1
|
Ibarra Moreno CA, Silva HCA, Voermans NC, Jungbluth H, van den Bersselaar LR, Rendu J, Cieniewicz A, Hopkins PM, Riazi S. Myopathic manifestations across the adult lifespan of patients with malignant hyperthermia susceptibility: a narrative review. Br J Anaesth 2024; 133:759-767. [PMID: 39107166 PMCID: PMC11443134 DOI: 10.1016/j.bja.2024.05.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 08/09/2024] Open
Abstract
Malignant hyperthermia susceptibility (MHS) designates individuals at risk of developing a hypermetabolic reaction triggered by halogenated anaesthetics or the depolarising neuromuscular blocking agent suxamethonium. Over the past few decades, beyond the operating theatre, myopathic manifestations impacting daily life are increasingly recognised as a prevalent phenomenon in MHS patients. At the request of the European Malignant Hyperthermia Group, we reviewed the literature and gathered the opinion of experts to define MHS-related myopathy as a distinct phenotype expressed across the adult lifespan of MHS patients unrelated to anaesthetic exposure; this serves to raise awareness about non-anaesthetic manifestations, potential therapies, and management of MHS-related myopathy. We focused on the clinical presentation, biochemical and histopathological findings, and the impact on patient well-being. The spectrum of symptoms of MHS-related myopathy encompasses muscle cramps, stiffness, myalgias, rhabdomyolysis, and weakness, with a wide age range of onset mainly during adulthood. Histopathological analysis can reveal nonspecific abnormalities suggestive of RYR1 involvement, while metabolic profiling reflects altered energy metabolism in MHS muscle. Myopathic manifestations can significantly impact patient quality of life and lead to functional limitations and socio-economic burden. While currently available therapies can provide symptomatic relief, there is a need for further research into targeted treatments addressing the underlying pathophysiology. Counselling early after establishing the MHS diagnosis, followed by multidisciplinary management involving various medical specialties, is crucial to optimise patient care.
Collapse
Affiliation(s)
- Carlos A Ibarra Moreno
- Malignant Hyperthermia Investigation Unit, Department of Anesthesiology and Pain Management, University Health Network, Toronto, ON, Canada
| | - Helga C A Silva
- Malignant Hyperthermia Unit, Department of Anesthesiology, Pain and Intensive Care, Federal University of São Paulo, São Paulo, Brazil
| | - Nicol C Voermans
- Department of Neurology, Radboudumc Research Institute for Medical Innovation, Nijmegen, The Netherlands
| | - Heinz Jungbluth
- Department of Paediatric Neurology, Neuromuscular Service, Evelina London Children's Hospital, Guy's and St. Thomas' Hospital NHS Foundation Trust, London, UK; Randall Centre for Cell and Molecular Biophysics, Muscle Signalling Section, Faculty of Life Sciences and Medicine (FoLSM), King's College London, London, UK
| | - Luuk R van den Bersselaar
- Malignant Hyperthermia Investigation Unit, Department of Anesthesiology, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands; Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - John Rendu
- Universite Grenoble Alpes, INSERM, Grenoble Institut Neurosciences, U1216, CHU Grenoble Alpes, Grenoble, France
| | - Agnieszka Cieniewicz
- Department of Anaesthesiology and Intensive Therapy, Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Philip M Hopkins
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK; Department of Anaesthesia, St James's University Hospital, Leeds Teaching Hospitals, NHS Trust, Leeds, UK
| | - Sheila Riazi
- Malignant Hyperthermia Investigation Unit, Department of Anesthesiology and Pain Management, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
2
|
Todd JJ, Lawal TA, Chrismer IC, Kokkinis A, Grunseich C, Jain MS, Waite MR, Biancavilla V, Pocock S, Brooks K, Mendoza CJ, Norato G, Cheung K, Riekhof W, Varma P, Colina-Prisco C, Emile-Backer M, Meilleur KG, Marks AR, Webb Y, Marcantonio EE, Foley AR, Bönnemann CG, Mohassel P. Rycal S48168 (ARM210) for RYR1-related myopathies: a phase one, open-label, dose-escalation trial. EClinicalMedicine 2024; 68:102433. [PMID: 38318125 PMCID: PMC10839573 DOI: 10.1016/j.eclinm.2024.102433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 02/07/2024] Open
Abstract
Background RYR1-related myopathies (RYR1-RM) are caused by pathogenic variants in the RYR1 gene which encodes the type 1 ryanodine receptor (RyR1). RyR1 is the sarcoplasmic reticulum (SR) calcium release channel that mediates excitation-contraction coupling in skeletal muscle. RyR1 sub-conductance, SR calcium leak, reduced RyR1 expression, and oxidative stress often contribute to RYR1-RM pathogenesis. Loss of RyR1-calstabin1 association, SR calcium leak, and increased RyR1 open probability were observed in 17 RYR1-RM patient skeletal muscle biopsies and improved following ex vivo treatment with Rycal compounds. Thus, we initiated a first-in-patient trial of Rycal S48168 (ARM210) in ambulatory adults with genetically confirmed RYR1-RM. Methods Participants received 120 mg (n = 3) or 200 mg (n = 4) S48168 (ARM210) daily for 29 days. The primary endpoint was safety and tolerability. Exploratory endpoints included S48168 (ARM210) pharmacokinetics (PK), target engagement, motor function measure (MFM)-32, hand grip and pinch strength, timed functional tests, PROMIS fatigue scale, semi-quantitative physical exam strength measurements, and oxidative stress biomarkers. The trial was registered with clinicaltrials.gov (NCT04141670) and was conducted at the National Institutes of Health Clinical Center between October 28, 2019 and December 12, 2021. Findings S48168 (ARM210) was well-tolerated, did not cause any serious adverse events, and exhibited a dose-dependent PK profile. Three of four participants who received the 200 mg/day dose reported improvements in PROMIS-fatigue at 28 days post-dosing, and also demonstrated improved proximal muscle strength on physical examination. Interpretation S48168 (ARM210) demonstrated favorable safety, tolerability, and PK, in RYR1-RM affected individuals. Most participants who received 200 mg/day S48168 (ARM210) reported decreased fatigue, a key symptom of RYR1-RM. These results set the foundation for a randomized, double-blind, placebo-controlled proof of concept trial to determine efficacy of S48168 (ARM210) in RYR1-RM. Funding NINDS and NINR Intramural Research Programs, NIH Clinical Center Bench to Bedside Award (2017-551673), ARMGO Pharma Inc., and its development partner Les Laboratoires Servier.
