1
|
Candemir B, İleri İ, Yalçın MM, Sel AT, Göker B, Gülbahar Ö, Yetkin İ. Relationship Between Appetite-Related Peptides and Frailty in Older Adults. Endocr Res 2023:1-9. [PMID: 36799510 DOI: 10.1080/07435800.2023.2180029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
BACKGROUND Frailty, is a geriatric syndrome that reduces the resistance to stress situations caused by activities of daily living and increases morbidity and mortality. We hypothesized that a decrease in orexigenic peptides or an increase in anorexigenic peptides might be associated with frailty. We aimed to investigate the relationship between frailty and six appetite-related peptides: ghrelin, neuropeptide Y (NPY), agouti-related peptide (AgRP), cocaine-amphetamine-associated peptide (CART), peptide YY, and alpha MSH (α-MSH). METHODS This cross-sectional study was conducted on 85 older adults who visited the outpatient clinic. All patients underwent comprehensive geriatric assessment. Frailty status was assessed using the Fried frailty index. Plasma levels of six appetite-related peptides were studied. RESULTS The mean age was 73.7 ± 5.4 years, 27 (31.8%) of the patients were male, and 32 of the patients (37.6%) were frail. While plasma levels of ghrelin, NPY and AgRP were significantly lower in frail patients, CART and α-MSH levels were higher compared to non-frail patients (p < .05 for all). Peptide YY was found to be higher in the frail group, however, the difference did not reach statistical significance (p = .052). In multivariate logistic regression analysis, the ghrelin, AgRP, CART, and α-MSH levels were independent predictors of frailty. Moreover, a weak correlation was found between all peptides(except NPY) and handgrip strength and Lawton-Brody score. CONCLUSION Ghrelin, AgRP, CART, and α-MSH levels were found to be independent predictors of frailty. Our results suggest that appetite-related peptides might be playing roles in the pathogenesis of frailty. Further larger prospective studies are needed to test this hypothesis.
Collapse
Affiliation(s)
- Burcu Candemir
- Health Sciences University, Gulhane Faculty of Medicine, Department of Endocrinology and Metabolism, Ankara, Turkey
| | - İbrahim İleri
- Gazi University Faculty of Medicine, Department of Internal Medicine, Division of Geriatrics, Ankara, Turkey
| | - Mehmet Muhittin Yalçın
- Gazi University Faculty of Medicine, Department of Endocrinology and Metabolism, Ankara, Turkey
| | - Aydın Tuncer Sel
- Gazi University Faculty of Medicine, Department of Endocrinology and Metabolism, Ankara, Turkey
| | - Berna Göker
- Gazi University Faculty of Medicine, Department of Internal Medicine, Division of Geriatrics, Ankara, Turkey
| | - Özlem Gülbahar
- Gazi University Faculty of Medicine, Department of Biochemistry, Ankara, Turkey
| | - İlhan Yetkin
- Gazi University Faculty of Medicine, Department of Endocrinology and Metabolism, Ankara, Turkey
| |
Collapse
|
2
|
Gonzalez Melo M, Fontana AO, Viertl D, Allenbach G, Prior JO, Rotman S, Feichtinger RG, Mayr JA, Costanzo M, Caterino M, Ruoppolo M, Braissant O, Barbey F, Ballhausen D. A knock-in rat model unravels acute and chronic renal toxicity in glutaric aciduria type I. Mol Genet Metab 2021; 134:287-300. [PMID: 34799272 DOI: 10.1016/j.ymgme.2021.10.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 01/14/2023]
Abstract
Glutaric aciduria type I (GA-I, OMIM # 231670) is an autosomal recessive inborn error of metabolism caused by deficiency of the mitochondrial enzyme glutaryl-CoA dehydrogenase (GCDH). The principal clinical manifestation in GA-I patients is striatal injury most often triggered by catabolic stress. Early diagnosis by newborn screening programs improved survival and reduced striatal damage in GA-I patients. However, the clinical phenotype is still evolving in the aging patient population. Evaluation of long-term outcome in GA-I patients recently identified glomerular filtration rate (GFR) decline with increasing age. We recently created the first knock-in rat model for GA-I harboring the mutation p.R411W (c.1231 C>T), corresponding to the most frequent GCDH human mutation p.R402W. In this study, we evaluated the effect of an acute metabolic stress in form of high lysine diet (HLD) on young Gcdhki/ki rats. We further studied the chronic effect of GCDH deficiency on kidney function in a longitudinal study on a cohort of Gcdhki/ki rats by repetitive 68Ga-EDTA positron emission tomography (PET) renography, biochemical and histological analyses. In young Gcdhki/ki rats exposed to HLD, we observed a GFR decline and biochemical signs of a tubulopathy. Histological analyses revealed lipophilic vacuoles, thinning of apical brush border membranes and increased numbers of mitochondria in proximal tubular (PT) cells. HLD also altered OXPHOS activities and proteome in kidneys of Gcdhki/ki rats. In the longitudinal cohort, we showed a progressive GFR decline in Gcdhki/ki rats starting at young adult age and a decline of renal clearance. Histopathological analyses in aged Gcdhki/ki rats revealed tubular dilatation, protein accumulation in PT cells and mononuclear infiltrations. These observations confirm that GA-I leads to acute and chronic renal damage. This raises questions on indication for follow-up on kidney function in GA-I patients and possible therapeutic interventions to avoid renal damage.
