1
|
Engquist EN, Greco A, Joosten LAB, van Engelen BGM, Zammit PS, Banerji CRS. FSHD muscle shows perturbation in fibroadipogenic progenitor cells, mitochondrial function and alternative splicing independently of inflammation. Hum Mol Genet 2024; 33:182-197. [PMID: 37856562 PMCID: PMC10772042 DOI: 10.1093/hmg/ddad175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/25/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is a prevalent, incurable myopathy. FSHD is highly heterogeneous, with patients following a variety of clinical trajectories, complicating clinical trials. Skeletal muscle in FSHD undergoes fibrosis and fatty replacement that can be accelerated by inflammation, adding to heterogeneity. Well controlled molecular studies are thus essential to both categorize FSHD patients into distinct subtypes and understand pathomechanisms. Here, we further analyzed RNA-sequencing data from 24 FSHD patients, each of whom donated a biopsy from both a non-inflamed (TIRM-) and inflamed (TIRM+) muscle, and 15 FSHD patients who donated peripheral blood mononucleated cells (PBMCs), alongside non-affected control individuals. Differential gene expression analysis identified suppression of mitochondrial biogenesis and up-regulation of fibroadipogenic progenitor (FAP) gene expression in FSHD muscle, which was particularly marked on inflamed samples. PBMCs demonstrated suppression of antigen presentation in FSHD. Gene expression deconvolution revealed FAP expansion as a consistent feature of FSHD muscle, via meta-analysis of 7 independent transcriptomic datasets. Clustering of muscle biopsies separated patients in an unbiased manner into clinically mild and severe subtypes, independently of known disease modifiers (age, sex, D4Z4 repeat length). Lastly, the first genome-wide analysis of alternative splicing in FSHD muscle revealed perturbation of autophagy, BMP2 and HMGB1 signalling. Overall, our findings reveal molecular subtypes of FSHD with clinical relevance and identify novel pathomechanisms for this highly heterogeneous condition.
Collapse
Affiliation(s)
- Elise N Engquist
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, United Kingdom
| | - Anna Greco
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS) and Radboud Center of Infectious Diseases (RCI), Radboud University Medical Center, Geert Grooteplein Zuid 10, Nijmegen 6525 GA, The Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS) and Radboud Center of Infectious Diseases (RCI), Radboud University Medical Center, Geert Grooteplein Zuid 10, Nijmegen 6525 GA, The Netherlands
- Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, 400012, Cluj-Napoca, Romania
| | - Baziel G M van Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
| | - Peter S Zammit
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, United Kingdom
| | - Christopher R S Banerji
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, United Kingdom
- The Alan Turing Institute, The British Library, 96 Euston Road, London NW1 2DB, United Kingdom
| |
Collapse
|
2
|
Rasing NB, van de Geest-Buit WA, Chan OYA, Mul K, Lanser A, van Engelen BG, Erasmus CE, Fischer AH, Ingels KJ, Post B, Siemann I, Groothuis JT, Voermans NC. Treatment Approaches for Altered Facial Expression: A Systematic Review in Facioscapulohumeral Muscular Dystrophy and Other Neurological Diseases. J Neuromuscul Dis 2024; 11:535-565. [PMID: 38517799 PMCID: PMC11091602 DOI: 10.3233/jnd-230213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2024] [Indexed: 03/24/2024]
Abstract
Background Facial weakness is a key feature of facioscapulohumeral muscular dystrophy (FSHD) and may lead to altered facial expression and subsequent psychosocial impairment. There is no cure and supportive treatments focus on optimizing physical fitness and compensation of functional disabilities. Objective We hypothesize that symptomatic treatment options and psychosocial interventions for other neurological diseases with altered facial expression could be applicable to FSHD. Therefore, the aim of this review is to collect symptomatic treatment approaches that target facial muscle function and psychosocial interventions in various neurological diseases with altered facial expression in order to discuss the applicability to FSHD. Methods A systematic search was performed. Selected studies had to include FSHD, Bell's palsy, Moebius syndrome, myotonic dystrophy type 1, or Parkinson's disease and treatment options which target altered facial expression. Data was extracted for study and patients' characteristics, outcome assessment tools, treatment, outcome of facial expression and or psychosocial functioning. Results Forty studies met the inclusion criteria, of which only three studies included FSHD patients exclusively. Most, twenty-one, studies were performed in patients with Bell's palsy. Studies included twelve different therapy categories and results were assessed with different outcomes measures. Conclusions Five therapy categories were considered applicable to FSHD: training of (non-verbal) communication compensation strategies, speech training, physical therapy, conference attendance, and smile restoration surgery. Further research is needed to establish the effect of these therapies in FSHD. We recommend to include outcome measures in these studies that cover at least cosmetic, functional, communication, and quality of life domains.