Collapse
Affiliation(s)
- Joshua J. Todd
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD 20814, USA
- Clinical Trials Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Tokunbor A. Lawal
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD 20814, USA
| | - Irene C. Chrismer
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD 20814, USA
| | - Angela Kokkinis
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA
| | - Christopher Grunseich
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA
| | - Minal S. Jain
- Mark O. Hatfield Clinical Research Center, Rehabilitation Medicine Department, National Institutes of Health, Bethesda, MD 20814, USA
| | - Melissa R. Waite
- Mark O. Hatfield Clinical Research Center, Rehabilitation Medicine Department, National Institutes of Health, Bethesda, MD 20814, USA
| | - Victoria Biancavilla
- Mark O. Hatfield Clinical Research Center, Rehabilitation Medicine Department, National Institutes of Health, Bethesda, MD 20814, USA
| | - Shavonne Pocock
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD 20814, USA
| | - Kia Brooks
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA
- Clinical Trials Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Christopher J. Mendoza
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA
| | - Gina Norato
- Clinical Trials Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Ken Cheung
- Mailman School of Public Health, Columbia University, NY 10032, USA
| | - Willa Riekhof
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD 20814, USA
| | - Pooja Varma
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD 20814, USA
| | - Claudia Colina-Prisco
- Section of Sensory Science and Metabolism, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20814, USA
| | - Magalie Emile-Backer
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD 20814, USA
| | - Katherine G. Meilleur
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD 20814, USA
| | - Andrew R. Marks
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Yael Webb
- ARMGO Pharma, Inc, Ardsley, NY 10591, USA
| | | | - A. Reghan Foley
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA
| | - Carsten G. Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA
| | - Payam Mohassel
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA
| |
Collapse
|
3
|
van de Camp SA, Stinissen L, Huseth A, Simon B, Ryan J, Sarkozy A, Van Petegem F, Goldberg MF, Jungbluth H, Böhm J, Oortwijn W, Dirksen RT, Voermans NC. Individuals and Families Affected by RYR1-Related Diseases: The Patient/Caregiver Perspective. J Neuromuscul Dis 2024; 11:1067-1083. [PMID: 39150833 PMCID: PMC11380281 DOI: 10.3233/jnd-240029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2024] [Indexed: 08/18/2024]
Abstract
Background and objective Pathogenic variants of RYR1, the gene encoding the principal sarcoplasmic reticulum calcium release channel (RyR1) with a crucial role in excitation-contraction coupling, are among the most common genetic causes of non-dystrophic neuromuscular disorders. We recently conducted a questionnaire study focusing on functional impairments, fatigue, and quality of life (QoL) in patients with RYR1-related diseases (RYR1-RD) throughout the recognized disease spectrum. In this previous questionnaire study the medical perspective was taken, reflective of a study protocol designed by neurologists and psychologists. With this present study we wanted to specifically address the patient perspective. Methods Together with affected individuals, family members, and advocates concerned with RYR1-RD, we developed an online patient survey that was completed by 227 patients or their parents/other caretakers (143 females and 84 males, 0-85 years). We invited 12 individuals, representing most of the patient group based on age, sex, race, and type and severity of diagnosis, to share their personal experiences on living with a RYR1-RD during an international workshop in July 2022. Data were analyzed through a mixed-methods approach, employing both a quantitative analysis of the survey results and a qualitative analysis of the testimonials. Results Data obtained from the combined quantitative and qualitative analyses provide important insights on six topics: 1) Diagnosis; 2) Symptoms and impact of the condition; 3) Physical activity; 4) Treatment; 5) Clinical research and studies; and 6) Expectations. Conclusions Together, this study provides a unique patient perspective on the RYR1-RD spectrum, associated disease impact, suitable physical activities and expectations of future treatments and trials, and thus, offers an essential contribution to future research.
Collapse
Affiliation(s)
- Sanne A.J.H. van de Camp
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lizan Stinissen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | | | - Anna Sarkozy
- The Dubowitz Neuromuscular Centre, Great Ormond Street Hospital for Children and Institute of Child Health, London, UK
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, The Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | | | - Heinz Jungbluth
- Department of Paediatric Neurology, Neuromuscular Service, Evelina Children’s Hospital, Guy’s and St Thomas’ Hospital NHS Foundation Trust, London, UK
- Randall Centre for Cell and Molecular Biophysics, Muscle Signalling Section, Faculty of Life Sciences and Medicine (FoLSM), King’s College London, UK
| | - Johann Böhm
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Inserm U 1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Wija Oortwijn
- Science Department IQ Health, Radboud University Medical Center, Research Institute for Medical Innovation, Nijmegen, The Netherlands
| | - Robert T. Dirksen
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Nicol C. Voermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
4
|
Lehtokari VL, Similä M, Tammepuu M, Wallgren-Pettersson C, Strang-Karlsson S, Hiekkala S. Self-reported functioning among patients with ultra-rare nemaline myopathy or a related disorder in Finland: a pilot study. Orphanet J Rare Dis 2023; 18:374. [PMID: 38037113 PMCID: PMC10691147 DOI: 10.1186/s13023-023-02973-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 11/18/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Nemaline myopathy (NM) and related disorders (NMr) form a heterogenous group of ultra-rare (1:50,000 live births or less) congenital muscle disorders. To elucidate the self-reported physical, psychological, and social functioning in the daily lives of adult persons with congenital muscle disorders, we designed a survey using items primarily from the Patient Reported Outcomes Measurement Information System, PROMIS®, and conducted a pilot study in patients with NM and NMr in Finland. The items were linked to International Classification of Functioning, Disability and Health (ICF) categories. RESULTS In total, 20 (62.5%) out of 32 invited persons resident in Finland participated in the study; 12 had NM and 8 NMr, 15 were women and 5 men aged 19-75 years. Sixteen (80%) were ambulatory and 4 (20%) NM patients used wheelchairs. The results from the PROMIS measuring system and ICF categories both indicated that non-ambulatory patients of this study faced more challenges in all areas of functioning than ambulatory ones, but the differences were smaller in the domains measuring psychological and social functioning than in physical functioning. In addition, the COVID-19 pandemic adversely affected the functioning of non-ambulatory patients more than that of ambulatory patients. The interindividual differences were, however, noticeable. CONCLUSIONS To our knowledge, this pilot study is the first comprehensive survey-based study of the physical, psychological, and social functioning of adult persons with nemaline myopathy or related disorders. The results indicate vulnerability of non-ambulatory patients being at higher risk to a decrease in general functioning during global or national exceptional periods. The responses also gave directions for modifying and improving the survey for future studies.
Collapse
Affiliation(s)
- Vilma-Lotta Lehtokari
- Folkhälsan Research Center, Helsinki, Finland.
- Medicum, University of Helsinki, Helsinki, Finland.
| | - Minna Similä
- Clinical Nutrition Unit, Internal Medicine and Rehabilitation, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Marianne Tammepuu
- Department of Paediatric Neurology, New Children's Hospital, Helsinki University Hospital, Helsinki, Finland
| | | | - Sonja Strang-Karlsson
- Department of Clinical Genetics, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Sinikka Hiekkala
- The Finnish Association of People with Physical Disabilities, Helsinki, Finland
| |
Collapse
|
5
|
van den Bersselaar LR, van Alfen N, Kruijt N, Kamsteeg EJ, Fernandez-Garcia MA, Treves S, Riazi S, Yang CY, Malagon I, van Eijk LT, van Engelen BGM, Scheffer GJ, Jungbluth H, Snoeck MMJ, Voermans NC. Muscle Ultrasound Abnormalities in Individuals with RYR1-Related Malignant Hyperthermia Susceptibility. J Neuromuscul Dis 2023:JND230018. [PMID: 37154182 DOI: 10.3233/jnd-230018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
BACKGROUND Variants in RYR1, the gene encoding the ryanodine receptor-1, can give rise to a wide spectrum of neuromuscular conditions. Muscle imaging abnormalities have been demonstrated in isolated cases of patients with a history of RYR1-related malignant hyperthermia (MH) susceptibility. OBJECTIVE To provide insights into the type and prevalence of muscle ultrasound abnormalities and muscle hypertrophy in patients carrying gain-of-function RYR1 variants associated with MH susceptibility and to contribute to delineating the wider phenotype, optimizing the diagnostic work-up and care for of MH susceptible patients. METHODS We performed a prospective cross-sectional observational muscle ultrasound study in patients with a history of RYR1-related MH susceptibility (n = 40). Study procedures included a standardized history of neuromuscular symptoms and a muscle ultrasound assessment. Muscle ultrasound images were analyzed using a quantitative and qualitative approach and compared to reference values and subsequently subjected to a screening protocol for neuromuscular disorders. RESULTS A total of 15 (38%) patients had an abnormal muscle ultrasound result, 4 (10%) had a borderline muscle ultrasound screening result, and 21 (53%) had a normal muscle ultrasound screening result. The proportion of symptomatic patients with an abnormal result (11 of 24; 46%) was not significantly higher compared to the proportion of asymptomatic patients with an abnormal ultrasound result (4 of 16; 25%) (P = 0.182). The mean z-scores of the biceps brachii (z = 1.45; P < 0.001), biceps femoris (z = 0.43; P = 0.002), deltoid (z = 0.31; P = 0.009), trapezius (z = 0.38; P = 0.010) and the sum of all muscles (z = 0.40; P < 0.001) were significantly higher compared to 0, indicating hypertrophy. CONCLUSIONS Patients with RYR1 variants resulting in MH susceptibility often have muscle ultrasound abnormalities. Frequently observed muscle ultrasound abnormalities include muscle hypertrophy and increased echogenicity.
