1
|
Rathee S, Sen D, Pandey V, Jain SK. Advances in Understanding and Managing Alzheimer's Disease: From Pathophysiology to Innovative Therapeutic Strategies. Curr Drug Targets 2024; 25:752-774. [PMID: 39039673 DOI: 10.2174/0113894501320096240627071400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 07/24/2024]
Abstract
Alzheimer's disease (AD) is a debilitating neurodegenerative disorder characterized by the presence of amyloid-β (Aβ) plaques and tau-containing neurofibrillary tangles, leading to cognitive and physical decline. Representing the majority of dementia cases, AD poses a significant burden on healthcare systems globally, with onset typically occurring after the age of 65. While most cases are sporadic, about 10% exhibit autosomal forms associated with specific gene mutations. Neurofibrillary tangles and Aβ plaques formed by misfolded tau proteins and Aβ peptides contribute to neuronal damage and cognitive impairment. Currently, approved drugs, such as acetylcholinesterase inhibitors and N-methyl D-aspartate receptor agonists, offer only partial symptomatic relief without altering disease progression. A promising development is using lecanemab, a humanized IgG1 monoclonal antibody, as an immune therapeutic approach. Lecanemab demonstrates selectivity for polymorphic Aβ variants and binds to large soluble Aβ aggregates, providing a potential avenue for targeted treatment. This shift in understanding the role of the adaptive immune response in AD pathogenesis opens new possibilities for therapeutic interventions aiming to address the disease's intricate mechanisms. This review aims to summarize recent advancements in understanding Alzheimer's disease pathophysiology and innovative therapeutic approaches, providing valuable insights for both researchers and clinicians.
Collapse
Affiliation(s)
- Sunny Rathee
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Debasis Sen
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Vishal Pandey
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Sanjay K Jain
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| |
Collapse
|
2
|
Aranda MB, Sabalette KB. [Biological cancer therapies: an approach towards accessibility]. Rev Salud Publica (Bogota) 2023; 21:462-468. [PMID: 36753623 DOI: 10.15446/rsap.v21n4.73686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 04/30/2019] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVE Monoclonal antibodies are a useful tool for laboratory diagnosis and an instrument used in the treatment of various diseases and represent one of the most important groups of new drugs for the treatment of cancer. The revolution in the world occured in 1975 when Milstein and Köhler discovered monoclonal antibodies in Cambridge. To review the use of monoclonal antibodies in medicine and in the treatment of cancer. To provide a generalized vision of the concept of monoclonal antibody to explain its therapeutic applicability, and to approach an economic, health-care approach to obtaining and accessing new therapies. METHOD In the characterization of the research phenomenon, the descriptive study, the collection of documentary data and the correlation between the different sources were used. DISCUSSION However, the costs for both the patient and the public health systems are still high, and the cost-effectiveness assessment must be optimized so that cost-effectiveness and access to time for patients can be compatible. And the challenge of developing new mAbs aimed at new targets, improving the safety profile, avoiding, or reducing adverse immune reactions and achieving lower production costs through improvements in biotechnology, is left open.
Collapse
Affiliation(s)
- Monica B Aranda
- MA: Contador Público. Ph. D. Gobierno y Cultura de las Organizaciones. M. Sc. Tributación. M. Sc. Gerencia y Administración de Sistemas y Servicios de Salud. Buenos Aires, Argentina. Universidad Argentina de la Empresa (UADE).
| | - Karina B Sabalette
- KS: Lic. Biotecnología y Biología Molecular. Universidad Nacional de General San Martin UNSAM. Fellow de Investigación. Buenos Aires, Argentina.