Collapse
Affiliation(s)
- Nathaniël B. Rasing
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Willianne A. van de Geest-Buit
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - On Ying A. Chan
- Information Specialist, Medical Library, Radboud University, Nijmegen, The Netherlands
| | - Karlien Mul
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Anke Lanser
- Patient Representative and Chairman FSHD Advocacy Group, Patient Organization for Muscular Disease Spierziekten Nederland, Baarn, The Netherlands
| | - Baziel G.M. van Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Corrie E. Erasmus
- Department of Paediatric Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Amalia Children’s Hospital, Nijmegen, The Netherlands
| | - Agneta H. Fischer
- Department of Psychology, Social Psychology, University of Amsterdam, Amsterdam, the Netherlands
| | - Koen J.A.O. Ingels
- Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bart Post
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ietske Siemann
- Department of Medical Psychology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jan T. Groothuis
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nicol C. Voermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
3
|
Banerji CRS, Greco A, Joosten LAB, van Engelen BGM, Zammit PS. The FSHD muscle-blood biomarker: a circulating transcriptomic biomarker for clinical severity in facioscapulohumeral muscular dystrophy. Brain Commun 2023; 5:fcad221. [PMID: 37731904 PMCID: PMC10507741 DOI: 10.1093/braincomms/fcad221] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/20/2023] [Accepted: 08/14/2023] [Indexed: 09/22/2023] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is a prevalent, incurable skeletal myopathy. Clinical trials for FSHD are hindered by heterogeneous biomarkers poorly associated with clinical severity, requiring invasive muscle biopsy. Macroscopically, FSHD presents with slow fatty replacement of muscle, rapidly accelerated by inflammation. Mis-expression of the transcription factor DUX4 is currently accepted to underlie pathogenesis, and mechanisms including PAX7 target gene repression have been proposed. Here, we performed RNA-sequencing on MRI-guided inflamed and isogenic non-inflamed muscle biopsies from the same clinically characterized FSHD patients (n = 24), alongside isogenic peripheral blood mononucleated cells from a subset of patients (n = 13) and unaffected controls (n = 11). Multivariate models were employed to evaluate the clinical associations of five published FSHD transcriptomic biomarkers. We demonstrated that PAX7 target gene repression can discriminate control, inflamed and non-inflamed FSHD muscle independently of age and sex (P < 0.013), while the discriminatory power of DUX4 target genes was limited to distinguishing FSHD muscle from control. Importantly, the level of PAX7 target gene repression in non-inflamed muscle associated with clinical assessments of FSHD severity (P = 0.04). DUX4 target gene biomarkers in FSHD muscle showed associations with lower limb fat fraction and D4Z4 array length but not clinical assessment. Lastly, PAX7 target gene repression in FSHD muscle correlated with the level in isogenic peripheral blood mononucleated cells (P = 0.002). A refined PAX7 target gene biomarker comprising 143/601 PAX7 target genes computed in peripheral blood (the FSHD muscle-blood biomarker) associated with clinical severity in FSHD patients (P < 0.036). Our new circulating biomarker validates as a classifier of clinical severity in an independent data set of 54 FSHD patient and 29 matched control blood samples, with improved power in older patients (P = 0.03). In summary, we present the minimally invasive FSHD muscle-blood biomarker of FSHD clinical severity valid in patient muscle and blood, of potential use in routine disease monitoring and clinical trials.