Collapse
Affiliation(s)
- Luuk R van den Bersselaar
- Department of Anesthesiology, Malignant Hyperthermia Investigation Unit, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
- Department of Neurology, Clinical Neuromuscular Imaging Group, Donders Institutefor Brain, Cognition and Behaviour, Radboud University MedicalCenter, Nijmegen, The Netherlands
| | - Nens van Alfen
- Department of Neurology, Clinical Neuromuscular Imaging Group, Donders Institutefor Brain, Cognition and Behaviour, Radboud University MedicalCenter, Nijmegen, The Netherlands
| | - Nick Kruijt
- Department of Neurology, Clinical Neuromuscular Imaging Group, Donders Institutefor Brain, Cognition and Behaviour, Radboud University MedicalCenter, Nijmegen, The Netherlands
- Department of Primary and Community Care, Radboudumc, Nijmegen, The Netherlands
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Miguel A Fernandez-Garcia
- Department of Paediatric Neurology, Neuromuscular Service, Evelina Children's Hospital, Guy's and St Thomas' Hospital NHS Foundation Trust, London, UK
| | - Susan Treves
- Departments of Biomedicine and Neurology, Neuromuscular research Group, University Hospital Basel, Basel, Switzerland
| | - Sheila Riazi
- Department of Anesthesia, Malignant Hyperthermia Investigation Unit, University Health Network, University of Toronto, Toronto, Canada
| | - Chu-Ya Yang
- Department of Anesthesiology, Malignant Hyperthermia Investigation Unit, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Ignacio Malagon
- Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lucas T van Eijk
- Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Baziel G M van Engelen
- Department of Neurology, Clinical Neuromuscular Imaging Group, Donders Institutefor Brain, Cognition and Behaviour, Radboud University MedicalCenter, Nijmegen, The Netherlands
| | - Gert-Jan Scheffer
- Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Heinz Jungbluth
- Department of Paediatric Neurology, Neuromuscular Service, Evelina Children's Hospital, Guy's and St Thomas' Hospital NHS Foundation Trust, London, UK
- Randall Division for Cell and Molecular Biophysics, Muscle Signalling Section, Faculty of Life Sciences and Medicine, King's College, London, UK
| | - Marc M J Snoeck
- Department of Anesthesiology, Malignant Hyperthermia Investigation Unit, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Nicol C Voermans
- Department of Neurology, Clinical Neuromuscular Imaging Group, Donders Institutefor Brain, Cognition and Behaviour, Radboud University MedicalCenter, Nijmegen, The Netherlands
| |
Collapse
|
6
|
Moreno CAI, Kraeva N, Zvaritch E, Jungbluth H, Voermans NC, Riazi S. Oral Dantrolene for Myopathic Symptoms in Malignant Hyperthermia-Susceptible Patients: A 25-Year Retrospective Cohort Study of Adverse Effects and Tolerability. Anesth Analg 2023; 136:569-577. [PMID: 36201369 PMCID: PMC9974786 DOI: 10.1213/ane.0000000000006207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Patients susceptible to malignant hyperthermia (MH) may experience disabling manifestations of an unspecified myopathy outside the context of anesthesia, including myalgia, fatigue, or episodic rhabdomyolysis. Clinical observations suggest that oral dantrolene may relief myopathic symptoms in MH-susceptible (MHS) patients. However, high-dose oral dantrolene has been associated with severe hepatotoxicity. METHODS In a retrospective database review (1994-2018), we investigated a cohort of patients who were diagnosed as MHS by a positive caffeine-halothane contracture test (CHCT), had myopathic manifestations, and received oral dantrolene. Our aim was to investigate the occurrence of serious adverse effects and the adherence to oral dantrolene therapy. We also explored factors associated with self-reported clinical improvement, considering as nonresponders patients with intolerable adverse effects or who reported no improvement 8 weeks after starting treatment. RESULTS Among 476 MHS patients with positive CHCT, 193 had muscle symptoms, 164 started oral dantrolene, 27 refused treatment, and 2 were excluded due to abnormal liver function before starting therapy. There were no serious adverse effects reported. Forty-six of 164 patients (28%; 95% confidence interval [CI], 22%-35%) experienced mild to moderate adverse effects. Twenty-two patients (22/164, 13%; 95% CI, 9%-19%) discontinued treatment, among which 16 due to adverse effects and 6 due to lack of improvement. One hundred forty-two patients (87%; 95% CI, 80%-90%) adhered to therapy and reported improvement of myalgia (n = 78), fatigue (n = 32), or rhabdomyolysis/hiperCKemia (n = 32). The proportion of responders was larger among patients with MH history than among those referred due to a clinical myopathy with nonpertinent anesthetic history (97% vs 79%, respectively; 95% CI of the difference, 8.5-28; P < .001). Patients with a sarcoplasmic reticulum Ca2+ release channel ryanodine receptor gene ( RYR1 ) variant had higher odds of responding to dantrolene treatment (OR, 6.4; 95% CI, 1.3-30.9; P = .013). Dantrolene median dose was 50 (25-400) and 200 (25-400) mg·day -1 in responders and nonresponders, respectively. CONCLUSIONS We found that oral dantrolene produced no serious adverse effects within the reported dose range, and was well tolerated by most MH-susceptible patients presenting myopathic symptoms. Our study provides dosing and adverse effect data as a basis for further randomized controlled clinical trials to determine the efficacy of oral dantrolene for symptomatic relief in MHS-related myopathies.
Collapse
Affiliation(s)
- Carlos A. Ibarra Moreno
- Department of Anesthesiology and Pain Medicine, Malignant Hyperthermia Investigation Unit, Toronto General Hospital–University Health Network, Toronto, Ontario, Canada
| | - Natalia Kraeva
- Department of Anesthesiology and Pain Medicine, Malignant Hyperthermia Investigation Unit, Toronto General Hospital–University Health Network, Toronto, Ontario, Canada
| | - Elena Zvaritch
- Department of Anesthesiology and Pain Medicine, Malignant Hyperthermia Investigation Unit, Toronto General Hospital–University Health Network, Toronto, Ontario, Canada
| | - Heinz Jungbluth
- Department of Paediatric Neurology, Neuromuscular Service, Evelina Children’s Hospital, Guy’s and St Thomas’ Hospital NHS Foundation Trust, London, United Kingdom, Randall Centre for Cell and Molecular Biophysics, Muscle Signalling Section, Faculty of Life Sciences and Medicine, King’s College, London, United Kingdom
| | - Nicol C. Voermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Sheila Riazi
- Department of Anesthesiology and Pain Medicine, Malignant Hyperthermia Investigation Unit, Toronto General Hospital–University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Simões CM. Malignant hyperthermia: new knowledge changing perspectives. BRAZILIAN JOURNAL OF ANESTHESIOLOGY (ELSEVIER) 2023; 73:125-127. [PMID: 36963956 PMCID: PMC10068525 DOI: 10.1016/j.bjane.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
|
8
|
Andrade PMVD, Valim LÍM, Santos JMD, Castro ID, Amaral JLGD, Silva HCAD. Fatigue, depression, and physical activity in patients with malignant hyperthermia: a cross-sectional observational study. BRAZILIAN JOURNAL OF ANESTHESIOLOGY (ELSEVIER) 2023; 73:132-137. [PMID: 34626754 PMCID: PMC10068523 DOI: 10.1016/j.bjane.2021.07.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Malignant Hyperthermia (MH) is a pharmacogenetic disorder triggered by halogenated anesthesia agents/succinylcholine and characterized by hypermetabolism crisis during anesthesia, but also by day-to-day symptoms, such as exercise intolerance, that may alert the health professional. OBJECTIVE The study aimed to analyze the incidence of fatigue in MH susceptible patients and the variables that can impact perception of fatigue, such as the level of routine physical activity and depression. METHODS A cross-sectional observational study was carried out with three groups ... 22 patients susceptible to MH (positive in vitro muscle contracture test), 13 non-susceptible to MH (negative in vitro muscle contracture test) and 22 controls (no history of MH). Groups were assessed by a demographic/clinical questionnaire, a fatigue severity scale (intensity, specific situations, psychological consequences, rest/sleep response), and the Beck depression scale. Subgroups were re-assessed with the Baecke habitual physical exercise questionnaire (occupational physical activity, leisure physical exercise, leisure/locomotion physical activity). RESULTS There were no significant differences among the three groups regarding fatigue intensity, fatigue related to specific situations, psychological consequences of fatigue, fatigue response to resting/sleeping, depression, number of active/sedentary participants, and the mean time and characteristics of habitual physical activity. Nevertheless, unlike the control sub-group, the physically active MH-susceptible subgroup had a higher fatigue response to resting/sleeping than the sedentary MH susceptible subgroup (respectively, 5.9.ß...ß1.9 vs. 3.9.ß...ß2, t-test unpaired, p.ß<.ß0.05). CONCLUSION We did not detect subjective fatigue in MH susceptible patients, although we reported protracted recovery after physical activity, which may alert us to further investigation requirements.
