1
|
Evaluation of NVIDIA Xavier NX Platform for Real-Time Image Processing for Plasma Diagnostics †. ENERGIES 2022. [DOI: 10.3390/en15062088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Machine protection is a core task of real-time image diagnostics aiming for steady-state operation in nuclear fusion devices. The paper evaluates the applicability of the newest low-power NVIDIA Jetson Xavier NX platform for image plasma diagnostics. This embedded NVIDIA Tegra System-on-a-Chip (SoC) integrates a Graphics Processing Unit (GPU) and Central Processing Unit (CPU) on a single chip. The hardware differences and features compared to the previous NVIDIA Jetson TX2 are signified. Implemented algorithms detect thermal events in real-time, utilising the high parallelism provided by the embedded General-Purpose computing on Graphics Processing Units (GPGPU). The performance and accuracy are evaluated on the experimental data from the Wendelstein 7-X (W7-X) stellarator. Strike-line and reflection events are primarily investigated, yet benchmarks for overload hotspots, surface layers and visualisation algorithms are also included. Their detection might allow for automating real-time risk evaluation incorporated in the divertor protection system in W7-X. For the first time, the paper demonstrates the feasibility of complex real-time image processing in nuclear fusion applications on low-power embedded devices. Moreover, GPU-accelerated reference processing pipelines yielding higher accuracy compared to the literature results are proposed, and remarkable performance improvement resulting from the upgrade to the Xavier NX platform is attained.
Collapse
|
2
|
Implementation of Thermal Event Image Processing Algorithms on NVIDIA Tegra Jetson TX2 Embedded System-on-a-Chip. ENERGIES 2021. [DOI: 10.3390/en14154416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Advances in Infrared (IR) cameras, as well as hardware computational capabilities, contributed towards qualifying vision systems as reliable plasma diagnostics for nuclear fusion experiments. Robust autonomous machine protection and plasma control during operation require real-time processing that might be facilitated by Graphics Processing Units (GPUs). One of the current aims of image plasma diagnostics involves thermal events detection and analysis with thermal imaging. The paper investigates the suitability of the NVIDIA Jetson TX2 Tegra-based embedded platform for real-time thermal events detection. Development of real-time processing algorithms on an embedded System-on-a-Chip (SoC) requires additional effort due to the constrained resources, yet low-power consumption enables embedded GPUs to be applied in MicroTCA.4 computing architecture that is prevalent in nuclear fusion projects. For this purpose, the authors have proposed, developed and optimised GPU-accelerated algorithms with the use of available software tools for NVIDIA Tegra systems. Furthermore, the implemented algorithms are evaluated and benchmarked on Wendelstein 7-X (W7-X) stellarator experimental data against the corresponding alternative Central Processing Unit (CPU) implementations. Considerable improvement is observed for the accelerated algorithms that enable real-time detection on the embedded SoC platform, yet some encountered limitations when developing parallel image processing routines are described and signified.
Collapse
|