1
|
Hoskens J, Paulussen S, Goemans N, Feys H, De Waele L, Klingels K. Early motor, cognitive, language, behavioural and social emotional development in infants and young boys with Duchenne Muscular Dystrophy- A systematic review. Eur J Paediatr Neurol 2024; 52:29-51. [PMID: 39003996 DOI: 10.1016/j.ejpn.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/11/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024]
Abstract
Duchenne Muscular Dystrophy (DMD) is an X-linked recessive disorder caused by mutations in the dystrophin gene. Deficiency of the dystrophin protein causes not only motor, but also cognitive, language, behavioural and social emotional problems. This is the first systematic review investigating five early developmental domains in boys with DMD between 0 and 6 years old. Interactions between different domains and links with mutation types and sites were explored. A systematic search was performed in PubMed, Web of Science and Scopus. An adapted version of the Scottish Intercollegiate Guidelines Network (SIGN) Checklists for case-control and cohort studies was used to evaluate quality. Fifty-five studies of high or acceptable quality were included. One was an RCT of level 1b; 50 were cohort studies of level 2b; and four were an aggregation of case-control and cohort studies receiving levels 2b and 3b. We found that young boys with DMD experienced problems in all five developmental domains, with significant interactions between these. Several studies also showed relationships between mutation sites and outcomes. We conclude that DMD is not only characterised by motor problems but by a more global developmental delay with a large variability between boys. Our results emphasise the need for harmonisation in evaluation and follow-up of young boys with DMD. More high-quality research is needed on the different early developmental domains in young DMD to facilitate early detection of difficulties and identification of associated early intervention strategies.
Collapse
Affiliation(s)
- Jasmine Hoskens
- Faculty of Rehabilitation Sciences, Rehabilitation Research Centre (REVAL), UHasselt, Campus Diepenbeek, Agoralaan, 3590, Diepenbeek, Hasselt, Belgium; Department of Rehabilitation Sciences, Research Group for Neurorehabilitation (eNRGy), KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | - Silke Paulussen
- Faculty of Rehabilitation Sciences, Rehabilitation Research Centre (REVAL), UHasselt, Campus Diepenbeek, Agoralaan, 3590, Diepenbeek, Hasselt, Belgium
| | - Nathalie Goemans
- Department of Child Neurology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Hilde Feys
- Department of Rehabilitation Sciences, Research Group for Neurorehabilitation (eNRGy), KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Liesbeth De Waele
- Department of Child Neurology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium; Department of Development and Regeneration, KU Leuven, 3000, Leuven, Belgium
| | - Katrijn Klingels
- Faculty of Rehabilitation Sciences, Rehabilitation Research Centre (REVAL), UHasselt, Campus Diepenbeek, Agoralaan, 3590, Diepenbeek, Hasselt, Belgium; Department of Rehabilitation Sciences, Research Group for Neurorehabilitation (eNRGy), KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| |
Collapse
|
2
|
Mercuri E, Pane M, Cicala G, Brogna C, Ciafaloni E. Detecting early signs in Duchenne muscular dystrophy: comprehensive review and diagnostic implications. Front Pediatr 2023; 11:1276144. [PMID: 38027286 PMCID: PMC10667703 DOI: 10.3389/fped.2023.1276144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
Despite the early onset of clinical signs suggestive of Duchenne muscular dystrophy (DMD), a diagnosis is often not made until four years of age or older, with a diagnostic delay of up to two years from the appearance of the first symptoms. As disease-modifying therapies for DMD become available that are ideally started early before irreversible muscle damage occurs, the importance of avoiding diagnostic delay increases. Shortening the time to a definite diagnosis in DMD allows timely genetic counseling and assessment of carrier status, initiation of multidisciplinary standard care, timely initiation of appropriate treatments, and precise genetic mutation characterization to assess suitability for access to drugs targeted at specific mutations while reducing the emotional and psychological family burden of the disease. This comprehensive literature review describes the early signs of impairment in DMD and highlights the bottlenecks related to the different diagnostic steps. In summary, the evidence suggests that the best mitigation strategy for improving the age at diagnosis is to increase awareness of the early symptoms of DMD and encourage early clinical screening with an inexpensive and sensitive serum creatine kinase test in all boys who present signs of developmental delay and specific motor test abnormality at routine pediatrician visits.