Collapse
Affiliation(s)
- P Mela Vieira de Andrade
- Universidade Federal de S.·o Paulo, Centro de Estudo, Diagn..stico e Investiga...·o de Hipertermia Maligna (CEDHIMA), Disciplina de Anestesiologia, Dor e Terapia Intensiva, S.·o Paulo, SP, Brazil.
| | - L Ívia Maria Valim
- Universidade Federal de S.·o Paulo, Centro de Estudo, Diagn..stico e Investiga...·o de Hipertermia Maligna (CEDHIMA), Disciplina de Anestesiologia, Dor e Terapia Intensiva, S.·o Paulo, SP, Brazil
| | - Joilson Moura Dos Santos
- Universidade Federal de S.·o Paulo, Centro de Estudo, Diagn..stico e Investiga...·o de Hipertermia Maligna (CEDHIMA), Disciplina de Anestesiologia, Dor e Terapia Intensiva, S.·o Paulo, SP, Brazil
| | - Isac de Castro
- Universidade Federal de S.·o Paulo, Centro de Estudo, Diagn..stico e Investiga...·o de Hipertermia Maligna (CEDHIMA), Disciplina de Anestesiologia, Dor e Terapia Intensiva, S.·o Paulo, SP, Brazil
| | - Jos Luiz Gomes do Amaral
- Universidade Federal de S.·o Paulo, Centro de Estudo, Diagn..stico e Investiga...·o de Hipertermia Maligna (CEDHIMA), Disciplina de Anestesiologia, Dor e Terapia Intensiva, S.·o Paulo, SP, Brazil
| | - Helga Cristina Almeida da Silva
- Universidade Federal de S.·o Paulo, Centro de Estudo, Diagn..stico e Investiga...·o de Hipertermia Maligna (CEDHIMA), Disciplina de Anestesiologia, Dor e Terapia Intensiva, S.·o Paulo, SP, Brazil
| |
Collapse
|
9
|
Astin R, Banerjee A, Baker MR, Dani M, Ford E, Hull JH, Lim PB, McNarry M, Morten K, O'Sullivan O, Pretorius E, Raman B, Soteropoulos DS, Taquet M, Hall CN. Long COVID: mechanisms, risk factors and recovery. Exp Physiol 2023; 108:12-27. [PMID: 36412084 PMCID: PMC10103775 DOI: 10.1113/ep090802] [Citation(s) in RCA: 94] [Impact Index Per Article: 94.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/24/2022] [Indexed: 11/23/2022]
Abstract
NEW FINDINGS What is the topic of this review? The emerging condition of long COVID, its epidemiology, pathophysiological impacts on patients of different backgrounds, physiological mechanisms emerging as explanations of the condition, and treatment strategies being trialled. The review leads from a Physiological Society online conference on this topic. What advances does it highlight? Progress in understanding the pathophysiology and cellular mechanisms underlying Long COVID and potential therapeutic and management strategies. ABSTRACT Long COVID, the prolonged illness and fatigue suffered by a small proportion of those infected with SARS-CoV-2, is placing an increasing burden on individuals and society. A Physiological Society virtual meeting in February 2022 brought clinicians and researchers together to discuss the current understanding of long COVID mechanisms, risk factors and recovery. This review highlights the themes arising from that meeting. It considers the nature of long COVID, exploring its links with other post-viral illnesses such as myalgic encephalomyelitis/chronic fatigue syndrome, and highlights how long COVID research can help us better support those suffering from all post-viral syndromes. Long COVID research started particularly swiftly in populations routinely monitoring their physical performance - namely the military and elite athletes. The review highlights how the high degree of diagnosis, intervention and monitoring of success in these active populations can suggest management strategies for the wider population. We then consider how a key component of performance monitoring in active populations, cardiopulmonary exercise training, has revealed long COVID-related changes in physiology - including alterations in peripheral muscle function, ventilatory inefficiency and autonomic dysfunction. The nature and impact of dysautonomia are further discussed in relation to postural orthostatic tachycardia syndrome, fatigue and treatment strategies that aim to combat sympathetic overactivation by stimulating the vagus nerve. We then interrogate the mechanisms that underlie long COVID symptoms, with a focus on impaired oxygen delivery due to micro-clotting and disruption of cellular energy metabolism, before considering treatment strategies that indirectly or directly tackle these mechanisms. These include remote inspiratory muscle training and integrated care pathways that combine rehabilitation and drug interventions with research into long COVID healthcare access across different populations. Overall, this review showcases how physiological research reveals the changes that occur in long COVID and how different therapeutic strategies are being developed and tested to combat this condition.
