods We developed a method that accurately identifies the CN of SMN1 and SMN2 using genome sequencing (GS) data by analyzing read depth and eight informative reference genome differences between SMN1/2. Results We characterized SMN1/2 in 12,747 genomes, identified 1568 samples with SMN1 gains or losses and 6615 samples with SMN2 gains or losses, and calculated a pan-ethnic carrier frequency of 2%, consistent with previous studies. Additionally, 99.8% of our SMN1 and 99.7% of SMN2 CN calls agreed with orthogonal methods, with a recall of 100% for SMA and 97.8% for carriers, and a precision of 100% for both SMA and carriers. Conclusion This SMN copy-number caller can be used to identify both carrier and affected status of SMA, enabling SMA testing to be offered as a comprehensive test in neonatal care and an accurate carrier screening tool in GS sequencing projects.
Collapse
Affiliation(s)
| | - Alba Sanchis-Juan
- Department of Haematology, University of Cambridge, NHS Blood and Transplant Centre, Cambridge, UK.,NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK
| | - Courtney E French
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Andrew J Connell
- Center for Applied Clinical Genomics, Nemours Biomedical Research, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Isabelle Delon
- East Midlands and East of England NHS Genomic Laboratory Hub, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | | | | | | | | | | | - Matthew E R Butchbach
- Center for Applied Clinical Genomics, Nemours Biomedical Research, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE, USA.,Center for Pediatric Research, Nemours Biomedical Research, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE, USA.,Department of Pediatrics, Sidney Kimmel College of Medicine, Thomas Jefferson University, Philadelphia, PA, USA.,Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - F Lucy Raymond
- NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK.,Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
13
|
Carrier screening for spinal muscular atrophy with a simple test based on melting analysis. J Hum Genet 2019; 64:387-396. [DOI: 10.1038/s10038-019-0576-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/04/2019] [Accepted: 01/30/2019] [Indexed: 11/08/2022]
|
14
|
The effects of C5-substituted 2,4-diaminoquinazolines on selected transcript expression in spinal muscular atrophy cells. PLoS One 2017; 12:e0180657. [PMID: 28662219 PMCID: PMC5491266 DOI: 10.1371/journal.pone.0180657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/19/2017] [Indexed: 02/03/2023] Open
Abstract
C5-substituted 2,4-diaminoquinazolines (2,4-DAQs) ameliorate disease severity in SMA mice. It is uncertain, however, that these compounds increase SMN protein levels in vivo even though they were identified as activators of the SMN2 promoter. These compounds also regulate the expression of other transcripts in neuroblastoma cells. In this study, we investigate the mechanism by which the 2,4-DAQs regulate the expression of SMN2 as well as other targets. D156844, D158872, D157161 and D157495 (RG3039) increased SMN2 promoter-driven reporter gene activity by at least 3-fold in NSC-34 cells. These compounds, however, did not significantly increase SMN2 mRNA levels in type II SMA fibroblasts nor in NSC-34 cells, although there was a trend for these compounds increasing SMN protein in SMA fibroblasts. The number of SMN-containing gems was increased in SMA fibroblasts in response to 2,4-DAQ treatment in a dose-dependent manner. ATOH7 mRNA levels were significantly lower in type II SMA fibroblasts. 2,4-DAQs significantly increased ATOH7, DRNT1 and DRTN2 transcript levels in type II SMA fibroblasts and restored ATOH7 levels to those observed in healthy fibroblasts. These compounds also increase Atoh7 mRNA expression in NSC-34 cells. In conclusion, 2,4-DAQs regulate SMN2 by increasing protein levels and gem localization. They also increase ATOH7, DRNT1 and DRNT2 transcript levels. This study reveals that the protective effects of 2,4-DAQs in SMA may be independent of SMN2 gene regulation. These compounds could be used in concert with a proven SMN2 inducer to develop a multi-faceted approach to treating SMA.
Collapse
|