Collapse
Affiliation(s)
- Mary Gonzalez Melo
- Pediatric Metabolic Unit, Pediatrics, Woman-Mother-Child Department, University of Lausanne and University Hospital of Lausanne, Switzerland.
| | - Andrea Orlando Fontana
- Department of Nuclear Medicine and Molecular Imaging, University of Lausanne and Lausanne University Hospital, Lausanne, Switzerland.
| | - David Viertl
- Department of Nuclear Medicine and Molecular Imaging, University of Lausanne and Lausanne University Hospital, Lausanne, Switzerland.
| | - Gilles Allenbach
- Department of Nuclear Medicine and Molecular Imaging, University of Lausanne and Lausanne University Hospital, Lausanne, Switzerland.
| | - John O Prior
- Department of Nuclear Medicine and Molecular Imaging, University of Lausanne and Lausanne University Hospital, Lausanne, Switzerland.
| | - Samuel Rotman
- Service of Clinical Pathology, University of Lausanne and University Hospital of Lausanne, Switzerland.
| | - René Günther Feichtinger
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria.
| | - Johannes Adalbert Mayr
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria.
| | - Michele Costanzo
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; CEINGE - Biotecnologie, Avanzate s.c.ar.l., 80145 Naples, Italy.
| | - Marianna Caterino
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; CEINGE - Biotecnologie, Avanzate s.c.ar.l., 80145 Naples, Italy.
| | - Margherita Ruoppolo
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; CEINGE - Biotecnologie, Avanzate s.c.ar.l., 80145 Naples, Italy.
| | - Olivier Braissant
- Service of Clinical Chemistry, University of Lausanne and University Hospital of Lausanne, Switzerland.
| | - Frederic Barbey
- Department of Immunology, University of Lausanne and University Hospital of Lausanne, Switzerland.
| | - Diana Ballhausen
- Pediatric Metabolic Unit, Pediatrics, Woman-Mother-Child Department, University of Lausanne and University Hospital of Lausanne, Switzerland.
