1
|
Bolano-Díaz C, Verdú-Díaz J, Díaz-Manera J. MRI for the diagnosis of limb girdle muscular dystrophies. Curr Opin Neurol 2024; 37:536-548. [PMID: 39132784 DOI: 10.1097/wco.0000000000001305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
PURPOSE OF REVIEW In the last 30 years, there have many publications describing the pattern of muscle involvement of different neuromuscular diseases leading to an increase in the information available for diagnosis. A high degree of expertise is needed to remember all the patterns described. Some attempts to use artificial intelligence or analysing muscle MRIs have been developed. We review the main patterns of involvement in limb girdle muscular dystrophies (LGMDs) and summarize the strategies for using artificial intelligence tools in this field. RECENT FINDINGS The most frequent LGMDs have a widely described pattern of muscle involvement; however, for those rarer diseases, there is still not too much information available. patients. Most of the articles still include only pelvic and lower limbs muscles, which provide an incomplete picture of the diseases. AI tools have efficiently demonstrated to predict diagnosis of a limited number of disease with high accuracy. SUMMARY Muscle MRI continues being a useful tool supporting the diagnosis of patients with LGMD and other neuromuscular diseases. However, the huge variety of patterns described makes their use in clinics a complicated task. Artificial intelligence tools are helping in that regard and there are already some accessible machine learning algorithms that can be used by the global medical community.
Collapse
Affiliation(s)
- Carla Bolano-Díaz
- The John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - José Verdú-Díaz
- The John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Jordi Díaz-Manera
- The John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Neuromuscular Diseases Laboratory, Insitut de Recerca de l'Hospital de la Santa Creu i Sant Pau
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain
| |
Collapse
|
2
|
Schurig MK, Umeh O, Henze H, Jung MJ, Gresing L, Blanchard V, von Maltzahn J, Hübner CA, Franzka P. Consequences of GMPPB deficiency for neuromuscular development and maintenance. Front Mol Neurosci 2024; 17:1356326. [PMID: 38419795 PMCID: PMC10899408 DOI: 10.3389/fnmol.2024.1356326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/30/2024] [Indexed: 03/02/2024] Open
Abstract
Guanosine diphosphate-mannose pyrophosphorylase B (GMPPB) catalyzes the conversion of mannose-1-phosphate and GTP to GDP-mannose, which is required as a mannose donor for the biosynthesis of glycan structures necessary for proper cellular functions. Mutations in GMPPB have been associated with various neuromuscular disorders such as muscular dystrophy and myasthenic syndromes. Here, we report that GMPPB protein abundance increases during brain and skeletal muscle development, which is accompanied by an increase in overall protein mannosylation. To model the human disorder in mice, we generated heterozygous GMPPB KO mice using CIRSPR/Cas9. While we were able to obtain homozygous KO mice from heterozygous matings at the blastocyst stage, homozygous KO embryos were absent beyond embryonic day E8.5, suggesting that the homozygous loss of GMPPB results in early embryonic lethality. Since patients with GMPPB loss-of-function manifest with neuromuscular disorders, we investigated the role of GMPPB in vitro. Thereby, we found that the siRNA-mediated knockdown of Gmppb in either primary myoblasts or the myoblast cell line C2C12 impaired myoblast differentiation and resulted in myotube degeneration. siRNA-mediated knockdown of Gmppb also impaired the neuron-like differentiation of N2A cells. Taken together, our data highlight the essential role of GMPPB during development and differentiation, especially in myogenic and neuronal cell types.
