1
|
Blanco HM, Perez CN, Banchio C, Alvarez SE, Ciuffo GM. Neurite outgrowth induced by stimulation of angiotensin II AT 2 receptors in SH-SY5Y neuroblastoma cells involves c-Src activation. Heliyon 2023; 9:e15656. [PMID: 37144208 PMCID: PMC10151373 DOI: 10.1016/j.heliyon.2023.e15656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/31/2023] [Accepted: 04/17/2023] [Indexed: 05/06/2023] Open
Abstract
Neuroblastoma, the most common extracranial solid tumor occurring in childhood, originates from the aberrant proliferation of neural crest cells. Accordingly, the mechanism underling neuronal differentiation could provide new strategies for neuroblastoma treatment. It is well known that neurite outgrowth could be induced by Angiotensin II (Ang II) AT2 receptors; however, the signaling mechanism and its possible interaction with NGF (neural growth factor) receptors remain unclear. Here, we show that Ang II and CGP42112A (AT2 receptor agonist) promote neuronal differentiation by inducing neurite outgrowth and βIII-tubulin expression in SH-SY5Y neuroblastoma cells. In addition, we demonstrate that treatment with PD123319 (AT2 receptor antagonist) reverts Ang II or CGP42112A-induced differentiation. By using specific pharmacological inhibitors we established that neurite outgrowth induced by CGP42112A requires the activation of MEK (mitogen-activated protein kinase kinase), SphK (sphingosine kinase) and c-Src but not PI3K (phosphatidylinositol 3-kinase). Certainly, CGP42112A stimulated a rapid and transient (30 s, 1 min) phosphorylation of c-Src at residue Y416 (indicative of activation), following by a Src deactivation as indicated by phosphorylation of Y527. Moreover, inhibition of the NGF receptor tyrosine kinase A (TrkA) reduced neurite outgrowth induced by Ang II and CGP42112A. In summary, we demonstrated that AT2 receptor-stimulated neurite outgrowth in SH-SY5Y cells involves the induction of MEK, SphK and c-Src and suggests a possible transactivation of TrkA. In that regard, AT2 signaling pathway is a key player in neuronal differentiation and might be a potential target for therapeutic treatments.
Collapse
Affiliation(s)
- Helga M. Blanco
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis (UNSL), Ejército de los Andes 950, 5700 San Luis, Argentina
| | - Celia N. Perez
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis (UNSL), Ejército de los Andes 950, 5700 San Luis, Argentina
- Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), CONICET, Argentina
| | - Claudia Banchio
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET) Ocampo y Esmeralda, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), 2000 Rosario, Argentina
| | - Sergio E. Alvarez
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis (UNSL), Ejército de los Andes 950, 5700 San Luis, Argentina
- Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), CONICET, Argentina
- Corresponding author. Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL CONICET), Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejército de los Andes 950, 5700 San Luis, Argentina.
| | - Gladys M. Ciuffo
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis (UNSL), Ejército de los Andes 950, 5700 San Luis, Argentina
- Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), CONICET, Argentina
- Corresponding author. Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL CONICET), Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejército de los Andes 950, 5700 San Luis, Argentina.
| |
Collapse
|
2
|
Manzur MJ, Aguilera MO, Kotler ML, Berón W, Ciuffo GM. Focal adhesion kinase, RhoA, and p38 mitogen-activated protein kinase modulates apoptosis mediated by angiotensin II AT 2 receptors. J Cell Biochem 2019; 120:1835-1849. [PMID: 30206964 DOI: 10.1002/jcb.27496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 07/20/2018] [Indexed: 01/24/2023]
Abstract
Apoptosis plays an important role in cellular processes such as development, differentiation, and homeostasis. Although the participation of angiotensin II (Ang II) AT2 receptors (AT 2 R) in cellular apoptosis is well accepted, the signaling pathway involved in this process is not well established. We evaluated the participation of signaling proteins focal adhesion kinase (FAK), RhoA, and p38 mitogen-activated protein kinase (p38MAPK) in apoptosis induced by Ang II via AT 2 R overexpressed in HeLa cells. Following a short stimulation time (120 to 240 minutes) with Ang II, HeLa-AT 2 cells showed nuclear condensation, stress fibers disassembly and membrane blebbing. FAK, classically involved in cytoskeleton reorganization, has been postulated as an early marker of cellular apoptosis. Thus, we evaluated FAK cleavage, detected at early stimulation times (15 to 30 minutes). Apoptosis was confirmed by increased caspase-3 cleavage and enzymatic activity of caspase-3/7. Participation of RhoA was evaluated. HeLa-AT 2 cells overexpressing RhoA wild-type (WT) or their mutants, RhoA V14 (constitutively active form) or RhoA N19 (dominant-negative form) were used to explore RhoA participation. HeLa-AT 2 cells expressing the constitutively active variant RhoA V14 showed enhanced apoptotic features at earlier times as compared with cells expressing the WT variant. RhoA N19 expression prevented nuclear condensation/caspase activation. Inhibition of p38MAPK caused an increase in nuclear condensation and caspase-3/7 activation, suggesting a protective role of p38MAPK. Our results clearly demonstrated that stimulation of AT 2 R induce apoptosis with participation of FAK and RhoA while p38MAPK seems to play a prosurvival role.