| |
Collapse
|
3
|
Gonzalez Melo M, Remacle N, Cudré-Cung HP, Roux C, Poms M, Cudalbu C, Barroso M, Gersting SW, Feichtinger RG, Mayr JA, Costanzo M, Caterino M, Ruoppolo M, Rüfenacht V, Häberle J, Braissant O, Ballhausen D. The first knock-in rat model for glutaric aciduria type I allows further insights into pathophysiology in brain and periphery. Mol Genet Metab 2021; 133:157-181. [PMID: 33965309 DOI: 10.1016/j.ymgme.2021.03.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/10/2021] [Accepted: 03/30/2021] [Indexed: 02/08/2023]
Abstract
Glutaric aciduria type I (GA-I, OMIM # 231670) is an inborn error of metabolism caused by a deficiency of glutaryl-CoA dehydrogenase (GCDH). Patients develop acute encephalopathic crises (AEC) with striatal injury most often triggered by catabolic stress. The pathophysiology of GA-I, particularly in brain, is still not fully understood. We generated the first knock-in rat model for GA-I by introduction of the mutation p.R411W, the rat sequence homologue of the most common Caucasian mutation p.R402W, into the Gcdh gene of Sprague Dawley rats by CRISPR/CAS9 technology. Homozygous Gcdhki/ki rats revealed a high excretor phenotype, but did not present any signs of AEC under normal diet (ND). Exposure to a high lysine diet (HLD, 4.7%) after weaning resulted in clinical and biochemical signs of AEC. A significant increase of plasmatic ammonium concentrations was found in Gcdhki/ki rats under HLD, accompanied by a decrease of urea concentrations and a concomitant increase of arginine excretion. This might indicate an inhibition of the urea cycle. Gcdhki/ki rats exposed to HLD showed highly diminished food intake resulting in severely decreased weight gain and moderate reduction of body mass index (BMI). This constellation suggests a loss of appetite. Under HLD, pipecolic acid increased significantly in cerebral and extra-cerebral liquids and tissues of Gcdhki/ki rats, but not in WT rats. It seems that Gcdhki/ki rats under HLD activate the pipecolate pathway for lysine degradation. Gcdhki/ki rat brains revealed depletion of free carnitine, microglial activation, astroglyosis, astrocytic death by apoptosis, increased vacuole numbers, impaired OXPHOS activities and neuronal damage. Under HLD, Gcdhki/ki rats showed imbalance of intra- and extracellular creatine concentrations and indirect signs of an intracerebral ammonium accumulation. We successfully created the first rat model for GA-I. Characterization of this Gcdhki/ki strain confirmed that it is a suitable model not only for the study of pathophysiological processes, but also for the development of new therapeutic interventions. We further brought up interesting new insights into the pathophysiology of GA-I in brain and periphery.
Collapse
Affiliation(s)
- Mary Gonzalez Melo
- Pediatric Metabolic Unit, Pediatrics, Woman-Mother-Child Department, University of Lausanne and University Hospital of Lausanne, Switzerland.
| | - Noémie Remacle
- Pediatric Metabolic Unit, Pediatrics, Woman-Mother-Child Department, University of Lausanne and University Hospital of Lausanne, Switzerland
| | - Hong-Phuc Cudré-Cung
- Pediatric Metabolic Unit, Pediatrics, Woman-Mother-Child Department, University of Lausanne and University Hospital of Lausanne, Switzerland
| | - Clothilde Roux
- Service of Clinical Chemistry, University of Lausanne and University Hospital of Lausanne, Switzerland.
| | - Martin Poms
- Klinische Chemie und Biochemie Universitäts-Kinderspital Zürich, Switzerland.
| | - Cristina Cudalbu
- CIBM Center for Biomedical Imaging, Switzerland; Animal Imaging and Technology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Madalena Barroso
- University Children's Research, UCR@Kinder-UKE, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Søren Waldemar Gersting
- University Children's Research, UCR@Kinder-UKE, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - René Günther Feichtinger
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria.
| | - Johannes Adalbert Mayr
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria.
| | - Michele Costanzo
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; CEINGE - Biotecnologie Avanzate s.c.ar.l., 80145 Naples, Italy.
| | - Marianna Caterino
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; CEINGE - Biotecnologie Avanzate s.c.ar.l., 80145 Naples, Italy.
| | - Margherita Ruoppolo
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; CEINGE - Biotecnologie Avanzate s.c.ar.l., 80145 Naples, Italy.
| | - Véronique Rüfenacht
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland.
| | - Johannes Häberle
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland.
| | - Olivier Braissant
- Service of Clinical Chemistry, University of Lausanne and University Hospital of Lausanne, Switzerland.
| | - Diana Ballhausen
- Pediatric Metabolic Unit, Pediatrics, Woman-Mother-Child Department, University of Lausanne and University Hospital of Lausanne, Switzerland.