Collapse
Affiliation(s)
- Mona K. Schurig
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Obinna Umeh
- Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Henriette Henze
- Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - M. Juliane Jung
- Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Lennart Gresing
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Véronique Blanchard
- Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Human Medicine, Medical School Berlin, Berlin, Germany
| | - Julia von Maltzahn
- Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
- Stem Cell Biology of Aging, Faculty of Health Sciences, Brandenburg Technische Universität Cottbus-Senftenberg, Senftenberg, Germany
| | - Christian A. Hübner
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
- Center of Rare Diseases, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Patricia Franzka
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
3
|
GDP-Mannose Pyrophosphorylase B ( GMPPB)-Related Disorders. Genes (Basel) 2023; 14:genes14020372. [PMID: 36833299 PMCID: PMC9956253 DOI: 10.3390/genes14020372] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
GDP-mannose pyrophosphorylase B (GMPPB) is a cytoplasmic protein that catalyzes the formation of GDP-mannose. Impaired GMPPB function reduces the amount of GDP-mannose available for the O-mannosylation of α-dystroglycan (α-DG) and ultimately leads to disruptions of the link between α-DG and extracellular proteins, hence dystroglycanopathy. GMPPB-related disorders are inherited in an autosomal recessive manner and caused by mutations in either a homozygous or compound heterozygous state. The clinical spectrum of GMPPB-related disorders spans from severe congenital muscular dystrophy (CMD) with brain and eye abnormalities to mild forms of limb-girdle muscular dystrophy (LGMD) to recurrent rhabdomyolysis without overt muscle weakness. GMPPB mutations can also lead to the defect of neuromuscular transmission and congenital myasthenic syndrome due to altered glycosylation of the acetylcholine receptor subunits and other synaptic proteins. Such impairment of neuromuscular transmission is a unique feature of GMPPB-related disorders among dystroglycanopathies. LGMD is the most common phenotypic presentation, characterized by predominant proximal weakness involving lower more than upper limbs. Facial, ocular, bulbar, and respiratory muscles are largely spared. Some patients demonstrate fluctuating fatigable weakness suggesting neuromuscular junction involvement. Patients with CMD phenotype often also have structural brain defects, intellectual disability, epilepsy, and ophthalmic abnormalities. Creatine kinase levels are typically elevated, ranging from 2 to >50 times the upper limit of normal. Involvement of the neuromuscular junction is demonstrated by the decrement in the compound muscle action potential amplitude on low-frequency (2-3 Hz) repetitive nerve stimulation in proximal muscles but not in facial muscles. Muscle biopsies typically show myopathic changes with variable degrees of reduced α-DG expression. Higher mobility of β-DG on Western blotting represents a specific feature of GMPPB-related disorders, distinguishing it from other α-dystroglycanopathies. Patients with clinical and electrophysiologic features of neuromuscular transmission defect can respond to acetylcholinesterase inhibitors alone or combined with 3,4 diaminopyridine or salbutamol.
Collapse
|
4
|
Singh S, Singh T, Kunja C, Dhoat NS, Dhania NK. Gene-editing, immunological and iPSCs based therapeutics for muscular dystrophy. Eur J Pharmacol 2021; 912:174568. [PMID: 34656607 DOI: 10.1016/j.ejphar.2021.174568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/25/2021] [Accepted: 10/11/2021] [Indexed: 10/20/2022]
Abstract
Muscular dystrophy is a well-known genetically heterogeneous group of rare muscle disorders. This progressive disease causes the breakdown of skeletal muscles over time and leads to grave weakness. This breakdown is caused by a diverse pattern of mutations in dystrophin and dystrophin associated protein complex. These mutations lead to the production of altered proteins in response to which, the body stimulates production of various cytokines and immune cells, particularly reactive oxygen species and NFκB. Immune cells display/exhibit a dual role by inducing muscle damage and muscle repair. Various anti-oxidants, anti-inflammatory and glucocorticoid drugs serve as potent therapeutics for muscular dystrophy. Along with the above mentioned therapeutics, induced pluripotent stem cells also serve as a novel approach paving a way for personalized treatment. These pluripotent stem cells allow regeneration of large numbers of regenerative myogenic progenitors that can be administered in muscular dystrophy patients which assist in the recovery of lost muscle fibers. In this review, we have summarized gene-editing, immunological and induced pluripotent stem cell based therapeutics for muscular dystrophy treatment.
