1
|
Volkweis MCC, Tomasi LA, Santos GC, Dagnino APA, Estrázulas M, Campos MM. Induction of orofacial pain potentiates fibromyalgia symptoms in mice: Relevance of nociceptin system. Life Sci 2024; 358:123183. [PMID: 39471900 DOI: 10.1016/j.lfs.2024.123183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/14/2024] [Accepted: 10/22/2024] [Indexed: 11/01/2024]
Abstract
AIMS Fibromyalgia patients might experience temporomandibular disorder (TMD) as a comorbidity. However, the connection between these two syndromes is not fully understood. Nociceptin (N/OFQ) and NOP receptors are implicated in both conditions, but their relevance in the comorbidity needs investigation. This study featured a comorbidity model of fibromyalgia plus TMD in mice, attempting to evaluate the significance of the N/OFQ-NOP receptor in this paradigm. MATERIALS AND METHODS Female CF-1 mice were submitted to the fibromyalgia model induced by three daily consecutive injections of reserpine (0.25 mg/kg) and received an intra-masseter injection of complete Freund's adjuvant (CFA; 10 μl; diluted 1:1) on day four. KEY FINDINGS There was a rise in nocifensive and depression-like behaviors in the comorbidity group, as evaluated by the Grimace scores and the tail suspension test (TST). This group displayed anxiogenic-like effects in the hole board and the elevated plus maze tests. The comorbidity group showed an increment of c-Fos immunopositivity in the ipsilateral side of CFA injection, in the trigeminal ganglion (TG) and thalamus. The administration of N/OFQ (1 nmol/kg, i.p.) boosted the Grimace scores in the comorbidity group, with no effect for the NOP receptor antagonist UFP-101 (1 nmol/kg, i.p.). Either NOP ligand failed to alter depression or anxiety behavioral changes. Alternatively, pregabalin (30 mg/kg; i.p.) reduced the nociceptive responses and the number of head dips in the hole board. SIGNIFICANCE Data reveal new evidence suggesting that inducing TMD with CFA may worsen fibromyalgia symptoms in reserpine-treated mice, an effect partially regulated by systemic N/OFQ.
Collapse
Affiliation(s)
- Maria C C Volkweis
- PUCRS, Programa de Pós-Graduação em Odontologia, Escola de Ciências da Saúde e da Vida, Porto Alegre, RS, Brazil; PUCRS, Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Porto Alegre, RS, Brazil
| | - Luisa A Tomasi
- PUCRS, Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Porto Alegre, RS, Brazil; PUCRS, Curso de Graduação em Farmácia, Escola de Ciências da Saúde e da Vida, Porto Alegre, RS, Brazil
| | - Gabriella C Santos
- PUCRS, Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Porto Alegre, RS, Brazil; PUCRS, Curso de Graduação em Odontologia, Escola de Ciências da Saúde e da Vida, Porto Alegre, RS, Brazil
| | - Ana P A Dagnino
- PUCRS, Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Porto Alegre, RS, Brazil; PUCRS, Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Porto Alegre, RS, Brazil
| | - Marina Estrázulas
- PUCRS, Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Porto Alegre, RS, Brazil; PUCRS, Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Porto Alegre, RS, Brazil
| | - Maria M Campos
- PUCRS, Programa de Pós-Graduação em Odontologia, Escola de Ciências da Saúde e da Vida, Porto Alegre, RS, Brazil; PUCRS, Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Porto Alegre, RS, Brazil; PUCRS, Curso de Graduação em Odontologia, Escola de Ciências da Saúde e da Vida, Porto Alegre, RS, Brazil; PUCRS, Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Porto Alegre, RS, Brazil.