| |
Collapse
|
3
|
Ayón C, Castán D, Mora A, Naranjo D, Obando F, Mora JJ. Monoclonal Antibodies: A Therapeutic Option for the Treatment of Ophthalmic Diseases of the Eye Posterior Segment. BORNEO JOURNAL OF PHARMACY 2022. [DOI: 10.33084/bjop.v5i3.2095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The eye is an organ that allows us to observe the outside world. Pathologies of the eye's posterior segment, such as glaucoma, macular degeneration, diabetic retinopathy, uveitis, and retinoblastoma, cause vision loss. Traditional treatments consist of applying topical medications that do not penetrate properly or using high doses that generate adverse effects. Different laser surgeries stop the pathology's progression but do not allow visual improvement. So, an alternative is to use monoclonal antibodies, proteins produced by different processes that selectively bind to metabolites associated with diseases, reducing the adverse effects of traditional treatments and improving the application of the drug in the area. The two main molecular targets are TNF (adalimumab, infliximab, and certolizumab pegol) and VEGF (bevacizumab and ranibizumab); other possibilities are under investigation.
Collapse
|
4
|
Sánchez-Robles EM, Girón R, Paniagua N, Rodríguez-Rivera C, Pascual D, Goicoechea C. Monoclonal Antibodies for Chronic Pain Treatment: Present and Future. Int J Mol Sci 2021; 22:ijms221910325. [PMID: 34638667 PMCID: PMC8508878 DOI: 10.3390/ijms221910325] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 12/20/2022] Open
Abstract
Chronic pain remains a major problem worldwide, despite the availability of various non-pharmacological and pharmacological treatment options. Therefore, new analgesics with novel mechanisms of action are needed. Monoclonal antibodies (mAbs) are directed against specific, targeted molecules involved in pain signaling and processing pathways that look to be very effective and promising as a novel therapy in pain management. Thus, there are mAbs against tumor necrosis factor (TNF), nerve growth factor (NGF), calcitonin gene-related peptide (CGRP), or interleukin-6 (IL-6), among others, which are already recommended in the treatment of chronic pain conditions such as osteoarthritis, chronic lower back pain, migraine, or rheumatoid arthritis that are under preclinical research. This narrative review summarizes the preclinical and clinical evidence supporting the use of these agents in the treatment of chronic pain.
Collapse
|
5
|
Moreno Pizarro E, Morales Valencia E, Pérez Cuéllar A, Acuña Pinzon C, Serrano Padilla AE. Monoclonal Antibodies Addressed to Factors of Signalization in Keloid Scars: Opportunities and Areas of Action. Cureus 2020; 12:e8894. [PMID: 32742861 PMCID: PMC7389189 DOI: 10.7759/cureus.8894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The advance of technology has made possible the use of new techniques within medicine for the treatment of diseases; monoclonal antibodies are a clear example of this. Keloid scars are one of the most difficult pathologies to treat due to the high percentage of recidivism, formed by the growth of a scar with benign fibrous tissue in genetically predisposed individuals, resulting from a process of inflammation and abnormal scarring. Monoclonal antibodies, being a line of treatment that has increased over the years, can show a new frontier in the treatment of them by focusing on the signaling that causes it. We review the literature on the signaling mechanisms of keloid scars and the possible monoclonal approach.
Collapse
Affiliation(s)
| | | | - Arturo Pérez Cuéllar
- Orthopedics and Traumatology, General Hospital of León, León, MEX.,Orthopedics and Traumatology, Medica Campestre Hospital, León, MEX
| | - Camilo Acuña Pinzon
- General Surgery, Hospital Regional de Alta Especialidad del Bajío, León, MEX
| | | |
Collapse
|
6
|
Parakh S, King D, Gan HK, Scott AM. Current Development of Monoclonal Antibodies in Cancer Therapy. Recent Results Cancer Res 2019; 214:1-70. [PMID: 31473848 DOI: 10.1007/978-3-030-23765-3_1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Exploiting the unique specificity of monoclonal antibodies has revolutionized the treatment and diagnosis of haematological and solid organ malignancies; bringing benefit to millions of patients over the past decades. Recent achievements include conjugating antibodies with toxic payloads resulting in superior efficacy and/or reduced toxicity, development of molecular imaging techniques targeting specific antigens for use as predictive and prognostic biomarkers, the development of novel bi- and tri-specific antibodies to enhance therapeutic benefit and abrogate resistance and the success of immunotherapy agents. In this chapter, we review an overview of antibody structure and function relevant to cancer therapy and provide an overview of pivotal clinical trials which have led to regulatory approval of monoclonal antibodies in cancer treatment. We further discuss resistance mechanisms and the unique side effects of each class of antibody and provide an overview of emerging therapeutic agents.
