1
|
Myronyuk O, Vanagas E, Rodin AM, Wesolowski M. Estimation of the Structure of Hydrophobic Surfaces Using the Cassie-Baxter Equation. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4322. [PMID: 39274712 PMCID: PMC11396472 DOI: 10.3390/ma17174322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/16/2024]
Abstract
The effect of extreme water repellency, called the lotus effect, is caused by the formation of a Cassie-Baxter state in which only a small portion of the wetting liquid droplet is in contact with the surface. The rest of the bottom of the droplet is in contact with air pockets. Instrumental methods are often used to determine the textural features that cause this effect-scanning electron and atomic force microscopies, profilometry, etc. However, this result provides only an accurate texture model, not the actual information about the part of the surface that is wetted by the liquid. Here, we show a practical method for estimating the surface fraction of texture that has contact with liquid in a Cassie-Baxter wetting state. The method is performed using a set of ethanol-water mixtures to determine the contact angle of the textured and chemically equivalent flat surfaces of AlSI 304 steel, 7500 aluminum, and siloxane elastomer. We showed that the system of Cassie-Baxter equations can be solved graphically by the wetting diagrams introduced in this paper, returning a value for the texture surface fraction in contact with a liquid. We anticipate that the demonstrated method will be useful for a direct evaluation of the ability of textures to repel liquids, particularly superhydrophobic and superoleophobic materials, slippery liquid-infused porous surfaces, etc.
Collapse
Affiliation(s)
- Oleksiy Myronyuk
- Department of Chemical Technology of Composite Materials, Chemical Technology Faculty, Igor Sikorsky Kyiv Polytechnic Institute, Beresteiskyi Avenue 37, 03056 Kyiv, Ukraine
| | - Egidijus Vanagas
- Coherent Optics Laboratory, Department of Fundamental Research, Center for Physical Sciences and Technology, Sauletekio Avenue 3, 10257 Vilnius, Lithuania
| | - Aleksej M Rodin
- Solid State Laser Laboratory, Department of Laser Technologies, Center for Physical Sciences and Technology, Savanoriu Avenue 231, 02300 Vilnius, Lithuania
| | - Miroslaw Wesolowski
- Department of Structural Mechanics, Faculty of Civil Engineering, Environmental and Geodetic Sciences, Koszalin University of Technology, Sniadeckich Street 2, 75-453 Koszalin, Poland
| |
Collapse
|
2
|
Zhang YS, Wang ZQ, Lin JD, Yang PC, Lee CR. Light-Switching Surface Wettability of Chiral Liquid Crystal Networks by Dynamic Change in Nanoscale Topography. Macromol Rapid Commun 2021; 43:e2100736. [PMID: 34837422 DOI: 10.1002/marc.202100736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/24/2021] [Indexed: 11/06/2022]
Abstract
Nano- and microscale morphology endows surfaces that play conspicuous roles in natural or artificial objects with unique functions. Surfaces with dynamic regulating features capable of switching the structures, patterns, and even dimensions of their surface profiles can control friction and wettability, thus having potential applications in antibacterial, haptics, and fluid dynamics. Here, a freestanding film with light-switchable surface based on cholesteric liquid crystal networks is presented to translate 2D flat plane into a 3D nanometer-scale topography. The wettability of the interface can be controlled by hiding or revealing the geometrical features of the surfaces with light. This reversible dynamic actuation is obtained through the order parameter change of the periodic cholesteric organization under a photoalignment procedure and lithography-free mode. Complex tailored structures can be used to encrypt tactile information and improve wettability by predesigning the orientation distribution of liquid crystal director. This rapid switching nanoprecision smart surface provides a novel platform for artificial skin, optics, and functional coatings.
Collapse
Affiliation(s)
- Yan-Song Zhang
- Department of Photonics, National Cheng Kung University, Tainan, 701, Taiwan
| | - Zhi-Qun Wang
- Department of Photonics, National Cheng Kung University, Tainan, 701, Taiwan
| | - Jia-De Lin
- Department of Opto-Electronic Engineering, National Dong Hwa University, Hualien, 974, Taiwan
| | - Po-Chih Yang
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, 320, Taiwan
| | - Chia-Rong Lee
- Department of Photonics, National Cheng Kung University, Tainan, 701, Taiwan
| |
Collapse
|
3
|
Abstract
Water-based lubricants (WBLs) have been at the forefront of recent research, due to the abundant availability of water at a low cost. However, in metallic tribo-systems, WBLs often exhibit poor performance compared to petroleum-based lubricants. Research and development indicate that nano-additives improve the lubrication performance of water. Some of these additives could be categorized as solid nanoparticles, ionic liquids, and bio-based oils. These additives improve the tribological properties and help to reduce friction, wear, and corrosion. This review explored different water-based lubricant additives and summarized their properties and performances. Viscosity, density, wettability, and solubility are discussed to determine the viability of using water-based nano-lubricants compared to petroleum-based lubricants for reducing friction and wear in machining. Water-based liquid lubricants also have environmental benefits over petroleum-based lubricants. Further research is needed to understand and optimize water-based lubrication for tribological systems completely.
Collapse
|
4
|
Lin X, Wu K, Zhou Q, Jain P, Boit MO, Li B, Hung HC, Creason SA, Himmelfarb J, Ratner BD, Jiang S. Photoreactive Carboxybetaine Copolymers Impart Biocompatibility and Inhibit Plasticizer Leaching on Polyvinyl Chloride. ACS APPLIED MATERIALS & INTERFACES 2020; 12:41026-41037. [PMID: 32876425 DOI: 10.1021/acsami.0c09457] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Protein and cell interactions on implanted, blood-contacting medical device surfaces can lead to adverse biological reactions. Medical-grade poly(vinyl chloride) (PVC) materials have been used for decades, particularly as blood-contacting tubes and containers. However, there are numerous concerns with their performance including platelet activation, complement activation, and thrombin generation and also leaching of plasticizers, particularly in clinical applications. Here, we report a surface modification method that can dramatically prevent blood protein adsorption, human platelet activation, and complement activation on commercial medical-grade PVC materials under various test conditions. The surface modification can be accomplished through simple dip-coating followed by light illumination utilizing biocompatible polymers comprising zwitterionic carboxybetaine (CB) moieties and photosensitive cross-linking moieties. This surface treatment can be manufactured routinely at small or large scales and can impart to commercial PVC materials superhydrophilicity and nonfouling capability. Furthermore, the polymer effectively prevented leaching of plasticizers out from commercial medical-grade PVC materials. This coating technique is readily applicable to many other polymers and medical devices requiring surfaces that will enhance performance in clinical settings.
Collapse
Affiliation(s)
- Xiaojie Lin
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Kan Wu
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Qiong Zhou
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Priyesh Jain
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Mary O'Kelly Boit
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Bowen Li
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Hsiang-Chieh Hung
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Sharon A Creason
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - Jonathan Himmelfarb
- Department of Medicine, Division of Nephrology, and Kidney Research Institute, University of Washington, Seattle, Washington 98195, United States
| | - Buddy D Ratner
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - Shaoyi Jiang
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
5
|
Bodnariuk M, Melentiev R. Bibliometric analysis of micro-nano manufacturing technologies. NANOTECHNOLOGY AND PRECISION ENGINEERING 2019. [DOI: 10.1016/j.npe.2019.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|