| |
Collapse
|
2
|
Wang J, Liu X, Gou J, Deng J, Li M, Zhu Y, Wu Z. Role of neuropeptides in orofacial pain: A literature review. J Oral Rehabil 2024; 51:898-908. [PMID: 38213060 DOI: 10.1111/joor.13656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/19/2023] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
BACKGROUND Neuropeptides play a critical role in regulating pain and inflammation. Despite accumulating evidence has further uncovered the novel functions and mechanisms of different neuropeptides in orofacial pain sensation and transmission, there is deficient systematic description of neuropeptides' pain modulation in the orofacial region, especially in the trigeminal system. OBJECTIVES The present review aims to summarise several key neuropeptides and gain a better understanding of their major regulatory roles in orofacial inflammation and pain. METHODS We review and summarise current studies related to calcitonin gene-related peptide (CGRP), substance P (SP), opioid peptide (OP), galanin (GAL) and other neuropeptides' functions and mechanisms as well as promising targets for orofacial pain control. RESULTS A number of neuropeptides are clearly expressed in the trigeminal sensory system and have critical functions in the transduction and pathogenesis of orofacial pain. The functions, possible cellular and molecular mechanisms have been introduced and discussed. Neuropeptides and their agonists or antagonists which are widely studied to be potential treatment options of orofacial pain has been evaluated. CONCLUSIONS Various neuropeptides play important but distinct (pro-nociceptive or analgesic) roles in orofacial pain with different mechanisms. In summary, CGRP, SP, NPY, NKA, HK-1, VIP mainly play proinflammatory and pro-nociceptive effects while OP, GAL, OXT, OrxA mainly have inhibitory effects on orofacial pain.
Collapse
Affiliation(s)
- Jian Wang
- Department of Pediatric Dentistry, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Xiangtao Liu
- Department of Pediatric Dentistry, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Junzhuo Gou
- Department of Pediatric Dentistry, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Jing Deng
- Department of Pediatric Dentistry, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Mujia Li
- Department of Pediatric Dentistry, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Yafen Zhu
- Department of Pediatric Dentistry, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Zhifang Wu
- Department of Pediatric Dentistry, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| |
Collapse
|
3
|
Abstract
This paper is the forty-fifth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2022 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, USA.
| |
Collapse
|
4
|
Li N, Xiao J, Niu J, Zhang M, Shi Y, Yu B, Zhang Q, Chen D, Zhang N, Fang Q. Synergistic interaction between DAMGO-NH 2 and NOP01 in peripherally acting antinociception in two mouse models of formalin pain. Peptides 2023; 161:170943. [PMID: 36621672 DOI: 10.1016/j.peptides.2023.170943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 01/07/2023]
Abstract
The most commonly used opioid analgesics are limited by their severe side-effects in the clinical treatment of pain. Preliminary reports indicate that the combination of classical opioids and N/OFQ receptor (NOP) ligands may be an effective strategy to reduce unwanted side-effects and improve antinociception. But the interaction of these two receptor ligands in pain regulation at the peripheral level remains unclear. In this study, the antinociception of a designed amide analogue of the mu opioid receptor (MOP) peptide agonist DAMGO, DAMGO-NH2, and its antinociceptive interaction with the peripherally limited NOP peptide agonist NOP01 was investigated in two mouse models of formalin pain. Our results showed that DAMGO-NH2 acted as a MOP agonist in in vitro functional assays. Moreover, local subcutaneous or intraplantar injection of DAMGO-NH2 exerted dose-related antinociception in both phases of the formalin orofacial and intraplantar pain, which could be mediated by the classical opioid receptor. Peripheral but not central pretreatment with the peripherally restricted opioid antagonist naloxone methiodide inhibited local DAMGO-NH2-induced antinociception, supporting the involvement of the peripheral opioid receptor in local DAMGO-NH2-induced antinociception. Furthermore, co-administration of the inactive doses of DAMGO-NH2 and NOP01 produced effective antinociception. More importantly, isobolographic analysis indicates that the combination of DAMGO-NH2 and NOP01 elicited supra-additive antinociception in these two models of formalin pain. In addition, the combination of DAMGO-NH2 and NOP01 did not change motor function of mice in rotarod test. In conclusion, these data suggest that peripheral DAMGO-NH2 and particularly its combination therapy with NOP01 may be effective for pain management.
Collapse
Affiliation(s)
- Ning Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China
| | - Jian Xiao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China
| | - Jiandong Niu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China
| | - Mengna Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China
| | - Yonghang Shi
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China
| | - Bowen Yu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China
| | - Qinqin Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China
| | - Dan Chen
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China
| | - Nan Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China
| | - Quan Fang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, China.
| |
Collapse
|