Collapse
Affiliation(s)
- Rónan Astin
- Department of Respiratory MedicineUniversity College London Hospitals NHS Foundation TrustLondonUK
- Centre for Human Health and PerformanceInstitute for Sport Exercise and HealthUniversity College LondonLondonUK
| | - Amitava Banerjee
- Institute of Health InformaticsUniversity College LondonLondonUK
- Department of CardiologyBarts Health NHS TrustLondonUK
| | - Mark R. Baker
- Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| | - Melanie Dani
- Imperial Syncope UnitImperial College Healthcare NHS TrustLondonUK
| | | | - James H. Hull
- Institute of SportExercise and Health (ISEH)Division of Surgery and Interventional ScienceUniversity College LondonLondonUK
- Royal Brompton HospitalLondonUK
| | - Phang Boon Lim
- Imperial Syncope UnitImperial College Healthcare NHS TrustLondonUK
| | - Melitta McNarry
- Applied Sports, Technology, Exercise and Medicine Research CentreSwansea UniversitySwanseaUK
| | - Karl Morten
- Applied Sports, Technology, Exercise and Medicine Research CentreSwansea UniversitySwanseaUK
- Nuffield Department of Women's and Reproductive HealthUniversity of OxfordOxfordUK
| | - Oliver O'Sullivan
- Academic Department of Military RehabilitationDefence Medical Rehabilitation Centre Stanford HallLoughboroughUK
- School of MedicineUniversity of NottinghamNottinghamUK
| | - Etheresia Pretorius
- Department of Physiological SciencesFaculty of ScienceStellenbosch UniversityStellenboschSouth Africa
- Department of Biochemistry and Systems BiologyInstitute of SystemsMolecular and Integrative BiologyFaculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Betty Raman
- Radcliffe Department of MedicineDivision of Cardiovascular MedicineUniversity of OxfordOxfordUK
- Radcliffe Department of MedicineDivision of Cardiovascular MedicineOxford University Hospitals NHS Foundation TrustOxfordUK
| | | | - Maxime Taquet
- Department of PsychiatryUniversity of OxfordOxfordUK
- Oxford Health NHS Foundation TrustOxfordUK
| | - Catherine N. Hall
- School of Psychology and Sussex NeuroscienceUniversity of SussexFalmerUK
| |
Collapse
|
10
|
O’Connor TN, van den Bersselaar LR, Chen YS, Nicolau S, Simon B, Huseth A, Todd JJ, Van Petegem F, Sarkozy A, Goldberg MF, Voermans NC, Dirksena RT. RYR-1-Related Diseases International Research Workshop: From Mechanisms to Treatments Pittsburgh, PA, U.S.A., 21-22 July 2022. J Neuromuscul Dis 2023; 10:135-154. [PMID: 36404556 PMCID: PMC10023165 DOI: 10.3233/jnd-221609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Thomas N. O’Connor
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Luuk R. van den Bersselaar
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
- Malignant Hyperthermia Investigation Unit, Department of Anaesthesia, Canisius Wilhelmina Hospital, Nijmegen, the Netherlands
| | - Yu Seby Chen
- Department of Biochemistry and Molecular Biology, The Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Stefan Nicolau
- Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, OH, USA
| | | | | | - Joshua J. Todd
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, The Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Anna Sarkozy
- The Dubowitz Neuromuscular Centre, Institute of Child Health and Great Ormond Street Hospital for Children, London, UK
| | | | - Nicol C. Voermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Robert T. Dirksena
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | | |
Collapse
|
11
|
Janssens L, De Puydt J, Milazzo M, Symoens S, De Bleecker JL, Herdewyn S. Risk of malignant hyperthermia in patients carrying a variant in the skeletal muscle ryanodine receptor 1 gene. Neuromuscul Disord 2022; 32:864-869. [PMID: 36283893 DOI: 10.1016/j.nmd.2022.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 12/15/2022]
Abstract
Malignant hyperthermia is a life-threatening disorder, which can be prevented by avoiding certain anesthetic agents. Pathogenic variants in the skeletal muscle ryanodine receptor 1-gene are linked to malignant hyperthermia. We retrospectively studied 15 patients who presented to our clinic with symptoms of muscle dysfunction (weakness, myalgia or cramps) and were later found to have a variant in the skeletal muscle ryanodine receptor 1-gene. Symptoms, creatine kinase levels, electromyography, muscle biopsy and in vitro contracture test results were reviewed. Six out of the eleven patients, with a variant of unknown significance in the skeletal muscle ryanodine receptor 1-gene, had a positive in vitro contracture test, indicating malignant hyperthermia susceptibility. In one patient, with two variants of unknown significance, both variants were required to express the malignant hyperthermia-susceptibility trait. Neurologists should consider screening the skeletal muscle ryanodine receptor 1-gene in patients with myalgia or cramps, even when few to no abnormalities on ancillary testing.
Collapse
Affiliation(s)
- Lise Janssens
- Faculty of medical and health sciences, Ghent University, Corneel Heymanslaan 10, Ghent 9000, Belgium
| | - Joris De Puydt
- University Hospital of Antwerp, Drie Eikenstraat 655, Edegem 2650, Belgium; Faculty of medical and health sciences, Antwerp University, Prinsstraat 13, Antwerp 2000, Belgium
| | - Mauro Milazzo
- Center for Medical Genetics Ghent, Ghent University Hospital, Corneel Heymanslaan 10, Ghent 9000, Belgium
| | - Sofie Symoens
- Faculty of medical and health sciences, Ghent University, Corneel Heymanslaan 10, Ghent 9000, Belgium; Center for Medical Genetics Ghent, Ghent University Hospital, Corneel Heymanslaan 10, Ghent 9000, Belgium
| | - Jan L De Bleecker
- Faculty of medical and health sciences, Ghent University, Corneel Heymanslaan 10, Ghent 9000, Belgium; Department of Neurology, Ghent University Hospital, Corneel Heymanslaan 10, Ghent 9000, Belgium
| | - Sarah Herdewyn
- Department of Neurology, Ghent University Hospital, Corneel Heymanslaan 10, Ghent 9000, Belgium.
| |
Collapse
|
12
|
van den Bersselaar LR, Jungbluth H, Kruijt N, Kamsteeg EJ, Fernandez-Garcia MA, Treves S, Riazi S, Malagon I, van Eijk LT, van Alfen N, van Engelen BGM, Scheffer GJ, Snoeck MMJ, Voermans NC. Neuromuscular symptoms in patients with RYR1-related malignant hyperthermia and rhabdomyolysis. Brain Commun 2022; 4:fcac292. [PMID: 36751502 PMCID: PMC9897183 DOI: 10.1093/braincomms/fcac292] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/21/2022] [Accepted: 11/04/2022] [Indexed: 11/12/2022] Open
Abstract
Malignant hyperthermia and exertional rhabdomyolysis have conventionally been considered episodic phenotypes that occur in otherwise healthy individuals in response to an external trigger. However, recent studies have demonstrated a clinical and histopathological continuum between patients with a history of malignant hyperthermia susceptibility and/or exertional rhabdomyolysis and RYR1-related congenital myopathies. We hypothesize that patients with a history of RYR1-related exertional rhabdomyolysis or malignant hyperthermia susceptibility do have permanent neuromuscular symptoms between malignant hyperthermia or exertional rhabdomyolysis episodes. We performed a prospective cross-sectional observational clinical study of neuromuscular features in patients with a history of RYR1-related exertional rhabdomyolysis and/or malignant hyperthermia susceptibility (n = 40) compared with healthy controls (n = 80). Patients with an RYR1-related congenital myopathy, manifesting as muscle weakness preceding other symptoms as well as other (neuromuscular) diseases resulting in muscle weakness were excluded. Study procedures included a standardized history of neuromuscular symptoms, a review of all relevant ancillary diagnostic tests performed up to the point of inclusion and a comprehensive, standardized neuromuscular assessment. Results of the standardized neuromuscular history were compared with healthy controls. Results of the neuromuscular assessment were compared with validated reference values. The proportion of patients suffering from cramps (P < 0.001), myalgia (P < 0.001) and exertional myalgia (P < 0.001) was higher compared with healthy controls. Healthcare professionals were consulted because of apparent neuromuscular symptoms by 17/40 (42.5%) patients and 7/80 (8.8%) healthy controls (P < 0.001). Apart from elevated creatine kinase levels in 19/40 (47.5%) patients and mild abnormalities on muscle biopsies identified in 13/16 (81.3%), ancillary investigations were normal in most patients. The Medical Research Council sum score, spirometry and results of functional measurements were also mostly normal. Three of 40 patients (7.5%) suffered from late-onset muscle weakness, most prominent in the proximal lower extremity muscles. Patients with RYR1 variants resulting in malignant hyperthermia susceptibility and/or exertional rhabdomyolysis frequently report additional neuromuscular symptoms such as myalgia and muscle cramps compared with healthy controls. These symptoms result in frequent consultation of healthcare professionals and sometimes in unnecessary invasive diagnostic procedures. Most patients do have normal strength at a younger age but may develop muscle weakness later in life.