Collapse
Affiliation(s)
- Shagun Singh
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda-151001, Punjab, India
| | - Tejpal Singh
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda-151001, Punjab, India
| | - Chaitanya Kunja
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda-151001, Punjab, India
| | - Navdeep S Dhoat
- Department of Pediatrics Surgery, All India Institute of Medical Sciences, Bathinda, 151001, Punjab, India
| | - Narender K Dhania
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda-151001, Punjab, India.
| |
Collapse
|
5
|
A founder mutation in the GMPPB gene [c.1000G > A (p.Asp334Asn)] causes a mild form of limb-girdle muscular dystrophy/congenital myasthenic syndrome (LGMD/CMS) in South Indian patients. Neurogenetics 2021; 22:271-285. [PMID: 34333724 DOI: 10.1007/s10048-021-00658-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/08/2021] [Indexed: 10/20/2022]
Abstract
Twelve patients from seven unrelated South Indian families with a limb-girdle muscular dystrophy-congenital myasthenic syndrome (LGMD/CMS) phenotype and recessive inheritance underwent deep clinical phenotyping, electrophysiological evaluation, muscle histopathology, and next-generation sequencing/Sanger sequencing-based identification of the genetic defect. Homozygosity mapping was performed using high-throughput genome-wide genotyping for mapping the mutation and to evaluate the founder effect. The age of disease onset among patients ranged from childhood to 40 years of age. The key clinical manifestations observed were progressive fatigable limb-girdle weakness, muscle hypertrophy/atrophy, and preferential weakness in a dystrophic pattern. The ages at last follow-up ranged from 30 to 64 years; nine were independently ambulant, two required assistance, and one was wheelchair-bound. Lower limb muscle MRI showed varying degrees of fat replacement in the glutei, hamstrings, anterior leg muscles, and medial gastrocnemius. All patients showed significant decrement on repetitive nerve stimulation (RNS). Muscle biopsy in 7 patients revealed varying degrees of dystrophic and neurogenic changes. Treatment with pyridostigmine and/or salbutamol resulted in variable improvement in 10 patients. Genetic analysis showed an identical homozygous GMPPB mutation c.1000G > A (p.Asp334Asn) in all affected patients. A region of homozygosity (6Mbp) was observed flanking the c.1000G > A change in carrier chromosomes. This study identifies c.1000G > A in GMPPB as a common founder mutation in an ethnic community of South Indian descent with milder yet variable degree of clinical presentation of GMPPB-associated LGMD-CMS.
Collapse
|
6
|
Abstract
The limb girdle muscular dystrophies (LGMDs) are genetic muscle diseases with primary skeletal muscle involvement in persons with the ability to walk independently at some point in the disease course. They usually have increased creatine kinase levels along with patterns of fatty and fibrous deposition on muscle imaging and/or dystrophic features on muscle biopsy. Distinctive clinical features provide valuable diagnostic clues to the diagnosis and sometimes treatment of these disorders. The advent of gene and cell-based therapies; gene replacement, editing, and modulation; along with stem cell and small molecule therapies may significantly ameliorate clinical severity in the LGMDs.
Collapse
Affiliation(s)
- Jacob Bockhorst
- University of Colorado School of Medicine, Anschutz Medical Campus, Mail Stop B185, Academic Office 1, 12631 East 17th Avenue, Aurora, CO 80045, USA
| | - Matthew Wicklund
- University of Colorado School of Medicine, Anschutz Medical Campus, Mail Stop B185, Academic Office 1, 12631 East 17th Avenue, Aurora, CO 80045, USA.