Collapse
Affiliation(s)
- Sagun Parakh
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, Melbourne, VIC, 3084, Australia.,Department of Medical Oncology, Olivia Newton-John Cancer and Wellness Centre, Austin Health, Heidelberg, Melbourne, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Dylan King
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, Melbourne, VIC, 3084, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Hui K Gan
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, Melbourne, VIC, 3084, Australia.,Department of Medical Oncology, Olivia Newton-John Cancer and Wellness Centre, Austin Health, Heidelberg, Melbourne, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Andrew M Scott
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, Melbourne, VIC, 3084, Australia. .,School of Cancer Medicine, La Trobe University, Melbourne, Australia. .,Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Australia. .,Department of Medicine, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
7
|
Cáceres MC, Guerrero-Martín J, Pérez-Civantos D, Palomo-López P, Delgado-Mingorance JI, Durán-Gómez N. The importance of early identification of infusion-related reactions to monoclonal antibodies. Ther Clin Risk Manag 2019; 15:965-977. [PMID: 31447561 PMCID: PMC6682763 DOI: 10.2147/tcrm.s204909] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/27/2019] [Indexed: 01/01/2023] Open
Abstract
Monoclonal antibodies constitute important and useful tools in clinical practice and biotechnology for diagnosing and treating infectious, inflammatory, immunological and neoplastic diseases. This article reviews evidence on the different acute adverse effects of monoclonal antibodies, specifically infusion-related reactions (IRRs), and on the measures that should be taken before and during crises. A literature search using key terms relating to IRRs produced by monoclonal antibodies was undertaken to generate a comprehensive narrative review of the information available. Immunomodulatory monoclonal antibodies may produce IRRs and hypersensitivity-related reactions. Strategies to avoid or minimize the appearance of IRRs depend on the monoclonal antibody and type of patient and reaction (pre-medication, slowing infusion rates, infusion interruption or desensitization, etc.). Considering the great number of available monoclonal antibodies in current practice and those which will soon be authorized, it is mandatory to have clear guidelines that can give support to practitioners and nurses to help them respond quickly and safely to the different IRRs related to the use of these therapeutic drugs.
Collapse
Affiliation(s)
| | | | - Demetrio Pérez-Civantos
- Department of Biomedicine, University of Extremadura, Badajoz, Spain
- Intensive Care Medicine Department, University Hospital of Badajoz, Servicio Extremeño de Salud, Badajoz, Spain
| | | | | | | |
Collapse
|
8
|
Arslan M, Karadağ D, Kalyoncu S. Protein engineering approaches for antibody fragments: directed evolution and rational design approaches. ACTA ACUST UNITED AC 2019; 43:1-12. [PMID: 30930630 PMCID: PMC6426644 DOI: 10.3906/biy-1809-28] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The number of therapeutic antibodies in preclinical, clinical, or approved phases has been increasing exponentially, mostly due to their known successes. Development of antibody engineering methods has substantially hastened the development of therapeutic antibodies. A variety of protein engineering techniques can be applied to antibodies to improve their afinity and/or biophysical properties such as solubility and stability. Antibody fragments (where all or some parts of constant regions are eliminated while the essential antigen binding region is preserved) are more suitable for protein engineering techniques because there are many in vitro screening technologies available for antibody fragments but not full-length antibodies. Improvement of biophysical characteristics is important in the early development phase because most antibodies fail at the later stage of development and this leads to loss of resources and time. Here, we review directed evolution and rational design methods to improve antibody properties. Recent developments in rational design approaches and antibody display technologies, and especially phage display, which was recently awarded the 2018 Nobel Prize, are discussed to be used in antibody research and development.