Collapse
Affiliation(s)
- Luuk R van den Bersselaar
- Correspondence to: Luuk R van den Bersselaar Weg door Jonkerbos 100, 6532 SZ Nijmegen, The Netherlands E-mail:
| | - Heinz Jungbluth
- Department of Paediatric Neurology, Neuromuscular Service, Evelina Children's Hospital, Guy’s and St Thomas’ Hospital NHS Foundation Trust, SE1 7EH London, UK,Randall Centre of Cell and Molecular Biophysics, Muscle Signaling Section, Faculty of Life Sciences and Medicine (FoLSM), King's College, WC2R 2LS London, UK
| | - Nick Kruijt
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| | - Miguel A Fernandez-Garcia
- Department of Paediatric Neurology, Neuromuscular Service, Evelina Children's Hospital, Guy’s and St Thomas’ Hospital NHS Foundation Trust, SE1 7EH London, UK
| | - Susan Treves
- Departments of Biomedicine and Neurology, Neuromuscular research Group, University Hospital Basel, 4031 Basel, Switzerland
| | - Sheila Riazi
- Department of Anesthesia, Malignant Hyperthermia Investigation Unit, University Health Network, University of Toronto, M5s 1a4 Toronto, Ontario, Canada
| | - Ignacio Malagon
- Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| | - Lucas T van Eijk
- Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| | - Nens van Alfen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| | - Baziel G M van Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| | - Gert-Jan Scheffer
- Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| | | | | |
Collapse
|
13
|
van den Bersselaar LR, Kruijt N, Scheffer GJ, van Eijk L, Malagon I, Buckens S, Custers JAE, Helder L, Greco A, Joosten LAB, van Engelen BGM, van Alfen N, Riazi S, Treves S, Jungbluth H, Snoeck MMJ, Voermans NC. The neuromuscular and multisystem features of RYR1-related malignant hyperthermia and rhabdomyolysis: A study protocol. Medicine (Baltimore) 2021; 100:e26999. [PMID: 34414986 PMCID: PMC8376301 DOI: 10.1097/md.0000000000026999] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Malignant hyperthermia (MH) and exertional rhabdomyolysis (ERM) have long been considered episodic phenotypes occurring in response to external triggers in otherwise healthy individuals with variants in RYR1. However, recent studies have demonstrated a clinical and histopathological continuum between patients with RYR1-related congenital myopathies and those with ERM or MH susceptibility. Furthermore, animal studies have shown non-neuromuscular features such as a mild bleeding disorder and an immunological gain-of-function associated with MH/ERM related RYR1 variants raising important questions for further research. Awareness of the neuromuscular disease spectrum and potential multisystem involvement in RYR1-related MH and ERM is essential to optimize the diagnostic work-up, improve counselling and and future treatment strategies for patients affected by these conditions. This study will examine in detail the nature and severity of continuous disease manifestations and their effect on daily life in patients with RYR1-related MH and ERM. METHODS The study protocol consists of four parts; an online questionnaire study, a clinical observational study, muscle imaging, and specific immunological studies. Patients with RYR1-related MH susceptibility and ERM will be included. The imaging, immunological and clinical studies will have a cross-sectional design, while the questionnaire study will be performed three times during a year to assess disease impact, daily living activities, fatigue and pain. The imaging study consists of muscle ultrasound and whole-body magnetic resonance imaging studies. For the immunological studies, peripheral mononuclear blood cells will be isolated for in vitro stimulation with toll-like receptor ligands, to examine the role of the immune system in the pathophysiology of RYR1-related MH and ERM. DISCUSSION This study will increase knowledge of the full spectrum of neuromuscular and multisystem features of RYR1-related MH and ERM and will establish a well-characterized baseline cohort for future studies on RYR1-related disorders. The results of this study are expected to improve recognition of RYR1-related symptoms, counselling and a more personalized approach to patients affected by these conditions. Furthermore, results will create new insights in the role of the immune system in the pathophysiology of MH and ERM. TRIAL REGISTRATION This study was pre-registered at ClinicalTrials.gov (ID: NCT04610619).
Collapse
Affiliation(s)
- Luuk R. van den Bersselaar
- Malignant Hyperthermia Investigation Unit, Department of Anesthesiology, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboudumc, Nijmegen, The Netherlands
| | - Nick Kruijt
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboudumc, Nijmegen, The Netherlands
| | - Gert-Jan Scheffer
- Department of Anesthesiology, Pain and Palliative Medicine, Radboudumc, Nijmegen, The Netherlands
| | - Lucas van Eijk
- Department of Anesthesiology, Pain and Palliative Medicine, Radboudumc, Nijmegen, The Netherlands
| | - Ignacio Malagon
- Department of Anesthesiology, Pain and Palliative Medicine, Radboudumc, Nijmegen, The Netherlands
| | - Stan Buckens
- Department of Radiology, Radboudumc, Nijmegen, The Netherlands
| | - José AE Custers
- Department of Medical Psychology, Radboud Institute for Health Sciences, Radboudumc, Nijmegen, The Netherlands
| | - Leonie Helder
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
| | - Anna Greco
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboudumc, Nijmegen, The Netherlands
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
| | - Leo AB Joosten
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
- Department of Medical Genetics, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Baziel GM van Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboudumc, Nijmegen, The Netherlands
| | - Nens van Alfen
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboudumc, Nijmegen, The Netherlands
| | - Sheila Riazi
- Department of Anesthesiology and Pain Medicine, Malignant Hyperthermia Investigation Unit, University Health Network, University of Toronto, Toronto, Canada
| | - Susan Treves
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Heinz Jungbluth
- Department of Paediatric Neurology, Neuromuscular Service, Evelina Children's Hospital, Guy's and St Thomas’ Hospital NHS Foundation Trust
- Randall Centre for Cell and Molecular Biophysics, Muscle Signalling Section, King's College, London, United Kingdom
| | - Marc MJ Snoeck
- Malignant Hyperthermia Investigation Unit, Department of Anesthesiology, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Nicol C. Voermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboudumc, Nijmegen, The Netherlands
| |
Collapse
|
14
|
Capella-Peris C, Cosgrove MM, Chrismer IC, Razaqyar MS, Elliott JS, Kuo A, Emile-Backer M, Meilleur KG. Understanding Symptoms in RYR1-Related Myopathies: A Mixed-Methods Analysis Based on Participants' Experience. PATIENT-PATIENT CENTERED OUTCOMES RESEARCH 2021; 13:423-434. [PMID: 32329019 DOI: 10.1007/s40271-020-00418-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND In rare diseases such as ryanodine receptor 1-related myopathies (RYR1-RM), health-related quality of life (HRQoL) measures are critically important so clinicians and researchers can better understand what symptoms are most important to participants, with the ultimate goal of finding tangible solutions for them. OBJECTIVES The main objective of this study was to characterize symptoms in individuals with RYR1-RM to inform future research. A secondary objective of this study was to analyze positive and negative sentiments regarding symptoms and treatment effects post N-acetylcysteine (NAC) administration in individuals with RYR1-RM. METHODS The study used a mixed-methods design applying methodological triangulation. Qualitative data were collected via semi-structured interviews at three visits to characterize symptoms in individuals with RYR1-RM and to analyze treatment effects. Qualitative data were then transformed into quantitative results to measure the frequency with which each symptom was mentioned by participants. RESULTS A total of 12 symptoms were identified as areas of interest to participants with RYR1-RM, highlighting fatigue and weakness as key symptoms. Data transformation categorized more than 1000 citations, reporting a greater number of positive comments for postintervention interviews than for baseline and preintervention visits and that NAC group participants stated more positive comments regarding treatment effect than did the placebo group. CONCLUSIONS We present a comprehensive characterization of symptoms in RYR1-RM and how those symptoms influence HRQoL. Furthermore, the introduction of mixed methods may be a valuable way to better understand patient-centered data in rare diseases to support affected individuals in coping with their symptoms.
Collapse
Affiliation(s)
- Carlos Capella-Peris
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, Building 60, Room 254, Bethesda, MD, 20892, USA.