| |
Collapse
|
7
|
Sun L, Shen D, Xiong T, Zhou Z, Lu X, Cui F. Limb-girdle muscular dystrophy due to GMPPB mutations: A case report and comprehensive literature review. Bosn J Basic Med Sci 2020; 20:275-280. [PMID: 30684953 PMCID: PMC7202191 DOI: 10.17305/bjbms.2019.3992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 12/19/2018] [Indexed: 11/16/2022] Open
Abstract
Mutations in the guanosine diphosphate mannose (GDP-mannose) pyrophosphorylase B (GMPPB) gene are rare. To date, 72 cases with GMPPB gene mutations have been reported. Herein, we reported a case of a 29-year-old Chinese male presenting with limb-girdle muscular dystrophy (LGMD) who was found to have two heterozygous GMPPB mutations. The patient had a progressive limb weakness for 19 years. His parents and elder brother were healthy. On examination he had a waddling gait and absent tendon reflexes in all four limbs. Electromyography showed myogenic damage. Muscle magnetic resonance imaging (MRI) showed fatty degeneration in the bilateral medial thigh muscles. High-throughput gene panel sequencing revealed that the patient carried compound heterozygous mutations in the GMPPB gene, c.553C>T (p.R185C, maternal inheritance) and c.346C>T (p.P116S, paternal inheritance). This case provides additional information regarding the phenotypic spectrum of GMPPB mutations in the Chinese population.
Collapse
Affiliation(s)
- LiuQing Sun
- Department of Neurology, Hainan Branch of Chinese PLA General Hospital, Sanya, Hainan Province, China
| | - DingGuo Shen
- Department of Neurology, Xi'an Gaoxin Hospital, Xi'an, Shanxi Province, China
| | - Ting Xiong
- Department of Neurology, Xi'an Gaoxin Hospital, Xi'an, Shanxi Province, China
| | - Zhibin Zhou
- Department of Neurology, Hainan Branch of Chinese PLA General Hospital, Sanya, Hainan Province, China
| | - Xianghui Lu
- Department of Neurology, Hainan Branch of Chinese PLA General Hospital, Sanya, Hainan Province, China
| | - Fang Cui
- Department of Neurology, Hainan Branch of Chinese PLA General Hospital, Sanya, Hainan Province, China
| |
Collapse
|
8
|
POGLUT1 biallelic mutations cause myopathy with reduced satellite cells, α-dystroglycan hypoglycosylation and a distinctive radiological pattern. Acta Neuropathol 2020; 139:565-582. [PMID: 31897643 DOI: 10.1007/s00401-019-02117-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 01/17/2023]
Abstract
Protein O-glucosyltransferase 1 (POGLUT1) activity is critical for the Notch signaling pathway, being one of the main enzymes responsible for the glycosylation of the extracellular domain of Notch receptors. A biallelic mutation in the POGLUT1 gene has been reported in one family as the cause of an adult-onset limb-girdle muscular dystrophy (LGMD R21; OMIM# 617232). As the result of a collaborative international effort, we have identified the first cohort of 15 patients with LGMD R21, from nine unrelated families coming from different countries, providing a reliable phenotype-genotype and mechanistic insight. Patients carrying novel mutations in POGLUT1 all displayed a clinical picture of limb-girdle muscle weakness. However, the age at onset was broadened from adult to congenital and infantile onset. Moreover, we now report that the unique muscle imaging pattern of "inside-to-outside" fatty degeneration observed in the original cases is indeed a defining feature of POGLUT1 muscular dystrophy. Experiments on muscle biopsies from patients revealed a remarkable and consistent decrease in the level of the NOTCH1 intracellular domain, reduction of the pool of satellite cells (SC), and evidence of α-dystroglycan hypoglycosylation. In vitro biochemical and cell-based assays suggested a pathogenic role of the novel POGLUT1 mutations, leading to reduced enzymatic activity and/or protein stability. The association between the POGLUT1 variants and the muscular phenotype was established by in vivo experiments analyzing the indirect flight muscle development in transgenic Drosophila, showing that the human POGLUT1 mutations reduced its myogenic activity. In line with the well-known role of the Notch pathway in the homeostasis of SC and muscle regeneration, SC-derived myoblasts from patients' muscle samples showed decreased proliferation and facilitated differentiation. Together, these observations suggest that alterations in SC biology caused by reduced Notch1 signaling result in muscular dystrophy in LGMD R21 patients, likely with additional contribution from α-dystroglycan hypoglycosylation. This study settles the muscular clinical phenotype linked to POGLUT1 mutations and establishes the pathogenic mechanism underlying this muscle disorder. The description of a specific imaging pattern of fatty degeneration and muscle pathology with a decrease of α-dystroglycan glycosylation provides excellent tools which will help diagnose and follow up LGMD R21 patients.