Collapse
Affiliation(s)
- Christopher R S Banerji
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London SE1 1UL, UK
- The Alan Turing Institute, The British Library, London NW1 2DB, UK
| | - Anna Greco
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS) and Radboud Center of Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen 6525, The Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS) and Radboud Center of Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen 6525, The Netherlands
- Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Baziel G M van Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Peter S Zammit
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London SE1 1UL, UK
| |
Collapse
|
4
|
Ganassi M, Figeac N, Reynaud M, Ortuste Quiroga HP, Zammit PS. Antagonism Between DUX4 and DUX4c Highlights a Pathomechanism Operating Through β-Catenin in Facioscapulohumeral Muscular Dystrophy. Front Cell Dev Biol 2022; 10:802573. [PMID: 36158201 PMCID: PMC9490378 DOI: 10.3389/fcell.2022.802573] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Aberrant expression of the transcription factor DUX4 from D4Z4 macrosatellite repeats on chromosome 4q35, and its transcriptome, associate with pathogenesis in facioscapulohumeral muscular dystrophy (FSHD). Forced DUX4 expression halts skeletal muscle cell proliferation and induces cell death. DUX4 binds DNA via two homeodomains that are identical in sequence to those of DUX4c (DUX4L9): a closely related transcriptional regulator encoded by a single, inverted, mutated D4Z4 unit located centromeric to the D4Z4 macrosatellite array on chromosome 4. However, the function and contribution of DUX4c to FSHD pathogenesis are unclear. To explore interplay between DUX4, DUX4c, and the DUX4-induced phenotype, we investigated whether DUX4c interferes with DUX4 function in human myogenesis. Constitutive expression of DUX4c rescued the DUX4-induced inhibition of proliferation and reduced cell death in human myoblasts. Functionally, DUX4 promotes nuclear translocation of β-CATENIN and increases canonical WNT signalling. Concomitant constitutive expression of DUX4c prevents β-CATENIN nuclear accumulation and the downstream transcriptional program. DUX4 reduces endogenous DUX4c levels, whereas constitutive expression of DUX4c robustly suppresses expression of DUX4 target genes, suggesting molecular antagonism. In line, DUX4 expression in FSHD myoblasts correlates with reduced DUX4c levels. Addressing the mechanism, we identified a subset of genes involved in the WNT/β-CATENIN pathway that are differentially regulated between DUX4 and DUX4c, whose expression pattern can separate muscle biopsies from severely affected FSHD patients from healthy. Finally, blockade of WNT/β-CATENIN signalling rescues viability of FSHD myoblasts. Together, our study highlights an antagonistic interplay whereby DUX4 alters cell viability via β-CATENIN signalling and DUX4c counteracts aspects of DUX4-mediated toxicity in human muscle cells, potentially acting as a gene modifier for FSHD severity. Importantly, direct DUX4 regulation of the WNT/β-CATENIN pathway informs future therapeutic interventions to ameliorate FSHD pathology.
Collapse
Affiliation(s)
| | | | | | | | - Peter S. Zammit
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London, United Kingdom
| |
Collapse
|
5
|
van de Geest-Buit WA, Rasing NB, Mul K, Deenen JCW, Vincenten SCC, Siemann I, Lanser A, Groothuis JT, van Engelen BG, Custers JAE, Voermans NC. Facing facial weakness: psychosocial outcomes of facial weakness and reduced facial function in facioscapulohumeral muscular dystrophy. Disabil Rehabil 2022:1-10. [DOI: 10.1080/09638288.2022.2092779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- W. A. van de Geest-Buit
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - N. B. Rasing
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - K. Mul
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - J. C. W. Deenen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - S. C. C. Vincenten
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - I. Siemann
- Department of Medical Psychology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - A. Lanser
- Patient Representative and Chairman FSHD Advocacy Group, Patient Organization for Muscular Diseases Spierziekten Nederland, Baarn, The Netherlands
| | - J. T. Groothuis
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - B. G. van Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - J. A. E. Custers
- Department of Medical Psychology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - N. C. Voermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
6
|
Quintero J, Saad NY, Pagnoni SM, Jacquelin DK, Gatica L, Harper SQ, Rosa AL. The DUX4 protein is a co-repressor of the progesterone and glucocorticoid nuclear receptors. FEBS Lett 2022; 596:2644-2658. [PMID: 35662006 DOI: 10.1002/1873-3468.14416] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/28/2022] [Accepted: 05/28/2022] [Indexed: 11/09/2022]
Abstract
DUX4 is a transcription factor required during early embryonic development in placental mammals. In this work we provide evidence that DUX4 is a co-repressor of nuclear receptors (NRs) of progesterone (PR) and glucocorticoids (GR). The DUX4 C-ter and N-ter regions, including the nuclear localization signals and homeodomain motifs, contribute to the corepressor activity of DUX4 on PR and GR. Immunoprecipitation studies, using total protein extracts of cells expressing tagged versions of DUX4 and GR, support that these proteins are physically associated. Our studies suggest that DUX4 could modulate gene expression by coregulating the activity of hormone NRs. This is the first report highlighting a potential endocrine role for DUX4.
