1
|
Reyngoudt H, Baudin P, Caldas de Almeida Araújo E, Bachasson D, Boisserie J, Mariampillai K, Annoussamy M, Allenbach Y, Hogrel J, Carlier PG, Marty B, Benveniste O. Effect of sirolimus on muscle in inclusion body myositis observed with magnetic resonance imaging and spectroscopy. J Cachexia Sarcopenia Muscle 2024; 15:1108-1120. [PMID: 38613252 PMCID: PMC11154752 DOI: 10.1002/jcsm.13451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/09/2024] [Accepted: 01/29/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Finding sensitive clinical outcome measures has become crucial in natural history studies and therapeutic trials of neuromuscular disorders. Here, we focus on 1-year longitudinal data from quantitative magnetic resonance imaging (MRI) and phosphorus magnetic resonance spectroscopy (31P MRS) in a placebo-controlled study of sirolimus for inclusion body myositis (IBM), also examining their links to functional, strength, and clinical parameters in lower limb muscles. METHODS Quantitative MRI and 31P MRS data were collected at 3 T from a single site, involving 44 patients (22 on placebo, 22 on sirolimus) at baseline and year-1, and 21 healthy controls. Assessments included fat fraction (FF), contractile cross-sectional area (cCSA), and water T2 in global leg and thigh segments, muscle groups, individual muscles, as well as 31P MRS indices in quadriceps or triceps surae. Analyses covered patient-control comparisons, annual change assessments via standard t-tests and linear mixed models, calculation of standardized response means (SRM), and exploration of correlations between MRI, 31P MRS, functional, strength, and clinical parameters. RESULTS The quadriceps and gastrocnemius medialis muscles had the highest FF values, displaying notable heterogeneity and asymmetry, particularly in the quadriceps. In the placebo group, the median 1-year FF increase in the quadriceps was 3.2% (P < 0.001), whereas in the sirolimus group, it was 0.7% (P = 0.033). Both groups experienced a significant decrease in cCSA in the quadriceps after 1 year (P < 0.001), with median changes of 12.6% for the placebo group and 5.5% for the sirolimus group. Differences in FF and cCSA changes between the two groups were significant (P < 0.001). SRM values for FF and cCSA were 1.3 and 1.4 in the placebo group and 0.5 and 0.8 in the sirolimus group, respectively. Water T2 values were highest in the quadriceps muscles of both groups, significantly exceeding control values in both groups (P < 0.001) and were higher in the placebo group than in the sirolimus group. After treatment, water T2 increased significantly only in the sirolimus group's quadriceps (P < 0.01). Multiple 31P MRS indices were abnormal in patients compared to controls and remained unchanged after treatment. Significant correlations were identified between baseline water T2 and FF at baseline and the change in FF (P < 0.001). Additionally, significant correlations were observed between FF, cCSA, water T2, and functional and strength outcome measures. CONCLUSIONS This study has demonstrated that quantitative MRI/31P MRS can discern measurable differences between placebo and sirolimus-treated IBM patients, offering promise for future therapeutic trials in idiopathic inflammatory myopathies such as IBM.
Collapse
Affiliation(s)
- Harmen Reyngoudt
- NMR Laboratory, Neuromuscular Investigation CenterInstitute of MyologyParisFrance
| | - Pierre‐Yves Baudin
- NMR Laboratory, Neuromuscular Investigation CenterInstitute of MyologyParisFrance
| | | | - Damien Bachasson
- Neuromuscular Physiology and Evaluation Laboratory, Neuromuscular Investigation CenterInstitute of MyologyParisFrance
- INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et CliniqueSorbonne UniversitéParisFrance
| | - Jean‐Marc Boisserie
- NMR Laboratory, Neuromuscular Investigation CenterInstitute of MyologyParisFrance
| | - Kubéraka Mariampillai
- Department of Internal Medicine and Clinical Immunology, Inflammatory Myopathies Reference Center, Research Center in Myology UMR974, Sorbonne Université, Assistance Publique‐Hôpitaux de ParisPitié‐Salpêtrière University HospitalParisFrance
- I‐MotionInstitute of MyologyParisFrance
| | | | - Yves Allenbach