Collapse
Affiliation(s)
- María J Manzur
- Department of Biochemistry and Biological Sci., Universidad Nacional de San Luis, San Luis, Argentina.,Instituto Multidisciplinario de Investigaciones Biológicas, San Luis (IMIBIO, SL, CONICET), Argentina
| | - Milton O Aguilera
- Instituto de Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo-CONICET, Mendoza, Argentina
| | - Mónica L Kotler
- Laboratorio de Disfunción Celular en Enfermedades Neurodegenerativas y Nanomedicina, Departamento de Química Biológica, Instituto deQuímica Biológica Ciencias Exactas y Naturales, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Walter Berón
- Instituto de Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo-CONICET, Mendoza, Argentina
| | - Gladys M Ciuffo
- Department of Biochemistry and Biological Sci., Universidad Nacional de San Luis, San Luis, Argentina.,Instituto Multidisciplinario de Investigaciones Biológicas, San Luis (IMIBIO, SL, CONICET), Argentina
| |
Collapse
|
3
|
Arce ME, Sánchez SI, Correa MM, Ciuffo GM. Age-Related Changes in Ang II Receptor Localization and Expression in the Developing Auditory Pathway. Neurochem Res 2018; 44:412-420. [PMID: 30488363 DOI: 10.1007/s11064-018-2687-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 11/15/2018] [Accepted: 11/20/2018] [Indexed: 10/27/2022]
Abstract
We studied Ang II receptor localization in different nuclei of the auditory system, by means of binding autoradiography, during brain development. The inferior colliculus (IC), a large midbrain structure which serves as an obligatory synaptic station in both the ascending and descending auditory pathways, exhibited high Ang II AT2 binding at all ages (P0, P8, P15, P30), being maximal at P15. These observations were confirmed by in situ hybridization and immunofluorescence at P15, demonstrating that AT2 receptor mRNA localized at the same area recognized by AT2 antibodies and anti β III-tubulin suggesting the neuronal nature of the reactive cells. Ang II AT1 receptors were absent at early developmental ages (P0) in all nuclei of the auditory system and a low level was observed in the IC at the age P8. AT2 receptors were present at ventral cochlear nucleus and superior olivary complex, being higher at P15 and P8, respectively. We also explored the effect of prenatal administration of Ang II or PD123319 (AT2 antagonist) on binding of Ang II receptors at P0, P8, P15. Both treatments increased significantly the level of AT2 receptors at P0 and P8 in the IC. Although total binding in the whole IC from P15 animals showed no difference between treatments, the central nucleus of the IC exhibited higher binding. Our results supports a correlation between the timing of the higher expression of Ang II AT2 receptors in different nuclei, the onset of audition and the establishment of neuronal circuits of the auditory pathway.
Collapse
Affiliation(s)
- M E Arce
- Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL CONICET), Universidad Nacional de San Luis, Ejército de los Andes 950, 5700, San Luis, Argentina
| | - S I Sánchez
- Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL CONICET), Universidad Nacional de San Luis, Ejército de los Andes 950, 5700, San Luis, Argentina
| | - M M Correa
- Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL CONICET), Universidad Nacional de San Luis, Ejército de los Andes 950, 5700, San Luis, Argentina
| | - G M Ciuffo
- Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL CONICET), Universidad Nacional de San Luis, Ejército de los Andes 950, 5700, San Luis, Argentina.
| |
Collapse
|
4
|
Immunohistochemical detection of angiotensin II receptors in mouse cerebellum and adrenal gland using "in vivo cryotechnique". Histochem Cell Biol 2013; 140:477-90. [PMID: 23515786 DOI: 10.1007/s00418-013-1084-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2013] [Indexed: 12/11/2022]
Abstract
Angiotensin II (AT) receptors, including AT receptor type 1 (AT1R) and type 2 (AT2R), are expressed in the rodent central nervous system, but their distributions and activation states are still unclear. In this study, we have performed immunohistochemical analyses of AT receptors in mouse cerebellum and adrenal gland using our "in vivo cryotechnique" (IVCT). We used antibodies against amino-terminal domains of AT receptors, which are considered to undergo conformational changes upon the binding of AT. Immunoreactivity of AT1R was detected in mouse cerebellum, and was highest in the outer tissue areas of molecular layers using IVCT. The AT1R immunostaining largely overlapped with glial fibrillary acidic protein (GFAP), a marker of Bergmann glia. Surprisingly, the AT1R immunoreactivity in the cerebellar cortex was remarkably reduced following 5 and 10 min of hypoxia or direct administration of an AT1R antagonist, losartan. By contrast, in the adrenal cortex, such AT1R immunoreactivity detected at the zona glomerulosa did not change even after 15 min of hypoxia. The correlation of localization with GFAP and also hypoxia-induced decrease of its immunoreactivity were similarly observed by immunostaining of AT2R in the cerebellar specimens. These findings demonstrated that IVCT is useful to reveal dynamically changing immunoreactivities usually affected by receptor-ligand binding as well as hypoxia, and also suggested that functional activities of AT receptors are time-dependently modulated under hypoxia in the central nervous system in comparison with the adrenal glands.