Collapse
|
9
|
van Tol W, Michelakakis H, Georgiadou E, van den Bergh P, Moraitou M, Papadimas GK, Papadopoulos C, Huijben K, Alsady M, Willemsen MA, Lefeber DJ. Toward understanding tissue-specific symptoms in dolichol-phosphate-mannose synthesis disorders; insight from DPM3-CDG. J Inherit Metab Dis 2019; 42:984-992. [PMID: 30931530 DOI: 10.1002/jimd.12095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/25/2019] [Indexed: 12/21/2022]
Abstract
The congenital disorders of glycosylation (CDG) are inborn errors of metabolism with a great genetic heterogeneity. Most CDG are caused by defects in the N-glycan biosynthesis, leading to multisystem phenotypes. However, the occurrence of tissue-restricted clinical symptoms in the various defects in dolichol-phosphate-mannose (DPM) synthesis remains unexplained. To deepen our understanding of the tissue-specific characteristics of defects in the DPM synthesis pathway, we investigated N-glycosylation and O-mannosylation in skeletal muscle of three DPM3-CDG patients presenting with muscle dystrophy and hypo-N-glycosylation of serum transferrin in only two of them. In the three patients, O-mannosylation of alpha-dystroglycan (αDG) was strongly reduced and western blot analysis of beta-dystroglycan (βDG) N-glycosylation revealed a consistent lack of one N-glycan in skeletal muscle. Recently, defective N-glycosylation of βDG has been reported in patients with mutations in guanosine-diphosphate-mannose pyrophosphorylase B (GMPPB). Thus, we suggest that aberrant O-glycosylation of αDG and N-glycosylation of βDG in skeletal muscle is indicative of a defect in the DPM synthesis pathway. Further studies should address to what extent hypo-N-glycosylation of βDG or other skeletal muscle proteins contribute to the phenotype of patients with defects in DPM synthesis. Our findings contribute to our understanding of the tissue-restricted phenotype of DPM3-CDG and other defects in the DPM synthesis pathway.
Collapse
Affiliation(s)
- Walinka van Tol
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Helen Michelakakis
- Department of Enzymology and Cellular Function, Institute of Child Health, Athens, Greece
| | - Elissavet Georgiadou
- First Department of Pediatrics, University of Athens, Aghia Sophia Children's Hospital, Athens, Greece
| | - Peter van den Bergh
- Neuromuscular Reference Center, University Hospital St-Luc, University of Louvain, Brussels, Belgium
| | - Marina Moraitou
- Department of Enzymology and Cellular Function, Institute of Child Health, Athens, Greece
| | - George K Papadimas
- First Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Constantinos Papadopoulos
- First Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Karin Huijben
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mohammad Alsady
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Michèl A Willemsen
- Department of Pediatric Neurology, Amalia Children's Hospital, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dirk J Lefeber
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
10
|
Sarkozy A, Torelli S, Mein R, Henderson M, Phadke R, Feng L, Sewry C, Ala P, Yau M, Bertoli M, Willis T, Hammans S, Manzur A, Sframeli M, Norwood F, Rakowicz W, Radunovic A, Vaidya SS, Parton M, Walker M, Marino S, Offiah C, Farrugia ME, Mamutse G, Marini-Bettolo C, Wraige E, Beeson D, Lochmüller H, Straub V, Bushby K, Barresi R, Muntoni F. Mobility shift of beta-dystroglycan as a marker of GMPPB gene-related muscular dystrophy. J Neurol Neurosurg Psychiatry 2018; 89:762-768. [PMID: 29437916 DOI: 10.1136/jnnp-2017-316956] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 12/20/2017] [Accepted: 01/03/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Defects in glycosylation of alpha-dystroglycan (α-DG) cause autosomal-recessive disorders with wide clinical and genetic heterogeneity, with phenotypes ranging from congenital muscular dystrophies to milder limb girdle muscular dystrophies. Patients show variable reduction of immunoreactivity to antibodies specific for glycoepitopes of α-DG on a muscle biopsy. Recessive mutations in 18 genes, including guanosine diphosphate mannose pyrophosphorylase B (GMPPB), have been reported to date. With no specific clinical and pathological handles, diagnosis requires parallel or sequential analysis of all known genes. METHODS We describe clinical, genetic and biochemical findings of 21 patients with GMPPB-associated dystroglycanopathy. RESULTS We report eight novel mutations and further expand current knowledge on clinical and muscle MRI features of this condition. In addition, we report a consistent shift in the mobility of beta-dystroglycan (β-DG) on Western blot analysis of all patients analysed by this mean. This was only observed in patients with GMPPB in our large dystroglycanopathy cohort. We further demonstrate that this mobility shift in patients with GMPPB was due to abnormal N-linked glycosylation of β-DG. CONCLUSIONS Our data demonstrate that a change in β-DG electrophoretic mobility in patients with dystroglycanopathy is a distinctive marker of the molecular defect in GMPPB.