- Department of Internal Medicine and Clinical Immunology, Inflammatory Myopathies Reference Center, Research Center in Myology UMR974, Sorbonne Université, Assistance Publique‐Hôpitaux de ParisPitié‐Salpêtrière University HospitalParisFrance
| | - Jean‐Yves Hogrel
- Neuromuscular Physiology and Evaluation Laboratory, Neuromuscular Investigation CenterInstitute of MyologyParisFrance
| | | | - Benjamin Marty
- NMR Laboratory, Neuromuscular Investigation CenterInstitute of MyologyParisFrance
| | - Olivier Benveniste
- Department of Internal Medicine and Clinical Immunology, Inflammatory Myopathies Reference Center, Research Center in Myology UMR974, Sorbonne Université, Assistance Publique‐Hôpitaux de ParisPitié‐Salpêtrière University HospitalParisFrance
| |
Collapse
|
2
|
Linhart C, Mehrens D, Gellert LM, Ehrnthaller C, Gleich J, Lampert C, Lerchenberger M, Böcker W, Neuerburg C, Zhang Y. Gluteal Muscle Fatty Atrophy: An Independent Risk Factor for Surgical Treatment in Elderly Patients Diagnosed with Type-III Fragility Fractures of the Pelvis. J Clin Med 2023; 12:6966. [PMID: 38002581 PMCID: PMC10671837 DOI: 10.3390/jcm12226966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/27/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Gluteal muscle fatty atrophy (gMFA) might impair pelvic stability and negatively influence remobilization in patients with fragility fractures of the pelvis (FFP). This study aimed to investigate the association between gMFA and surgical indication in patients with FFP. METHODS AND MATERIALS A retrospective analysis of 429 patients (age ≥80) diagnosed with FFP was performed. gMFA of the gluteus maximus, medius, and minimus was evaluated using a standard scoring system based on computer tomography images. RESULTS No significant difference was found in gMFA between genders or among FFP types. The severity of gMFA did not correlate with age. The severity of gMFA in the gluteus medius was significantly greater than in the gluteus maximus, whereas the most profound gMFA was found in the gluteus minimus. gMFA was significantly more severe in patients who underwent an operation than in conservatively treated patients with type-III FFP, and an independent correlation to surgical indication was found using logistic regression. CONCLUSION Our findings imply that gMFA is an independent factor for surgical treatment in patients with type-III FFP. Besides focusing on the fracture pattern, the further evaluation of gMFA could be a feasible parameter for decision making toward either conservative or surgical treatment of type-III FFP.
Collapse
Affiliation(s)
- Christoph Linhart
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, 81377 Munich, Germany; (C.L.); (L.M.G.); (C.E.); (J.G.); (C.L.); (M.L.); (W.B.); (C.N.)
| | - Dirk Mehrens
- Department of Radiology, University Hospital, LMU Munich, 81377 Munich, Germany;
| | - Luca Maximilian Gellert
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, 81377 Munich, Germany; (C.L.); (L.M.G.); (C.E.); (J.G.); (C.L.); (M.L.); (W.B.); (C.N.)
| | - Christian Ehrnthaller
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, 81377 Munich, Germany; (C.L.); (L.M.G.); (C.E.); (J.G.); (C.L.); (M.L.); (W.B.); (C.N.)
| | - Johannes Gleich
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, 81377 Munich, Germany; (C.L.); (L.M.G.); (C.E.); (J.G.); (C.L.); (M.L.); (W.B.); (C.N.)
| | - Christopher Lampert
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, 81377 Munich, Germany; (C.L.); (L.M.G.); (C.E.); (J.G.); (C.L.); (M.L.); (W.B.); (C.N.)
| | - Maximilian Lerchenberger
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, 81377 Munich, Germany; (C.L.); (L.M.G.); (C.E.); (J.G.); (C.L.); (M.L.); (W.B.); (C.N.)
| | - Wolfgang Böcker
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, 81377 Munich, Germany; (C.L.); (L.M.G.); (C.E.); (J.G.); (C.L.); (M.L.); (W.B.); (C.N.)
| | - Carl Neuerburg
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, 81377 Munich, Germany; (C.L.); (L.M.G.); (C.E.); (J.G.); (C.L.); (M.L.); (W.B.); (C.N.)
| | - Yunjie Zhang
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, 81377 Munich, Germany; (C.L.); (L.M.G.); (C.E.); (J.G.); (C.L.); (M.L.); (W.B.); (C.N.)