Collapse
Affiliation(s)
- Eugenio Mercuri
- Pediatric Neurology, Università Cattolica del Sacro Cuore, Rome, Italy
- Centro Clinico Nemo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Marika Pane
- Pediatric Neurology, Università Cattolica del Sacro Cuore, Rome, Italy
- Centro Clinico Nemo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Gianpaolo Cicala
- Pediatric Neurology, Università Cattolica del Sacro Cuore, Rome, Italy
- Centro Clinico Nemo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Claudia Brogna
- Pediatric Neurology, Università Cattolica del Sacro Cuore, Rome, Italy
- Centro Clinico Nemo, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Emma Ciafaloni
- Department of Neurology, University of Rochester, Rochester, NY, United States
| |
Collapse
|
3
|
Armstrong N, Schrader R, Fischer R, Crossnohere N. Duchenne expert physician perspectives on Duchenne newborn screening and early Duchenne care. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2022; 190:162-168. [PMID: 35932090 PMCID: PMC9804401 DOI: 10.1002/ajmg.c.31993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/05/2022] [Accepted: 07/19/2022] [Indexed: 01/05/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a progressive, fatal neuromuscular disorder typically diagnosed between 4 and 5 years of age. DMD currently has five FDA approved therapies, which has led to increased interest in newborn screening (NBS) for DMD. Our objective was to explore the perspectives and predicted practices of physicians (primarily neurologists) who will likely be responsible for the follow-up of infants identified with DMD through NBS. A short survey was developed and distributed to physicians who are responsible for providing care for patients with Duchenne at Certified Duchenne Care Centers across the USA. Twenty-seven physicians responded to statements about benefit and readiness for dystrophinopathy NBS, which care recommendations they would make at initial infant visits, and when they would recommend initiating approved therapies. Most DMD physicians indicated they see benefit in NBS (82%) and believe the DMD care community is ready for NBS in dystrophinopathies (74%). The majority of physicians would recommend multiple interventions, including genetic counseling, maternal carrier testing, referral to early intervention services, screening siblings, discussion of clinical trials, exon skipping therapies, and assessment of social and language development at initial visits. The majority of physicians also indicated they would recommend initiating approved therapies much earlier than the typical age of diagnosis.
Collapse
Affiliation(s)
- Niki Armstrong
- Parent Project Muscular DystrophyWashingtonDistrict of ColumbiaUSA
| | - Rachel Schrader
- Parent Project Muscular DystrophyWashingtonDistrict of ColumbiaUSA
| | - Ryan Fischer
- Parent Project Muscular DystrophyWashingtonDistrict of ColumbiaUSA
| | - Norah Crossnohere
- Parent Project Muscular DystrophyWashingtonDistrict of ColumbiaUSA,Present address:
College of Medicine, Department of Internal MedicineDivision of General Internal Medicine, The Ohio State UniversityColumbusOhioUSA
| |
Collapse
|
4
|
Schiava M, Amos R, VanRuiten H, McDermott MP, Martens WB, Gregory S, Mayhew A, McColl E, Tawil R, Willis T, Bushby K, Griggs RC, Guglieri M. Clinical and Genetic Characteristics in Young, Glucocorticoid-Naive Boys With Duchenne Muscular Dystrophy. Neurology 2022; 98:e390-e401. [PMID: 34857536 PMCID: PMC8793104 DOI: 10.1212/wnl.0000000000013122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 11/16/2021] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Duchenne muscular dystrophy (DMD) is a pediatric neuromuscular disorder caused by mutations in the dystrophin gene. Genotype-phenotype associations have been examined in glucocorticoid-treated boys, but there are few data on the young glucocorticoid-naive DMD population. A sample of young glucocorticoid-naive DMD boys is described, and genotype-phenotype associations are investigated. METHODS Screening and baseline data were collected for all the participants in the Finding the Optimum Corticosteroid Regime for Duchenne Muscular Dystrophy (FOR-DMD) study, an international, multicenter, randomized, double-blind, clinical trial comparing 3 glucocorticoid regimens in glucocorticoid-naive, genetically confirmed boys with DMD between 4 and <8 years of age. RESULTS One hundred ninety-six boys were recruited. The mean ± SD age at randomization was 5.8 ± 1.0 years. The predominant mutation type was out-of-frame deletions (67.4%, 130 of 193), of which 68.5% (89 of 130) were amenable to exon skipping. The most frequent mutations were deletions amenable to exon 51 skipping (13.0%, 25 of 193). Stop codon mutations accounted for 10.4% (20 of 193). The mean age at first parental concerns was 29.8 ± 18.7 months; the mean age at genetic diagnosis was 53.9 ± 21.9 months; and the mean diagnostic delay was 25.9 ± 18.2 months. The mean diagnostic delay for boys diagnosed after an incidental finding of isolated hyperCKemia (n = 19) was 6.4 ± 7.4 months. The mean ages at independent walking and talking in sentences were 17.1 ± 4.2 and 29.0 ± 10.7 months, respectively. Median height percentiles were below the 25th percentile regardless of age group. No genotype-phenotype associations were identified expect for boys with exon 8 skippable deletions, who had better performance on time to walk/run 10 m (p = 0.02) compared to boys with deletions not amenable to skipping. DISCUSSION This study describes clinical and genetic characteristics of a sample of young glucocorticoid-naive boys with DMD. A low threshold for creatine kinase testing can lead to an earlier diagnosis. Motor and speech delays were common presenting symptoms. The effects of low pretreatment height on growth and adult height require further study. These findings may promote earlier recognition of DMD and inform study design for future clinical trials. TRIAL REGISTRATION INFORMATION: ClinicalTrials.gov Identifier: NCT01603407.