Collapse
Affiliation(s)
- Julieta Quintero
- Laboratorio de Genética y Biología Molecular, IRNASUS-CONICET, Facultad de Ciencias Químicas, Universidad Católica de Córdoba, Argentina
| | - Nizar Y Saad
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Sabrina M Pagnoni
- Laboratorio de Genética y Biología Molecular, IRNASUS-CONICET, Facultad de Ciencias Químicas, Universidad Católica de Córdoba, Argentina
| | - Daniela K Jacquelin
- Laboratorio de Genética y Biología Molecular, IRNASUS-CONICET, Facultad de Ciencias Químicas, Universidad Católica de Córdoba, Argentina.,INFIQC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Laura Gatica
- Laboratorio de Genética y Biología Molecular, IRNASUS-CONICET, Facultad de Ciencias Químicas, Universidad Católica de Córdoba, Argentina.,CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina
| | - Scott Q Harper
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Alberto L Rosa
- Laboratorio de Genética y Biología Molecular, IRNASUS-CONICET, Facultad de Ciencias Químicas, Universidad Católica de Córdoba, Argentina.,Fundación Allende-CONICET, Córdoba, Argentina
| |
Collapse
|
7
|
Triantafyllidou O, Stavridis K, Kastora SL, Vlahos N. Road to conception and successful delivery for a facioscapulohumeral muscular dystrophy patient. SAGE Open Med Case Rep 2022; 10:2050313X221081359. [PMID: 35251661 PMCID: PMC8891829 DOI: 10.1177/2050313x221081359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/30/2022] [Indexed: 11/16/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy is a muscular dystrophy affecting all ages, primarily people in the second decade. The disease is initially presented with face, shoulder girdle, and upper arm involvement, followed by lower extremity muscle weakness. Disease progression is usually slow, although about one-fifth of patients will require a wheelchair to accommodate mobility. Women with this muscular dystrophy could rarely have poor birth outcomes, with facioscapulohumeral muscular dystrophy symptom deterioration post-partum. In this study, we present a case of a woman with a genetically confirmed facioscapulohumeral muscular dystrophy 1 who underwent cesarean section with epidural anesthesia with favorable outcomes following the procedure. Eight months post cesarean section, the patient reported no facioscapulohumeral muscular dystrophy symptom deterioration. We reviewed the literature with emphasis on large studies concerning facioscapulohumeral muscular dystrophy and birth outcomes and concluded that the hereby presented approach is important for the comprehensive obstetric care and future risk assessment and management in such patients.
Collapse
Affiliation(s)
- Olga Triantafyllidou
- 2nd Department of Obstetrics and Gynaecology, Aretaieion Hospital, University of Athens, Athens, Greece
| | - Konstantinos Stavridis
- 2nd Department of Obstetrics and Gynaecology, Aretaieion Hospital, University of Athens, Athens, Greece
| | - Stavroula Lila Kastora
- Acute Medicine, Grampian University Hospitals NHS Trust, Aberdeen, UK
- School of Medicine, University of Aberdeen, Aberdeen, UK
| | - Nikolaos Vlahos
- 2nd Department of Obstetrics and Gynaecology, Aretaieion Hospital, University of Athens, Athens, Greece
| |
Collapse
|
8
|
Katz NK, Hogan J, Delbango R, Cernik C, Tawil R, Statland JM. Predictors of functional outcomes in patients with facioscapulohumeral muscular dystrophy. Brain 2021; 144:3451-3460. [PMID: 34542603 PMCID: PMC8677548 DOI: 10.1093/brain/awab326] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/15/2021] [Accepted: 07/30/2021] [Indexed: 11/13/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is one of the most prevalent muscular dystrophies characterized by considerable variability in severity, rates of progression and functional outcomes. Few studies follow FSHD cohorts long enough to understand predictors of disease progression and functional outcomes, creating gaps in our understanding, which impacts clinical care and the design of clinical trials. Efforts to identify molecularly targeted therapies create a need to better understand disease characteristics with predictive value to help refine clinical trial strategies and understand trial outcomes. Here we analysed a prospective cohort from a large, longitudinally followed registry of patients with FSHD in the USA to determine predictors of outcomes such as need for wheelchair use. This study analysed de-identified data from 578 individuals with confirmed FSHD type 1 enrolled in the United States National Registry for FSHD Patients and Family members. Data were collected from January 2002 to September 2019 and included an average of 9 years (range 0-18) of follow-up surveys. Data were analysed using descriptive epidemiological techniques, and risk of wheelchair use was determined using Cox proportional hazards models. Supervised machine learning analysis was completed using Random Forest modelling and included all 189 unique features collected from registry questionnaires. A separate medications-only model was created that included 359 unique medications reported by participants. Here we show that smaller allele sizes were predictive of earlier age at onset, diagnosis and likelihood of wheelchair use. Additionally, we show that females were more likely overall to progress to wheelchair use and at a faster rate as compared to males, independent of genetics. Use of machine learning models that included all reported clinical features showed that the effect of allele size on progression to wheelchair use is small compared to disease duration, which may be important to consider in trial design. Medical comorbidities and medication use add to the risk for need for wheelchair dependence, raising the possibility for better medical management impacting outcomes in FSHD. The findings in this study will require further validation in additional, larger datasets but could have implications for clinical care, and inclusion criteria for future clinical trials in FSHD.