| |
Collapse
|
4
|
A comprehensive phenotypic characterization of a whole-body Wdr45 knock-out mouse. Mamm Genome 2021; 32:332-349. [PMID: 34043061 PMCID: PMC8458197 DOI: 10.1007/s00335-021-09875-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/11/2021] [Indexed: 11/29/2022]
Abstract
Pathogenic variants in the WDR45 (OMIM: 300,526) gene on chromosome Xp11 are the genetic cause of a rare neurological disorder characterized by increased iron deposition in the basal ganglia. As WDR45 encodes a beta-propeller scaffold protein with a putative role in autophagy, the disease has been named Beta-Propeller Protein-Associated Neurodegeneration (BPAN). BPAN represents one of the four most common forms of Neurodegeneration with Brain Iron Accumulation (NBIA). In the current study, we generated and characterized a whole-body Wdr45 knock-out (KO) mouse model. The model, developed using TALENs, presents a 20-bp deletion in exon 2 of Wdr45. Homozygous females and hemizygous males are viable, proving that systemic depletion of Wdr45 does not impair viability and male fertility in mice. The in-depth phenotypic characterization of the mouse model revealed neuropathology signs at four months of age, neurodegeneration progressing with ageing, hearing and visual impairment, specific haematological alterations, but no brain iron accumulation. Biochemically, Wdr45 KO mice presented with decreased complex I (CI) activity in the brain, suggesting that mitochondrial dysfunction accompanies Wdr45 deficiency. Overall, the systemic Wdr45 KO described here complements the two mouse models previously reported in the literature (PMIDs: 26,000,824, 31,204,559) and represents an additional robust model to investigate the pathophysiology of BPAN and to test therapeutic strategies for the disease.
Collapse
|
5
|
Melanogenic Inhibition and Toxicity Assessment of Flavokawain A and B on B16/F10 Melanoma Cells and Zebrafish ( Danio rerio). Molecules 2020; 25:molecules25153403. [PMID: 32731323 PMCID: PMC7436045 DOI: 10.3390/molecules25153403] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 12/14/2022] Open
Abstract
Excessive production of melanin implicates hyperpigmentation disorders. Flavokawain A (FLA) and flavokawain B (FLB) have been reported with anti-melanogenic activity, but their melanogenic inhibition and toxicity effects on the vertebrate model of zebrafish are still unknown. In the present study, cytotoxic as well as melanogenic effects of FLA and FLB on cellular melanin content and tyrosinase activity were evaluated in α-MSH-induced B16/F10 cells. Master regulator of microphthalmia-associated transcription factor (Mitf) and the other downstream melanogenic-related genes were verified via quantitative real time PCR (qPCR). Toxicity assessment and melanogenesis inhibition on zebrafish model was further observed. FLA and FLB significantly reduced the specific cellular melanin content by 4.3-fold and 9.6-fold decrement, respectively in α-MSH-induced B16/F10 cells. Concomitantly, FLA significantly reduced the specific cellular tyrosinase activity by 7-fold whilst FLB by 9-fold. The decrement of melanin production and tyrosinase activity were correlated with the mRNA suppression of Mitf which in turn down-regulate Tyr, Trp-1 and Trp-2. FLA and FLB exhibited non-toxic effects on the zebrafish model at 25 and 6.25 µM, respectively. Further experiments on the zebrafish model demonstrated successful phenotype-based depigmenting activity of FLA and FLB under induced melanogenesis. To sum up, our findings provide an important first key step for both of the chalcone derivatives to be further studied and developed as potent depigmenting agents.
Collapse
|
6
|
Seo SH, Jo JK, Kim EJ, Park SE, Shin SY, Park KM, Son HS. Metabolomics Reveals the Alteration of Metabolic Pathway by Alpha-Melanocyte-Stimulating Hormone in B16F10 Melanoma Cells. Molecules 2020; 25:molecules25153384. [PMID: 32722640 PMCID: PMC7436294 DOI: 10.3390/molecules25153384] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022] Open
Abstract
The purpose of this study was to understand the changes of metabolic pathway induced by alpha-melanocyte-stimulating hormone (α-MSH) in B16F10 melanoma cells in an untargeted metabolomics approach. Cells were treated with 100 nM of α-MSH and then incubated for 48 h. α-MSH increased tyrosinase activity and melanin content by 56.5 and 61.7%, respectively, compared to untreated cells after 48 h of cultivation. The clear separation between groups was observed in the principal component analysis score plot, indicating that the levels of metabolites of melanoma cells were altered by treatment with α-MSH. Metabolic pathways affected by α-MSH were involved in some amino acid metabolisms. The increased levels of fumaric acid, malic acid, oxaloacetic acid and citric acid related to the citric acid cycle pathway after α-MSH treatment suggested enhanced energy metabolism. Metabolic pathways altered by α-MSH treatment can provide useful information to develop new skin pigmentation inhibitors or anti-obesity drugs.