Collapse
Affiliation(s)
- Marianela Schiava
- From the John Walton Muscular Dystrophy Research Centre (M.S., A.M., K.B., M.G.), Clinical and Translational Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trusts; Great North Children Hospital (R.A., H.V.R.), Newcastle Hospitals NHS Foundation Trusts, UK; Department of Biostatistics and Computational Biology (M.P.M.) and Department of Neurology (M.P.M., W.B.M., S.G., R.T., R.C.G.), University of Rochester Medical Centre, NY; Newcastle University (E.M.); and The Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust (T.W.), Oswestry, UK
| | - Rachel Amos
- From the John Walton Muscular Dystrophy Research Centre (M.S., A.M., K.B., M.G.), Clinical and Translational Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trusts; Great North Children Hospital (R.A., H.V.R.), Newcastle Hospitals NHS Foundation Trusts, UK; Department of Biostatistics and Computational Biology (M.P.M.) and Department of Neurology (M.P.M., W.B.M., S.G., R.T., R.C.G.), University of Rochester Medical Centre, NY; Newcastle University (E.M.); and The Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust (T.W.), Oswestry, UK
| | - Henriette VanRuiten
- From the John Walton Muscular Dystrophy Research Centre (M.S., A.M., K.B., M.G.), Clinical and Translational Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trusts; Great North Children Hospital (R.A., H.V.R.), Newcastle Hospitals NHS Foundation Trusts, UK; Department of Biostatistics and Computational Biology (M.P.M.) and Department of Neurology (M.P.M., W.B.M., S.G., R.T., R.C.G.), University of Rochester Medical Centre, NY; Newcastle University (E.M.); and The Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust (T.W.), Oswestry, UK
| | - Michael P McDermott
- From the John Walton Muscular Dystrophy Research Centre (M.S., A.M., K.B., M.G.), Clinical and Translational Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trusts; Great North Children Hospital (R.A., H.V.R.), Newcastle Hospitals NHS Foundation Trusts, UK; Department of Biostatistics and Computational Biology (M.P.M.) and Department of Neurology (M.P.M., W.B.M., S.G., R.T., R.C.G.), University of Rochester Medical Centre, NY; Newcastle University (E.M.); and The Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust (T.W.), Oswestry, UK
| | - Williams B Martens
- From the John Walton Muscular Dystrophy Research Centre (M.S., A.M., K.B., M.G.), Clinical and Translational Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trusts; Great North Children Hospital (R.A., H.V.R.), Newcastle Hospitals NHS Foundation Trusts, UK; Department of Biostatistics and Computational Biology (M.P.M.) and Department of Neurology (M.P.M., W.B.M., S.G., R.T., R.C.G.), University of Rochester Medical Centre, NY; Newcastle University (E.M.); and The Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust (T.W.), Oswestry, UK
| | - Stephanie Gregory
- From the John Walton Muscular Dystrophy Research Centre (M.S., A.M., K.B., M.G.), Clinical and Translational Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trusts; Great North Children Hospital (R.A., H.V.R.), Newcastle Hospitals NHS Foundation Trusts, UK; Department of Biostatistics and Computational Biology (M.P.M.) and Department of Neurology (M.P.M., W.B.M., S.G., R.T., R.C.G.), University of Rochester Medical Centre, NY; Newcastle University (E.M.); and The Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust (T.W.), Oswestry, UK
| | - Anna Mayhew