Collapse
Affiliation(s)
- Anna Sarkozy
- Dubowitz Neuromuscular Centre, MRC Centre for Neuromuscular Diseases, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Silvia Torelli
- Dubowitz Neuromuscular Centre, MRC Centre for Neuromuscular Diseases, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Rachael Mein
- DNA Laboratory, Viapath, Guy's Hospital, London, UK
| | - Matt Henderson
- Rare Diseases Advisory Group Service for Neuromuscular Diseases, Muscle Immunoanalysis Unit, Dental Hospital, Newcastle upon Tyne, UK
| | - Rahul Phadke
- Dubowitz Neuromuscular Centre, MRC Centre for Neuromuscular Diseases, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Lucy Feng
- Dubowitz Neuromuscular Centre, MRC Centre for Neuromuscular Diseases, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Caroline Sewry
- Dubowitz Neuromuscular Centre, MRC Centre for Neuromuscular Diseases, UCL Great Ormond Street Institute of Child Health, London, UK.,The Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, UK
| | - Pierpaolo Ala
- Dubowitz Neuromuscular Centre, MRC Centre for Neuromuscular Diseases, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Michael Yau
- DNA Laboratory, Viapath, Guy's Hospital, London, UK
| | - Marta Bertoli
- The John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases Institute of Genetic Medicine, University of Newcastle, Newcastle upon Tyne, UK.,Northern Genetics Service, Newcastle upon Tyne NHS Trust, Newcastle upon Tyne, UK
| | - Tracey Willis
- The Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, UK
| | - Simon Hammans
- Wessex Neurological Centre, University Hospital of Southampton, Southampton, UK
| | - Adnan Manzur
- Dubowitz Neuromuscular Centre, MRC Centre for Neuromuscular Diseases, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Maria Sframeli
- Dubowitz Neuromuscular Centre, MRC Centre for Neuromuscular Diseases, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Fiona Norwood
- Department of Neurology, King's College Hospital, London, UK
| | - Wojtek Rakowicz
- Department of Neurology, Hampshire Hospitals NHS Foundation Trust, Royal Hampshire County Hospital, Winchester, UK
| | | | | | - Matt Parton
- MRC Centre for Neuromuscular Diseases, Institute of Neurology, University College London, London, UK
| | - Mark Walker
- Department of Cellular Pathology, Southampton University Hospitals, Southampton, UK
| | - Silvia Marino
- Queen Mary University of London, Barts and the London School of Medicine and Dentistry, London, UK
| | - Curtis Offiah
- Department of Radiology, Royal London Hospital, London, UK
| | - Maria Elena Farrugia
- Department of Neurology, Institute of Neurological Sciences, Southern General Hospital, Glasgow, UK
| | - Godwin Mamutse
- Department of Neurology, Norfolk and Norwich University Hospital, Norwich, UK
| | - Chiara Marini-Bettolo
- The John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases Institute of Genetic Medicine, University of Newcastle, Newcastle upon Tyne, UK
| | - Elizabeth Wraige
- Department of Paediatric Neurology, Neuromuscular Service, Evelina Children's Hospital, St Thomas' Hospital, London, UK
| | - David Beeson
- Neuromuscular Disorders Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, Oxford, UK
| | - Hanns Lochmüller
- The John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases Institute of Genetic Medicine, University of Newcastle, Newcastle upon Tyne, UK
| | - Volker Straub
- The John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases Institute of Genetic Medicine, University of Newcastle, Newcastle upon Tyne, UK