| |
Collapse
|
3
|
Lassche S, Voermans NC, van der Pijl R, van den Berg M, Heerschap A, van Hees H, Kusters B, van der Maarel SM, Ottenheijm CAC, van Engelen BGM. Preserved single muscle fiber specific force in facioscapulohumeral muscular dystrophy. Neurology 2020; 94:e1157-e1170. [PMID: 31964688 DOI: 10.1212/wnl.0000000000008977] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 09/20/2019] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To investigate single muscle fiber contractile performance in muscle biopsies from patients with facioscapulohumeral muscular dystrophy (FSHD), one of the most common hereditary muscle disorders. METHODS We collected 50 muscle biopsies (26 vastus lateralis, 24 tibialis anterior) from 14 patients with genetically confirmed FSHD and 12 healthy controls. Single muscle fibers (n = 547) were isolated for contractile measurements. Titin content and titin phosphorylation were examined in vastus lateralis muscle biopsies. RESULTS Single muscle fiber specific force was intact at saturating and physiologic calcium concentrations in all FSHD biopsies, with (FSHDFAT) and without (FSHDNORMAL) fatty infiltration, compared to healthy controls. Myofilament calcium sensitivity of force is increased in single muscle fibers obtained from FSHD muscle biopsies with increased fatty infiltration, but not in FSHD muscle biopsies without fatty infiltration (pCa50: 5.77-5.80 in healthy controls, 5.74-5.83 in FSHDNORMAL, and 5.86-5.90 in FSHDFAT single muscle fibers). Cross-bridge cycling kinetics at saturating calcium concentrations and myofilament cooperativity did not differ from healthy controls. Development of single muscle fiber passive tension was changed in all FSHD vastus lateralis and in FSHDFAT tibialis anterior, resulting in increased fiber stiffness. Titin content was increased in FSHD vastus lateralis biopsies; however, titin phosphorylation did not differ from healthy controls. CONCLUSION Muscle weakness in patients with FSHD is not caused by reduced specific force of individual muscle fibers, even in severely affected tissue with marked fatty infiltration of muscle tissue.
Collapse
Affiliation(s)
- Saskia Lassche
- From the Department of Neurology, Donders Institute for Brain, Cognition and Behaviour (S.L., N.C.V., B.G.M.v.E.), Department of Radiology (A.H.), and Department of Pulmonary Diseases (H.V.H.), Radboud University Medical Center, Nijmegen; Department of Physiology (S.L., R.v.d.P., M.v.d.B., C.A.C.O.) and Department of Pathology, Institute for Cardiovascular Research (B.K.), Amsterdam University Medical Center, the Netherlands; Department of Cellular and Molecular Medicine (R.v.d.P., C.A.C.O.), University of Arizona, Tucson; and Department of Human Genetics (S.M.v.d.M.), Leiden University Medical Centre, the Netherlands.
| | - Nicol C Voermans
- From the Department of Neurology, Donders Institute for Brain, Cognition and Behaviour (S.L., N.C.V., B.G.M.v.E.), Department of Radiology (A.H.), and Department of Pulmonary Diseases (H.V.H.), Radboud University Medical Center, Nijmegen; Department of Physiology (S.L., R.v.d.P., M.v.d.B., C.A.C.O.) and Department of Pathology, Institute for Cardiovascular Research (B.K.), Amsterdam University Medical Center, the Netherlands; Department of Cellular and Molecular Medicine (R.v.d.P., C.A.C.O.), University of Arizona, Tucson; and Department of Human Genetics (S.M.v.d.M.), Leiden University Medical Centre, the Netherlands
| | - Robbert van der Pijl
- From the Department of Neurology, Donders Institute for Brain, Cognition and Behaviour (S.L., N.C.V., B.G.M.v.E.), Department of Radiology (A.H.), and Department of Pulmonary Diseases (H.V.H.), Radboud University Medical Center, Nijmegen; Department of Physiology (S.L., R.v.d.P., M.v.d.B., C.A.C.O.) and Department of Pathology, Institute for Cardiovascular Research (B.K.), Amsterdam University Medical Center, the Netherlands; Department of Cellular and Molecular Medicine (R.v.d.P., C.A.C.O.), University of Arizona, Tucson; and Department of Human Genetics (S.M.v.d.M.), Leiden University Medical Centre, the Netherlands
| | - Marloes van den Berg