- From the John Walton Muscular Dystrophy Research Centre (M.S., A.M., K.B., M.G.), Clinical and Translational Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trusts; Great North Children Hospital (R.A., H.V.R.), Newcastle Hospitals NHS Foundation Trusts, UK; Department of Biostatistics and Computational Biology (M.P.M.) and Department of Neurology (M.P.M., W.B.M., S.G., R.T., R.C.G.), University of Rochester Medical Centre, NY; Newcastle University (E.M.); and The Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust (T.W.), Oswestry, UK
| | - Elaine McColl
- From the John Walton Muscular Dystrophy Research Centre (M.S., A.M., K.B., M.G.), Clinical and Translational Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trusts; Great North Children Hospital (R.A., H.V.R.), Newcastle Hospitals NHS Foundation Trusts, UK; Department of Biostatistics and Computational Biology (M.P.M.) and Department of Neurology (M.P.M., W.B.M., S.G., R.T., R.C.G.), University of Rochester Medical Centre, NY; Newcastle University (E.M.); and The Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust (T.W.), Oswestry, UK
| | - Rabi Tawil
- From the John Walton Muscular Dystrophy Research Centre (M.S., A.M., K.B., M.G.), Clinical and Translational Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trusts; Great North Children Hospital (R.A., H.V.R.), Newcastle Hospitals NHS Foundation Trusts, UK; Department of Biostatistics and Computational Biology (M.P.M.) and Department of Neurology (M.P.M., W.B.M., S.G., R.T., R.C.G.), University of Rochester Medical Centre, NY; Newcastle University (E.M.); and The Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust (T.W.), Oswestry, UK
| | - Tracey Willis
- From the John Walton Muscular Dystrophy Research Centre (M.S., A.M., K.B., M.G.), Clinical and Translational Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trusts; Great North Children Hospital (R.A., H.V.R.), Newcastle Hospitals NHS Foundation Trusts, UK; Department of Biostatistics and Computational Biology (M.P.M.) and Department of Neurology (M.P.M., W.B.M., S.G., R.T., R.C.G.), University of Rochester Medical Centre, NY; Newcastle University (E.M.); and The Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust (T.W.), Oswestry, UK
| | - Kate Bushby
- From the John Walton Muscular Dystrophy Research Centre (M.S., A.M., K.B., M.G.), Clinical and Translational Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trusts; Great North Children Hospital (R.A., H.V.R.), Newcastle Hospitals NHS Foundation Trusts, UK; Department of Biostatistics and Computational Biology (M.P.M.) and Department of Neurology (M.P.M., W.B.M., S.G., R.T., R.C.G.), University of Rochester Medical Centre, NY; Newcastle University (E.M.); and The Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust (T.W.), Oswestry, UK
| | - Robert C Griggs
- From the John Walton Muscular Dystrophy Research Centre (M.S., A.M., K.B., M.G.), Clinical and Translational Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trusts; Great North Children Hospital (R.A., H.V.R.), Newcastle Hospitals NHS Foundation Trusts, UK; Department of Biostatistics and Computational Biology (M.P.M.) and Department of Neurology (M.P.M., W.B.M., S.G., R.T., R.C.G.), University of Rochester Medical Centre, NY; Newcastle University (E.M.); and The Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust (T.W.), Oswestry, UK
| | - Michela Guglieri
- From the John Walton Muscular Dystrophy Research Centre (M.S., A.M., K.B., M.G.), Clinical and Translational Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trusts; Great North Children Hospital (R.A., H.V.R.), Newcastle Hospitals NHS Foundation Trusts, UK; Department of Biostatistics and Computational Biology (M.P.M.) and Department of Neurology (M.P.M., W.B.M., S.G., R.T., R.C.G.), University of Rochester Medical Centre, NY; Newcastle University (E.M.); and The Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust (T.W.), Oswestry, UK.