Collapse
Affiliation(s)
- Seung-Ho Seo
- School of Korean Medicine, Dongshin University, Naju, Jeonnam 58245, Korea; (S.-H.S.); (J.K.J.); (E.-J.K.); (S.-E.P.)
| | - Jae Kwon Jo
- School of Korean Medicine, Dongshin University, Naju, Jeonnam 58245, Korea; (S.-H.S.); (J.K.J.); (E.-J.K.); (S.-E.P.)
| | - Eun-Ju Kim
- School of Korean Medicine, Dongshin University, Naju, Jeonnam 58245, Korea; (S.-H.S.); (J.K.J.); (E.-J.K.); (S.-E.P.)
| | - Seong-Eun Park
- School of Korean Medicine, Dongshin University, Naju, Jeonnam 58245, Korea; (S.-H.S.); (J.K.J.); (E.-J.K.); (S.-E.P.)
| | - Seo Yeon Shin
- Department of Pharmaceutical Engineering, Dongshin University, Naju, Jeonnam 58245, Korea;
| | - Kyung Mok Park
- Department of Pharmaceutical Engineering, Dongshin University, Naju, Jeonnam 58245, Korea;
- Correspondence: (K.M.P.); (H.-S.S.); Tel.: +82-32-551-3629 (K.M.P.); +82-61-330-3513 (H.-S.S.)
| | - Hong-Seok Son
- School of Korean Medicine, Dongshin University, Naju, Jeonnam 58245, Korea; (S.-H.S.); (J.K.J.); (E.-J.K.); (S.-E.P.)
- Correspondence: (K.M.P.); (H.-S.S.); Tel.: +82-32-551-3629 (K.M.P.); +82-61-330-3513 (H.-S.S.)
| |
Collapse
|
7
|
Bellei B, Picardo M. Premature cell senescence in human skin: Dual face in chronic acquired pigmentary disorders. Ageing Res Rev 2020; 57:100981. [PMID: 31733332 DOI: 10.1016/j.arr.2019.100981] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/16/2019] [Accepted: 11/07/2019] [Indexed: 01/10/2023]
Abstract
Although senescence was originally described as an in vitro acquired cellular characteristic, it was recently recognized that senescence is physiologically and pathologically involved in aging and age-related diseases in vivo. The definition of cellular senescence has expanded to include the growth arrest caused by various cellular stresses, including DNA damage, inadequate mitochondria function, activated oncogene or tumor suppressor genes and oxidative stress. While senescence in normal aging involves various tissues over time and contributes to a decline in tissue function even with healthy aging, disease-induced premature senescence may be restricted to one or a few organs triggering a prolonged and more intense rate of accumulation of senescent cells than in normal aging. Organ-specific high senescence rate could lead to chronic diseases, especially in post-mitotic rich tissue. Recently, two opposite acquired pathological conditions related to skin pigmentation were described to be associated with premature senescence: vitiligo and melasma. In both cases, it was demonstrated that pathological dysfunctions are not restricted to melanocytes, the cell type responsible for melanin production and transport to surrounding keratinocytes. Similar to physiological melanogenesis, dermal and epidermal cells contribute directly and indirectly to deregulate skin pigmentation as a result of complex intercellular communication. Thus, despite senescence usually being reported as a uniform phenotype sharing the expression of characteristic markers, skin senescence involving mainly the dermal compartment and its paracrine function could be associated with the disappearance of melanocytes in vitiligo lesions and with the exacerbated activity of melanocytes in the hyperpigmentation spots of melasma. This suggests that the difference may arise in melanocyte intrinsic differences and/or in highly defined microenvironment peculiarities poorly explored at the current state of the art. A similar dualistic phenotype has been attributed to intratumoral stromal cells as cancer-associated fibroblasts presenting a senescent-like phenotype which influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. Here, we present a framework dissecting senescent-related molecular alterations shared by vitiligo and melasma patients and we also discuss disease-specific differences representing new challenges for treatment.