Collapse
|
5
|
Pijacka W, Hunter MG, Broughton Pipkin F, Luck MR. Expression of renin-angiotensin system components in the early bovine embryo. Endocr Connect 2012; 1:22-30. [PMID: 23781300 PMCID: PMC3681317 DOI: 10.1530/ec-12-0013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 05/14/2012] [Indexed: 11/30/2022]
Abstract
The renin-angiotensin system (RAS), mainly associated with the regulation of blood pressure, has been recently investigated in female reproductive organs and the developing foetus. Angiotensin II (Ang II) influences oviductal gamete movements and foetal development, but there is no information about RAS in the early embryo. The aim of this study was to determine whether RAS components are present in the pre-implantation embryo, to determine how early they are expressed and to investigate their putative role at this stage of development. Bovine embryos produced in vitro were used for analysis of RAS transcripts (RT-PCR) and localisation of the receptors AGTR1 and AGTR2 (immunofluorescent labelling). We also investigated the effects of Ang II, Olmesartan (AGTR1 antagonist) and PD123319 (AGTR2 antagonist) on oocyte cleavage, embryo expansion and hatching. Pre-implanted embryos possessed AGTR1 and AGTR2 but not the other RAS components. Both receptors were present in the trophectoderm and in the inner cell mass of the blastocyst. AGTR1 was mainly localised in granular-like structures in the cytoplasm, suggesting its internalisation into clathrin-coated vesicles, and AGTR2 was found mainly in the nuclear membrane and in the mitotic spindle of dividing trophoblastic cells. Treating embryos with PD123319 increased the proportion of hatched embryos compared with the control. These results, the first on RAS in the early embryo, suggest that the pre-implanted embryo responds to Ang II from the mother rather than from the embryo itself. This may be a route by which the maternal RAS influences blastocyst hatching and early embryonic development.
Collapse
Affiliation(s)
| | | | - Fiona Broughton Pipkin
- New Maternity UnitNottingham University Hospitals NHS TrustCity Hospital Campus, Hucknall Road, Nottingham, NG5 1PBUK
| | - Martin R Luck
- Correspondence should be addressed to M R Luck Email
| |
Collapse
|
6
|
AT₂receptors recruit c-Src, SHP-1 and FAK upon activation by Ang II in PND15 rat hindbrain. Neurochem Int 2011; 60:199-207. [PMID: 22120166 DOI: 10.1016/j.neuint.2011.11.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 11/07/2011] [Accepted: 11/10/2011] [Indexed: 02/06/2023]
Abstract
The functional role of AT(2) receptors is unclear and it activates unconventional signaling pathways, which in general do not involve a classical activation of a G-protein. In the present study, we aimed to investigate the transduction mechanism of AT(2) Ang II receptors in PND15 rat hindbrain membrane preparations, which represents a physiological developmental condition. To determine whether Ang II AT(2) receptors induced association to SHP-1 in rat hindbrain, co-immunoprecipitation assays were performed. Stimulation of Ang II AT(2) receptors induced both a transient tyr-phosphorylation and activation of SHP-1. The possible participation of c-Src in Ang II-mediated SHP-1 activation, we demonstrated by recruitment of c-Src in immunocomplexes obtained with anti AT(2) or anti-SHP-1 antibodies. The association of SHP-1 to c-Src was inhibited by PD123319 and the c-Src inhibitor PP2. Similarly, SHP-1 activity determined in AT(2)-immunocomplexes was inhibited by PD123319 and the c-Src inhibitor PP2. Following stimulation with Ang II, AT(2) receptors recruit c-Src, which was responsible for SHP-1 tyr-phosphorylation and activation. Since AT(2) receptors are involved in neuron migration, we tested the presence of FAK in immunocomplexes. Surprisingly, AT(2)-immunocomplexes contained mainly the 85kDa fragment of FAK. Besides, p125FAK associated to SHP-1. In summary, we demonstrated the presence of an active signal transduction mechanism in PND15 rat hindbrain, a developmental stage critical for cerebellar development. In this model, we showed a complex containing AT(2)/SHP-1/c-Src/p85FAK, suggesting a potential role of Ang II AT(2) receptors in cerebellar development and neuronal differentiation.
Collapse
|
7
|
Vig PJ, Wei J, Shao Q, Lopez ME, Halperin R, Gerber J. Suppression of Calbindin-D28k Expression Exacerbates SCA1 Phenotype in a Disease Mouse Model. THE CEREBELLUM 2011; 11:718-32. [DOI: 10.1007/s12311-011-0323-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|