- From the Department of Neurology, Donders Institute for Brain, Cognition and Behaviour (S.L., N.C.V., B.G.M.v.E.), Department of Radiology (A.H.), and Department of Pulmonary Diseases (H.V.H.), Radboud University Medical Center, Nijmegen; Department of Physiology (S.L., R.v.d.P., M.v.d.B., C.A.C.O.) and Department of Pathology, Institute for Cardiovascular Research (B.K.), Amsterdam University Medical Center, the Netherlands; Department of Cellular and Molecular Medicine (R.v.d.P., C.A.C.O.), University of Arizona, Tucson; and Department of Human Genetics (S.M.v.d.M.), Leiden University Medical Centre, the Netherlands
| | - Arend Heerschap
- From the Department of Neurology, Donders Institute for Brain, Cognition and Behaviour (S.L., N.C.V., B.G.M.v.E.), Department of Radiology (A.H.), and Department of Pulmonary Diseases (H.V.H.), Radboud University Medical Center, Nijmegen; Department of Physiology (S.L., R.v.d.P., M.v.d.B., C.A.C.O.) and Department of Pathology, Institute for Cardiovascular Research (B.K.), Amsterdam University Medical Center, the Netherlands; Department of Cellular and Molecular Medicine (R.v.d.P., C.A.C.O.), University of Arizona, Tucson; and Department of Human Genetics (S.M.v.d.M.), Leiden University Medical Centre, the Netherlands
| | - Hieronymus van Hees
- From the Department of Neurology, Donders Institute for Brain, Cognition and Behaviour (S.L., N.C.V., B.G.M.v.E.), Department of Radiology (A.H.), and Department of Pulmonary Diseases (H.V.H.), Radboud University Medical Center, Nijmegen; Department of Physiology (S.L., R.v.d.P., M.v.d.B., C.A.C.O.) and Department of Pathology, Institute for Cardiovascular Research (B.K.), Amsterdam University Medical Center, the Netherlands; Department of Cellular and Molecular Medicine (R.v.d.P., C.A.C.O.), University of Arizona, Tucson; and Department of Human Genetics (S.M.v.d.M.), Leiden University Medical Centre, the Netherlands
| | - Benno Kusters
- From the Department of Neurology, Donders Institute for Brain, Cognition and Behaviour (S.L., N.C.V., B.G.M.v.E.), Department of Radiology (A.H.), and Department of Pulmonary Diseases (H.V.H.), Radboud University Medical Center, Nijmegen; Department of Physiology (S.L., R.v.d.P., M.v.d.B., C.A.C.O.) and Department of Pathology, Institute for Cardiovascular Research (B.K.), Amsterdam University Medical Center, the Netherlands; Department of Cellular and Molecular Medicine (R.v.d.P., C.A.C.O.), University of Arizona, Tucson; and Department of Human Genetics (S.M.v.d.M.), Leiden University Medical Centre, the Netherlands
| | - Silvère M van der Maarel
- From the Department of Neurology, Donders Institute for Brain, Cognition and Behaviour (S.L., N.C.V., B.G.M.v.E.), Department of Radiology (A.H.), and Department of Pulmonary Diseases (H.V.H.), Radboud University Medical Center, Nijmegen; Department of Physiology (S.L., R.v.d.P., M.v.d.B., C.A.C.O.) and Department of Pathology, Institute for Cardiovascular Research (B.K.), Amsterdam University Medical Center, the Netherlands; Department of Cellular and Molecular Medicine (R.v.d.P., C.A.C.O.), University of Arizona, Tucson; and Department of Human Genetics (S.M.v.d.M.), Leiden University Medical Centre, the Netherlands
| | - Coen A C Ottenheijm
- From the Department of Neurology, Donders Institute for Brain, Cognition and Behaviour (S.L., N.C.V., B.G.M.v.E.), Department of Radiology (A.H.), and Department of Pulmonary Diseases (H.V.H.), Radboud University Medical Center, Nijmegen; Department of Physiology (S.L., R.v.d.P., M.v.d.B., C.A.C.O.) and Department of Pathology, Institute for Cardiovascular Research (B.K.), Amsterdam University Medical Center, the Netherlands; Department of Cellular and Molecular Medicine (R.v.d.P., C.A.C.O.), University of Arizona, Tucson; and Department of Human Genetics (S.M.v.d.M.), Leiden University Medical Centre, the Netherlands
| | - Baziel G M van Engelen
- From the Department of Neurology, Donders Institute for Brain, Cognition and Behaviour (S.L., N.C.V., B.G.M.v.E.), Department of Radiology (A.H.), and Department of Pulmonary Diseases (H.V.H.), Radboud University Medical Center, Nijmegen; Department of Physiology (S.L., R.v.d.P., M.v.d.B., C.A.C.O.) and Department of Pathology, Institute for Cardiovascular Research (B.K.), Amsterdam University Medical Center, the Netherlands; Department of Cellular and Molecular Medicine (R.v.d.P., C.A.C.O.), University of Arizona, Tucson; and Department of Human Genetics (S.M.v.d.M.), Leiden University Medical Centre, the Netherlands
| |
Collapse
|