Collapse
Affiliation(s)
- Barbara Bellei
- Laboratory of Cutaneous Physiopathology and Integrated Center for Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy.
| | - Mauro Picardo
- Laboratory of Cutaneous Physiopathology and Integrated Center for Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| |
Collapse
|
8
|
Kravchychyn A, Campos R, Corgosinho F, Masquio D, Vicente S, Ferreira Y, Silva P, Ganen A, Oyama L, Tock L, de Mello M, Tufik S, Dâmaso A. The Long-Term Impact of High Levels of Alpha-Melanocyte-Stimulating Hormone in Energy Balance Among Obese Adolescents. ANNALS OF NUTRITION AND METABOLISM 2018; 72:279-286. [DOI: 10.1159/000488005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 02/25/2018] [Indexed: 12/18/2022]
Abstract
Background: Deregulation of orexigenic and anorexigenic pathways occurs among adolescents with obesity. Alpha-melanocyte-stimulating hormone (α-MSH) is a key catabolic mediator of energy homeostasis and an important anorexigenic neuropeptide in the control of energy balance and thermogenesis. However, it was not well explored if α-MSH can modulate long-term weight loss therapy responses in a dependent manner according to its concentration. Our hypothesis is that a high α-MSH concentration at baseline promotes better modulation of anorexigenic/orexigenic pathways in obese adolescents. Methods: One hundred ten post-pubertal obese adolescents (body mass index >95th percentile) were submitted to 1 year of interdisciplinary therapy (clinical, nutritional, psychological, physical exercise, and physiotherapy support). Body composition and plasma levels of α-MSH, neuropeptide Y (NPY), melanin-concentrating hormone, and agouti-related peptide (AgRP) were measured before and after therapy. The volunteers were grouped on the basis of Tertiles of α-MSH concentration: Low (<0.75 ng/mL), Medium (≤0.76 to ≥1.57 ng/mL), and High (>1.57 ng/mL). Significance was set as p < 0.05. Results: The treatment promoted a significant improvement in body adiposity and fat free mass for all groups. It is important to note that only in the high α-MSH group, a significant increase of the α-MSH/NPY ratio and decrease NPY/AgRP ratio post treatment were observed. Conclusion: The high α-MSH concentration promotes better modulation of anorexigenic/orexigenic pathways in obese adolescents following long-term weight loss therapy and this is important in clinical practice.
Collapse
|
9
|
The ketogenic diet is not feasible as a therapy in a CD-1 nu/nu mouse model of renal cell carcinoma with features of Stauffer's syndrome. Oncotarget 2017; 8:57201-57215. [PMID: 28915665 PMCID: PMC5593636 DOI: 10.18632/oncotarget.19306] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 06/27/2017] [Indexed: 12/29/2022] Open
Abstract
The ketogenic diet (KD), a high-fat low-carbohydrate diet, has shown some efficacy in the treatment of certain types of tumors such as brain tumors and neuroblastoma. These tumors are characterized by the Warburg effect. Because renal cell carcinoma (RCC) presents similar energetic features as neuroblastoma, KD might also be effective in the treatment of RCC. To test this, we established xenografts with RCC 786-O cells in CD-1 nu/nu mice and then randomized them to a control diet or to KDs with different triglyceride contents. Although the KDs tended to reduce tumor growth, mouse survival was dramatically reduced due to massive weight loss. A possible explanation comes from observations of human RCC patients, who often experience secondary non-metastatic hepatic dysfunction due to secretion of high levels of inflammatory cytokines by the RCCs. Measurement of the mRNA levels of tumor necrosis factor alpha (TNFα) and interleukin-6 revealed high expression in the RCC xenografts compared to the original 786-O cells. The expression of TNFα, interleukin-6 and C-reactive protein were all increased in the livers of tumor-bearing mice, and KD significantly boosted their expression. KDs did not cause weight loss or liver inflammation in healthy mice, suggesting that KDs are per se safe, but might be contraindicated in the treatment of RCC patients presenting with Stauffer's syndrome, because they potentially worsen the associated hepatic dysfunction.
Collapse
|