| | - Kate Bushby
- The John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases Institute of Genetic Medicine, University of Newcastle, Newcastle upon Tyne, UK
| | - Rita Barresi
- Rare Diseases Advisory Group Service for Neuromuscular Diseases, Muscle Immunoanalysis Unit, Dental Hospital, Newcastle upon Tyne, UK.,The John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases Institute of Genetic Medicine, University of Newcastle, Newcastle upon Tyne, UK
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, MRC Centre for Neuromuscular Diseases, UCL Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
11
|
Orsini M, Carolina A, Ferreira ADF, de Assis ACD, Magalhães T, Teixeira S, Bastos VH, Marinho V, Oliveira T, Fiorelli R, Oliveira AB, de Freitas MR. Cognitive impairment in neuromuscular diseases: A systematic review. Neurol Int 2018; 10:7473. [PMID: 30069288 PMCID: PMC6050451 DOI: 10.4081/ni.2018.7473] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/04/2017] [Accepted: 12/12/2017] [Indexed: 12/12/2022] Open
Abstract
Neuromuscular diseases are multifactorial pathologies characterized by extensive muscle fiber damage that leads to the activation of satellite cells and to the exhaustion of their pool, with consequent impairment of neurobiological aspects, such as cognition and motor control. To review the knowledge and obtain a broad view of the cognitive impairment on Neuromuscular Diseases. Cognitive impairment in neuromuscular disease was explored; a literature search up to October 2017 was conducted, including experimental studies, case reports and reviews written in English. Keywords included Cognitive Impairment, Neuromuscular Diseases, Motor Neuron Diseases, Dystrophinopathies and Mitochondrial Disorders. Several cognitive evaluation scales, neuroimaging scans, genetic analysis and laboratory applications in neuromuscular diseases, especially when it comes to the Motor Neuron Diseases, Dystrophinopathies and Mitochondrial Disorders. In addition, organisms model using rats in the genetic analysis and laboratory applications to verify the cognitive and neuromuscular impacts. Several studies indicate that congenital molecular alterations in neuromuscular diseases promote cognitive dysfunctions. Understanding these mechanisms may in the future guide the proper management of the patient, evaluation, establishment of prognosis, choice of treatment and development of innovative interventions such as gene therapy.
Collapse
Affiliation(s)
- Marco Orsini
- Master’s Program in Health Applied Sciences, Severino Sombra University, Vasssouras, Rio de Janeiro
- Brain Mapping and Plasticity Laboratory, Federal University of Piauí, Parnaíba
| | | | | | - Anna Carolina Damm de Assis
- Department of Neurology, Federal Fluminense University, Rio de Janeiro
- Department of Neurology, Federal University of São Paulo
| | - Thais Magalhães
- Department of Neurology, Federal Fluminense University, Rio de Janeiro
| | - Silmar Teixeira
- Brain Mapping and Plasticity Laboratory, Federal University of Piauí, Parnaíba
| | - Victor Hugo Bastos
- Brain Mapping and Plasticity Laboratory, Federal University of Piauí, Parnaíba
| | - Victor Marinho
- Brain Mapping and Plasticity Laboratory, Federal University of Piauí, Parnaíba
| | - Thomaz Oliveira
- Brain Mapping and Plasticity Laboratory, Federal University of Piauí, Parnaíba
| | - Rossano Fiorelli
- Master’s Program in Health Applied Sciences, Severino Sombra University, Vasssouras, Rio de Janeiro
| | | | | |
Collapse
|