| | - Mary M Cosgrove
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, Building 60, Room 254, Bethesda, MD, 20892, USA
| | - Irene C Chrismer
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, Building 60, Room 254, Bethesda, MD, 20892, USA
| | - M Sonia Razaqyar
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, Building 60, Room 254, Bethesda, MD, 20892, USA
| | - Jeffrey S Elliott
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, Building 60, Room 254, Bethesda, MD, 20892, USA
| | - Anna Kuo
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, Building 60, Room 254, Bethesda, MD, 20892, USA
| | - Magalie Emile-Backer
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, Building 60, Room 254, Bethesda, MD, 20892, USA
| | - Katherine G Meilleur
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, Building 60, Room 254, Bethesda, MD, 20892, USA
| |
Collapse
|
15
|
Bojko B, Vasiljevic T, Boyaci E, Roszkowska A, Kraeva N, Ibarra Moreno CA, Koivu A, Wąsowicz M, Hanna A, Hamilton S, Riazi S, Pawliszyn J. Untargeted metabolomics profiling of skeletal muscle samples from malignant hyperthermia susceptible patients. Can J Anaesth 2021; 68:761-772. [PMID: 33403543 PMCID: PMC8185566 DOI: 10.1007/s12630-020-01895-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 01/09/2023] Open
Abstract
PURPOSE Malignant hyperthermia (MH) is a potentially fatal hypermetabolic condition triggered by certain anesthetics and caused by defective calcium homeostasis in skeletal muscle cells. Recent evidence has revealed impairment of various biochemical pathways in MH-susceptible patients in the absence of anesthetics. We hypothesized that clinical differences between MH-susceptible and control individuals are reflected in measurable differences in myoplasmic metabolites. METHODS We performed metabolomic profiling of skeletal muscle samples from MH-negative (control) individuals and MH-susceptible patients undergoing muscle biopsy for diagnosis of MH susceptibility. Cellular metabolites were extracted from 33 fresh and 87 frozen human muscle samples using solid phase microextraction and Metabolon® untargeted biochemical profiling platforms, respectively. Ultra-performance liquid chromatography-high resolution mass spectrometry was used for metabolite identification and validation, followed by analysis of differences in metabolites between the MH-susceptible and MH-negative groups. RESULTS Significant fold-change differences between the MH-susceptible and control groups in metabolites from various pathways were found (P value range: 0.009 to < 0.001). These included accumulation of long chain acylcarnitines, diacylglycerols, phosphoenolpyruvate, histidine pathway metabolites, lysophosphatidylcholine, oxidative stress markers, and phosphoinositols, as well as decreased levels of monoacylglycerols. The results from both analytical platforms were in agreement. CONCLUSION This metabolomics study indicates a shift from utilization of carbohydrates towards lipids for energy production in MH-susceptible individuals. This shift may result in inefficiency of beta-oxidation, and increased muscle protein turnover, oxidative stress, and/or lysophosphatidylcholine levels.
Collapse
Affiliation(s)
- Barbara Bojko
- Department of Chemistry, University of Waterloo, Waterloo, ON, Canada
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Tijana Vasiljevic
- Department of Chemistry, University of Waterloo, Waterloo, ON, Canada
| | - Ezel Boyaci
- Department of Chemistry, University of Waterloo, Waterloo, ON, Canada
- Department of Chemistry, Middle East Technical University, Ankara, Turkey
| | - Anna Roszkowska
- Department of Chemistry, University of Waterloo, Waterloo, ON, Canada
- Department of Pharmaceutical Chemistry, Medical University of Gdansk, Gdansk, Poland
| | - Natalia Kraeva
- Malignant Hyperthermia Investigation Unit, Department of Anesthesia, University Health Network, University of Toronto, 323-200 Elizabeth Street, Toronto, ON, M5G 2C4, Canada
| | - Carlos A Ibarra Moreno
- Malignant Hyperthermia Investigation Unit, Department of Anesthesia, University Health Network, University of Toronto, 323-200 Elizabeth Street, Toronto, ON, M5G 2C4, Canada
| | - Annabel Koivu
- Malignant Hyperthermia Investigation Unit, Department of Anesthesia, University Health Network, University of Toronto, 323-200 Elizabeth Street, Toronto, ON, M5G 2C4, Canada
| | - Marcin Wąsowicz
- Malignant Hyperthermia Investigation Unit, Department of Anesthesia, University Health Network, University of Toronto, 323-200 Elizabeth Street, Toronto, ON, M5G 2C4, Canada
| | - Amy Hanna
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
| | - Susan Hamilton
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
| | - Sheila Riazi
- Malignant Hyperthermia Investigation Unit, Department of Anesthesia, University Health Network, University of Toronto, 323-200 Elizabeth Street, Toronto, ON, M5G 2C4, Canada.
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
16
|
Capella-Peris C, Cosgrove MM, Chrismer IC, Emile-Backer M, Razaqyar MS, Elliott JS, Kuo A, Wakim PG, Meilleur KG. Mixed methods analysis of Health-Related Quality of Life in ambulant individuals affected with RYR1-related myopathies pre-post-N-acetylcysteine therapy. Qual Life Res 2020; 29:1641-1653. [PMID: 32040747 PMCID: PMC7728916 DOI: 10.1007/s11136-020-02428-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2020] [Indexed: 11/30/2022]
Abstract
PURPOSE To characterize Health-Related Quality of Life (HRQoL) in ambulant individuals with RYR1-RM and to determine if a qualitative PRO tool (subjective self-assessment) complements PROMIS and Neuro-QoL scales to detect changes in HRQoL in ambulant individuals with RYR1-RM post N-acetylcysteine (NAC) treatment. METHODS The study used a mixed methods research (MMR) design applying methodological triangulation. Qualitative data were collected via semi-structured interviews using open-ended questions. Quantitative data were gathered through PROMIS and Neuro-QoL instruments. Additionally, qualitative data were transformed into quantitative data for subjective self-assessment and frequency analyses. RESULTS Qualitative results identified five domains and 33 subdomains as areas of interest. The most valuable were the importance of social impacts, the development of several coping strategies, both physical and psychological, and the identification of fatigue and weakness as key symptoms. Data transformation then categorized more than 3100 citations on frequency analyses, globally and by domain, visit, and participant. Regarding quantitative results, there was no clear evidence that any of the three PRO tools captured positive changes as a result of NAC treatment. CONCLUSION Qualitative results showed a comprehensive characterization of HRQoL in this population based on a symptom/patient-centered approach. These findings will inform future studies. Furthermore, given the similar findings across our multiple methods and endpoints, the introduction of MMR may be a valuable, complementary approach to clinical trials. MMR may be especially useful to incorporate in order to address and follow the FDA's guidance and prioritization on the inclusion of affected individuals' perspectives in clinical trials.
Collapse
Affiliation(s)
- Carlos Capella-Peris
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, USA.
| | - Mary M Cosgrove
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, USA
| | - Irene C Chrismer
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, USA
| | - Magalie Emile-Backer
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, USA
| | - M Sonia Razaqyar
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey S Elliott
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, USA
| | - Anna Kuo
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, USA
| | - Paul G Wakim
- Biostatistics and Clinical Epidemiology Service, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Katherine G Meilleur
- Neuromuscular Symptoms Unit, Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
17
|
Witherspoon JW, Rekant JS, Wakim PG, Vasavada R, Waite M, Chrismer I, Shelton MO, Jain MS, Meilleur KG. Use of Fatigue Index as a Measure of Local Muscle Fatigability in Ryanodine Receptor Isoform-1-Related Myopathies. Front Neurol 2020; 10:1234. [PMID: 31920904 PMCID: PMC6914942 DOI: 10.3389/fneur.2019.01234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 11/06/2019] [Indexed: 11/13/2022] Open
Abstract
Introduction: Individuals affected with ryanodine receptor isoform-1-related myopathies (RYR1-RM) commonly experience fatigability in the quadriceps, which may limit physical function and potentially diminish quality of life. Fatigability, in RYR1-RM, results from skeletal muscle injury secondary to dysfunction of the major skeletal muscle Ca++ channel. However, during fatigability testing, affected individuals did not always reach the point of local muscle fatigue as defined by a fatigue index (FATI) at 50% of peak torque. Surakka et al. compared three versions of FATI equations, which vary by the area under the force curve (AUC). By performing this comparison, they were able to determine the optimal equation in individuals with Multiple Sclerosis. Purpose: Using a similar comparison, we sought to identify the optimal FATI equation in the RYR1-RM population. Secondly, because local muscle fatigability might have an impact on independent living, this study also assessed change in local muscle fatigability over a 6-month time frame. Methods: Thirty participants were analyzed from the RYR1-RM natural history study and double-blind, placebo-controlled N-acetylcysteine (NAC) trial, NCT02362425. Twenty-seven had fatigability data, from isometric knee extension and flexion fatigability tests, available for the purpose of establishing a method for predicting FATI at 50% peak torque. For the natural history study, 30 participants were used to assess disease progression of local muscle fatigability achieved during the knee extension fatigability test, and 29 participants for the knee flexion fatigability test. Results: Surakka's equation 1, using the prediction approach, led to the smallest median error, the smallest square-root of uncorrected sum of squares, and the smallest average of the absolute value of the differences. No difference was observed in FATI at 50% peak torque between month 0 and month 6 for extension (p = 0.606) and flexion (p = 0.740). Conclusion: Surakka's equation 1, with the prediction approach, was found to be the most accurate for imputing values when fatigue was not reached during a sustained knee isometric fatigability test in RYR1-RM. Furthermore, when used to assess fatigability-based disease stability, local muscle fatigability, in this RYR1-RM population remained stable.