| |
Collapse
|
5
|
Sadler KJ, Gatta PAD, Naim T, Wallace MA, Lee A, Zaw T, Lindsay A, Chung RS, Bello L, Pegoraro E, Lamon S, Lynch GS, Russell AP. Striated muscle activator of Rho signalling (STARS) overexpression in the mdx mouse enhances muscle functional capacity and regulates the actin cytoskeleton and oxidative phosphorylation pathways. Exp Physiol 2021; 106:1597-1611. [PMID: 33963617 DOI: 10.1113/ep089253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 05/04/2021] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Striated muscle activator of rho signalling (STARS) is an actin-binding protein that regulates transcriptional pathways controlling muscle function, growth and myogenesis, processes that are impaired in dystrophic muscle: what is the regulation of the STARS pathway in Duchenne muscular dystrophy (DMD)? What is the main finding and its importance? Members of the STARS signalling pathway are reduced in the quadriceps of patients with DMD and in mouse models of muscular dystrophy. Overexpression of STARS in the dystrophic deficient mdx mouse model increased maximal isometric specific force and upregulated members of the actin cytoskeleton and oxidative phosphorylation pathways. Regulating STARS may be a therapeutic approach to enhance muscle health. ABSTRACT Duchenne muscular dystrophy (DMD) is characterised by impaired cytoskeleton organisation, cytosolic calcium handling, oxidative stress and mitochondrial dysfunction. This results in progressive muscle damage, wasting and weakness and premature death. The striated muscle activator of rho signalling (STARS) is an actin-binding protein that activates the myocardin-related transcription factor-A (MRTFA)/serum response factor (SRF) transcriptional pathway, a pathway regulating cytoskeletal structure and muscle function, growth and repair. We investigated the regulation of the STARS pathway in the quadriceps muscle from patients with DMD and in the tibialis anterior (TA) muscle from the dystrophin-deficient mdx and dko (utrophin and dystrophin null) mice. Protein levels of STARS, SRF and RHOA were reduced in patients with DMD. STARS, SRF and MRTFA mRNA levels were also decreased in DMD muscle, while Stars mRNA levels were decreased in the mdx mice and Srf and Mrtfa mRNAs decreased in the dko mice. Overexpressing human STARS (hSTARS) in the TA muscles of mdx mice increased maximal isometric specific force by 13% (P < 0.05). This was not associated with changes in muscle mass, fibre cross-sectional area, fibre type, centralised nuclei or collagen deposition. Proteomics screening followed by pathway enrichment analysis identified that hSTARS overexpression resulted in 31 upregulated and 22 downregulated proteins belonging to the actin cytoskeleton and oxidative phosphorylation pathways. These pathways are impaired in dystrophic muscle and regulate processes that are vital for muscle function. Increasing the STARS protein in dystrophic muscle improves muscle force production, potentially via synergistic regulation of cytoskeletal structure and energy production.
Collapse
Affiliation(s)
- Kate J Sadler
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Paul A Della Gatta
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Timur Naim
- Department of Physiology, Centre for Muscle Research, University of Melbourne, Parkville, Victoria, Australia
| | - Marita A Wallace
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Albert Lee
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Centre for Motor Neuron Disease Research, Macquarie University, Sydney, New South Wales, Australia
| | - Thiri Zaw
- Australian Proteome Analysis Facility, Macquarie University, Sydney, New South Wales, Australia
| | - Angus Lindsay
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Roger S Chung
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Centre for Motor Neuron Disease Research, Macquarie University, Sydney, New South Wales, Australia
| | - Luca Bello
- Department of Neurosciences, ERN Neuromuscular Center, University of Padua, Padua, Italy
| | - Elena Pegoraro
- Department of Neurosciences, ERN Neuromuscular Center, University of Padua, Padua, Italy
| | - Séverine Lamon
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Gordon S Lynch
- Department of Physiology, Centre for Muscle Research, University of Melbourne, Parkville, Victoria, Australia
| | - Aaron P Russell
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
6
|
Glanzman AM, Jones J, Thompson CZ, Pendergast EA, Beam M, Hughes AL, King M, Brandsema J, Horn B. Rehabilitation Following Fracture in Dystrophinopathy, A Case Series. J Neuromuscul Dis 2020; 7:343-354. [PMID: 32417791 DOI: 10.3233/jnd-200470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Boys with dystrophinopathies (DMD) are at increased risk of low bone mineral density and fracture. Femoral fracture is the most common extremity fracture and is accompanied by significant risk of functional loss. Care considerations for DMD have stressed that aggressive management may be needed to maintain ambulation and that surgical fixation allows early mobilization. OBJECTIVES Describe 5 cases of femoral fracture in ambulatory boys with DMD and the course of care undertaken to optimize function. PATIENTS Five boys with DMD median age 15y (12-16) who were independently ambulatory. Median 10m walk speed prior to their first fracture was 8 sec (7-17.37) and 4 of 5 were less than the 9 seconds predictive of 2 year ambulation retention. Three of the cases had a single incident causing fracture; the remaining cases had 2 and 3 incidents respectively representing a total of 8 fractures 6 of which were surgically stabilized. RESULTS Following the first fracture, all 5 subjects regained some form of ambulation. Three patients regained independent ambulation and 2 with hand held support or contact guard. Two subjects went on to have additional falls with associated fracture. No patient regained the ability to rise from the floor and only one of the 5 regained the ability to climb steps and all demonstrated a decline in walking speed. CONCLUSION Prompt orthopedic intervention, early mobility, and intensive rehabilitation even in the end stage ambulatory patient, were factors in helping preserve function in these patients with dystrophinopathies.