Collapse
Affiliation(s)
- Natalie K Katz
- Department of Neurology, Children’s Mercy Hospital, Kansas City, MO 64108, USA
| | - John Hogan
- Department of Artificial Intelligence, AIbytes, LLC, Hurley, NY 12443, USA
| | - Ryan Delbango
- Department of Artificial Intelligence, AIbytes, LLC, Hurley, NY 12443, USA
| | - Colin Cernik
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Rabi Tawil
- Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Jeffrey M Statland
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
9
|
Banerji CRS. PAX7 target gene repression associates with FSHD progression and pathology over 1 year. Hum Mol Genet 2021; 29:2124-2133. [PMID: 32347924 DOI: 10.1093/hmg/ddaa079] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/22/2020] [Accepted: 04/22/2020] [Indexed: 01/08/2023] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is a prevalent, inherited skeletal myopathy linked to hypomethylation of the D4Z4 macrosatellite at chromosome 4q35. This epigenetic de-repression permits expression of the transcription factor DUX4, which may drive pathology by direct activation of target genes or through inhibition of the homologous transcription factor PAX7. We demonstrated that PAX7 target gene repression is a superior biomarker of FSHD status compared with DUX4 target gene expression. However, despite importance for clinical trials, there remains no transcriptomic biomarker for FSHD progression. A recent study by Wong et al. [Longitudinal measures of RNA expression and disease activity in FSHD muscle biopsies. Hum. Mol. Genet., 29, 1030-1043] performed MRI, muscle biopsy transcriptomics and histopathology on a cohort of FSHD patients with 1-year follow-up. No significant changes in any biomarkers were reported over this time period. However, the authors did not consider PAX7 target gene repression as a marker of FSHD progression. Here we demonstrate that PAX7 target gene repression increases in these paired FSHD samples from year 1 to year 2 and is thus a marker of FSHD progression over 1 year. Moreover, we show that three validated DUX4 target gene expression biomarkers are not associated with FSHD progression over 1 year. We further confirm that PAX7 target gene repression associates with clinical correlates of FSHD disease activity, measured by MRI and histopathology. Thus, PAX7 target gene repression is a uniquely sensitive biomarker of FSHD progression and pathology, valid over a 1 year time frame, implicating its use in clinical trials.
Collapse
Affiliation(s)
- Christopher R S Banerji
- King's College London, Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| |
Collapse
|
10
|
Banerji CRS, Zammit PS. Pathomechanisms and biomarkers in facioscapulohumeral muscular dystrophy: roles of DUX4 and PAX7. EMBO Mol Med 2021; 13:e13695. [PMID: 34151531 PMCID: PMC8350899 DOI: 10.15252/emmm.202013695] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/27/2021] [Accepted: 03/30/2021] [Indexed: 12/29/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is characterised by progressive skeletal muscle weakness and wasting. FSHD is linked to epigenetic derepression of the subtelomeric D4Z4 macrosatellite at chromosome 4q35. Epigenetic derepression permits the distal-most D4Z4 unit to transcribe DUX4, with transcripts stabilised by splicing to a poly(A) signal on permissive 4qA haplotypes. The pioneer transcription factor DUX4 activates target genes that are proposed to drive FSHD pathology. While this toxic gain-of-function model is a satisfying "bottom-up" genotype-to-phenotype link, DUX4 is rarely detectable in muscle and DUX4 target gene expression is inconsistent in patients. A reliable biomarker for FSHD is suppression of a target gene score of PAX7, a master regulator of myogenesis. However, it is unclear how this "top-down" finding links to genomic changes that characterise FSHD and to DUX4. Here, we explore the roles and interactions of DUX4 and PAX7 in FSHD pathology and how the relationship between these two transcription factors deepens understanding via the immune system and muscle regeneration. Considering how FSHD pathomechanisms are represented by "DUX4opathy" models has implications for developing therapies and current clinical trials.
Collapse
Affiliation(s)
| | - Peter S Zammit
- Randall Centre for Cell and Molecular BiophysicsKing's College LondonLondonUK
| |
Collapse
|