Collapse
Affiliation(s)
- Jessica W Witherspoon
- Neuromuscular Symptoms Unit, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Julie S Rekant
- Rehabilitation Medicine Department, Mark O. Hatfield Clinical Research Center, National Institutes of Health, Bethesda, MD, United States
| | - Paul G Wakim
- National Institutes of Health Clinical Center, Biostatistics and Clinical Epidemiology Service, Bethesda, MD, United States
| | - Ruhi Vasavada
- Rehabilitation Medicine Department, Mark O. Hatfield Clinical Research Center, National Institutes of Health, Bethesda, MD, United States
| | - Melissa Waite
- Rehabilitation Medicine Department, Mark O. Hatfield Clinical Research Center, National Institutes of Health, Bethesda, MD, United States
| | - Irene Chrismer
- Neuromuscular Symptoms Unit, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Monique O Shelton
- Neuromuscular Symptoms Unit, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Minal S Jain
- Neuromuscular Symptoms Unit, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Katherine G Meilleur
- Neuromuscular Symptoms Unit, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
18
|
Fusto A, Moyle LA, Gilbert PM, Pegoraro E. Cored in the act: the use of models to understand core myopathies. Dis Model Mech 2019; 12:dmm041368. [PMID: 31874912 PMCID: PMC6955215 DOI: 10.1242/dmm.041368] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The core myopathies are a group of congenital myopathies with variable clinical expression - ranging from early-onset skeletal-muscle weakness to later-onset disease of variable severity - that are identified by characteristic 'core-like' lesions in myofibers and the presence of hypothonia and slowly or rather non-progressive muscle weakness. The genetic causes are diverse; central core disease is most often caused by mutations in ryanodine receptor 1 (RYR1), whereas multi-minicore disease is linked to pathogenic variants of several genes, including selenoprotein N (SELENON), RYR1 and titin (TTN). Understanding the mechanisms that drive core development and muscle weakness remains challenging due to the diversity of the excitation-contraction coupling (ECC) proteins involved and the differential effects of mutations across proteins. Because of this, the use of representative models expressing a mature ECC apparatus is crucial. Animal models have facilitated the identification of disease progression mechanisms for some mutations and have provided evidence to help explain genotype-phenotype correlations. However, many unanswered questions remain about the common and divergent pathological mechanisms that drive disease progression, and these mechanisms need to be understood in order to identify therapeutic targets. Several new transgenic animals have been described recently, expanding the spectrum of core myopathy models, including mice with patient-specific mutations. Furthermore, recent developments in 3D tissue engineering are expected to enable the study of core myopathy disease progression and the effects of potential therapeutic interventions in the context of human cells. In this Review, we summarize the current landscape of core myopathy models, and assess the hurdles and opportunities of future modeling strategies.
Collapse
Affiliation(s)
- Aurora Fusto
- Department of Neuroscience, University of Padua, Padua 35128, Italy
| | - Louise A Moyle
- Donnelly Centre, University of Toronto, Toronto, ON M5S3E1, Canada
- Institute of Biomaterials and Biochemical Engineering, University of Toronto, Toronto, ON M5S3G9, Canada
| | - Penney M Gilbert
- Donnelly Centre, University of Toronto, Toronto, ON M5S3E1, Canada
- Institute of Biomaterials and Biochemical Engineering, University of Toronto, Toronto, ON M5S3G9, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S3G5, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S1A8, Canada
| | - Elena Pegoraro
- Department of Neuroscience, University of Padua, Padua 35128, Italy
| |
Collapse
|
19
|
Kuo A, Todd JJ, Witherspoon JW, Lawal TA, Elliott J, Chrismer IC, Shelton MO, Razaqyar MS, Jain MS, Vasavada R, Waite M, Drinkard B, Michael D, Richarte A, Bönnemann CG, Meilleur KG. Reliability and Validity of Self-Report Questionnaires as Indicators of Fatigue in RYR1-Related Disorders. J Neuromuscul Dis 2019; 6:133-141. [PMID: 30714968 DOI: 10.3233/jnd-180335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND RYR1-related disorders (RYR1-RD), are a spectrum of genetic neuromuscular disorders. Affected individuals frequently experience fatigue yet appropriate tools to assess RYR1-RD-associated fatigue remain underdeveloped. OBJECTIVE This study assessed the reliability and validity of two self-report questionnaires, the multidimensional fatigue inventory (MFI-20) and adult/pediatric functional assessment of chronic illness-fatigue (FACIT-F/Peds-FACIT-F) as potential fatigue measures in RYR1-RD affected individuals. METHODS Participants (n = 37) were enrolled in an RYR1-RD combined natural history study and clinical trial. At baseline, participants completed fatigue questionnaires, six-minute walk test (6MWT), cardiopulmonary exercise test (CPET) and saliva collection for fatigue biomarker index (FBI) quantification. RESULTS All questionnaires exhibited good test-retest reliability (n = 18, ICC > 0.80). MFI-20 (n = 37), and FACIT-F (n = 28) also showed good internal consistency (Cronbach's α> 0.80). All MFI-20 subscales, except mental fatigue, and FACIT-F demonstrated evidence of criterion validity when correlated against percent predicted 6MWT distance (MFI-20 n = 37; r = -0.34 to -0.47, all p < 0.05, mental fatigue, r = -0.16, p = 0.35; FACIT-F n = 28, r = 0.41, p = 0.03). This was not the case for percent predicted VO2 peak (all p > 0.05). FBI correlated with MFI-20 general fatigue dimension only (r = -0.35, p = 0.03). Comparison of standardized questionnaire scores revealed that RYR1-RD affected individuals experience significantly greater fatigue than the general population. CONCLUSIONS MFI-20 and FACIT-F are valid and reliable tools for assessing RYR1-RD-associated fatigue, a symptom centrally implicated in this rare disorder.
Collapse
Affiliation(s)
- Anna Kuo
- Neuromuscular Symptoms Unit, National Institute of Nursing Research (NIH), United States
| | - Joshua J Todd
- Neuromuscular Symptoms Unit, National Institute of Nursing Research (NIH), United States
| | - Jessica W Witherspoon
- Neuromuscular Symptoms Unit, National Institute of Nursing Research (NIH), United States
| | - Tokunbor A Lawal
- Neuromuscular Symptoms Unit, National Institute of Nursing Research (NIH), United States
| | - Jeffery Elliott
- Neuromuscular Symptoms Unit, National Institute of Nursing Research (NIH), United States
| | - Irene C Chrismer
- Neuromuscular Symptoms Unit, National Institute of Nursing Research (NIH), United States
| | - Monique O Shelton
- Neuromuscular Symptoms Unit, National Institute of Nursing Research (NIH), United States
| | - Muslima S Razaqyar
- Neuromuscular Symptoms Unit, National Institute of Nursing Research (NIH), United States
| | - Minal S Jain
- Mark O Hatfield Clinical Center, National Institutes of Health (NIH), United States
| | - Ruhi Vasavada
- Mark O Hatfield Clinical Center, National Institutes of Health (NIH), United States
| | - Melissa Waite
- Mark O Hatfield Clinical Center, National Institutes of Health (NIH), United States
| | - Bart Drinkard
- Mark O Hatfield Clinical Center, National Institutes of Health (NIH), United States
| | - Darren Michael
- Hyperion Biotechnology Inc., San Antonio TX, United States
| | | | - Carsten G Bönnemann
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke - NINDS (NIH), United States
| | - Katherine G Meilleur
- Neuromuscular Symptoms Unit, National Institute of Nursing Research (NIH), United States
| |
Collapse
|