Collapse
Affiliation(s)
- Allan M Glanzman
- Department of Physical Therapy, Children's Hospital of Philadelphia, Philadelphia PA
| | - Jennifer Jones
- Department of Physical Therapy, Children's Hospital of Philadelphia, Philadelphia PA
| | - Christina Z Thompson
- Department of Physical Therapy, Children's Hospital of Philadelphia, Philadelphia PA
| | | | - Megan Beam
- Department of Physical Therapy, Children's Hospital of Philadelphia, Philadelphia PA
| | - Amanda L Hughes
- Department of Physical Therapy, Children's Hospital of Philadelphia, Philadelphia PA
| | - Michael King
- Center for Rehabilitation, Children's Hospital of Philadelphia, Philadelphia PA.,Perelman School of Medicine at The University of Pennsylvania, Philadelphia PA
| | - John Brandsema
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia PA.,Perelman School of Medicine at The University of Pennsylvania, Philadelphia PA
| | - Bernard Horn
- Department of Orthopedics, Children's Hospital of Philadelphia, Philadelphia PA.,Perelman School of Medicine at The University of Pennsylvania, Philadelphia PA
| |
Collapse
|
7
|
Sahay KM, Smith T, Conway KM, Romitti PA, Lamb MM, Andrews J, Pandya S, Oleszek J, Cunniff C, Valdez R. A Review of MD STAR net's Research Contributions to Pediatric-Onset Dystrophinopathy in the United States; 2002-2017. J Child Neurol 2019; 34:44-53. [PMID: 30345857 PMCID: PMC6444919 DOI: 10.1177/0883073818801704] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Population studies of rare disorders, such as Duchenne and Becker muscular dystrophies (dystrophinopathies), are challenging due to diagnostic delay and heterogeneity in disorder milestones. To address these challenges, the Centers for Disease Control and Prevention established the Muscular Dystrophy Surveillance, Tracking, and Research Network (MD STAR net) in 2002 in the United States. From 2002 to 2012, MD STAR net longitudinally tracked the prevalence, clinical, and health care outcomes of 1054 individuals born from 1982 to 2011 with pediatric-onset dystrophinopathy through medical record abstraction and survey data collection. This article summarizes 31 MD STAR net peer-reviewed publications. MD STAR net provided the first population-based prevalence estimates of childhood-onset dystrophinopathy in the United States. Additional publications provided insights into diagnostic delay, dystrophinopathy-specific growth charts, and health services use. Ongoing population-based surveillance continually improves our understanding of clinical and diagnostic outcomes of rare disorders.
Collapse
Affiliation(s)
| | - Tiffany Smith
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Paul A. Romitti
- Department of Epidemiology, University of Iowa, Iowa City, IA, USA
| | - Molly M. Lamb
- Department of Epidemiology, University of Colorado, Aurora, CO, USA
| | - Jennifer Andrews
- Department of Pediatrics, University of Arizona, Tucson, AZ, USA
| | - Shree Pandya
- Department of Neurology, University of Rochester, Rochester, NY, USA
| | - Joyce Oleszek
- Department of Physical Medicine and Rehabilitation, University of Colorado School of Medicine and Children’s Hospital Colorado, Aurora, CO, USA
| | | | - Rodolfo Valdez
- Centers for Disease Control and Prevention, National Center for Birth Defects and Developmental Disabilities, DHDD, Rare Disorders and Health Outcomes team, Atlanta, GA, USA
| | | |
Collapse
|
8
|
Aartsma-Rus A, Mercuri E, Vroom E, Balabanov P. Meeting report of the “Regulatory Exchange Matters” session at the 5th International TREAT-NMD Conference:. Neuromuscul Disord 2018; 28:619-623. [DOI: 10.1016/j.nmd.2018.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 04/11/2018] [Indexed: 10/17/2022]
|