Collapse
Affiliation(s)
- Merve Arslan
- İzmir Biomedicine and Genome Center , İzmir , Turkey.,İzmir Biomedicine and Genome Institute, Dokuz Eylül University , İzmir , Turkey
| | | | | |
Collapse
|
9
|
Contreras-Naranjo JE, Aguilar O. Suppressing Non-Specific Binding of Proteins onto Electrode Surfaces in the Development of Electrochemical Immunosensors. BIOSENSORS 2019; 9:E15. [PMID: 30669262 PMCID: PMC6468902 DOI: 10.3390/bios9010015] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/07/2019] [Accepted: 01/13/2019] [Indexed: 12/12/2022]
Abstract
Electrochemical immunosensors, EIs, are systems that combine the analytical power of electrochemical techniques and the high selectivity and specificity of antibodies in a solid phase immunoassay for target analyte. In EIs, the most used transducer platforms are screen printed electrodes, SPEs. Some characteristics of EIs are their low cost, portability for point of care testing (POCT) applications, high specificity and selectivity to the target molecule, low sample and reagent consumption and easy to use. Despite all these attractive features, still exist one to cover and it is the enhancement of the sensitivity of the EIs. In this review, an approach to understand how this can be achieved is presented. First, it is necessary to comprise thoroughly all the complex phenomena that happen simultaneously in the protein-surface interface when adsorption of the protein occurs. Physicochemical properties of the protein and the surface as well as the adsorption phenomena influence the sensitivity of the EIs. From this point, some strategies to suppress non-specific binding, NSB, of proteins onto electrode surfaces in order to improve the sensitivity of EIs are mentioned.
Collapse
Affiliation(s)
- Jesús E Contreras-Naranjo
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias. Ave. Eugenio Garza Sada 2501, Monterrey 64849, N.L., Mexico.
| | - Oscar Aguilar
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias. Ave. Eugenio Garza Sada 2501, Monterrey 64849, N.L., Mexico.
| |
Collapse
|
10
|
Ministro J, Manuel AM, Goncalves J. Therapeutic Antibody Engineering and Selection Strategies. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 171:55-86. [PMID: 31776591 DOI: 10.1007/10_2019_116] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Antibody drugs became an increasingly important element of the therapeutic landscape. Their accomplishment has been driven by many unique properties, in particular by their very high specificity and selectivity, in contrast to the off-target liabilities of small molecules (SMs). Antibodies can bring additional functionality to the table with their ability to interact with the immune system, and this can be further manipulated with advances in antibody engineering.The expansion of strategies related to discovery technologies of monoclonal antibodies (mAbs) (phage display, yeast display, ribosome display, bacterial display, mammalian cell surface display, mRNA display, DNA display, transgenic animal, and human B cell derived) opened perspectives for the screening and the selection of therapeutic antibodies for, theoretically, any target from any kind of organism. Moreover, antibody engineering technologies were developed and explored to obtain chosen characteristics of selected leading candidates such as high affinity, low immunogenicity, improved functionality, improved protein production, improved stability, and others. This chapter contains an overview of discovery technologies, mainly display methods and antibody humanization methods for the selection of therapeutic humanized and human mAbs that appeared along the development of these technologies and thereafter. The increasing applications of these technologies will be highlighted in the antibody engineering area (affinity maturation, guided selection to obtain human antibodies) giving promising perspectives for the development of future therapeutics.
Collapse
Affiliation(s)
| | - Ana Margarida Manuel
- iMed - Research Institute for Medicines, Faculty of Pharmacy at University of Lisbon, Lisbon, Portugal
| | - Joao Goncalves
- iMed - Research Institute for Medicines, Faculty of Pharmacy at University of Lisbon, Lisbon, Portugal.
| |
Collapse
|
11
|
Aguilar-Ortíz E, Jalilian AR, Ávila-Rodríguez MA. Porphyrins as ligands for 64copper: background and trends. MEDCHEMCOMM 2018; 9:1577-1588. [PMID: 30429966 PMCID: PMC6194497 DOI: 10.1039/c8md00263k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/17/2018] [Indexed: 12/13/2022]
Abstract
Porphyrins and 64Cu have emerged as a novel synergic option for applications in PET molecular imaging. Both the characteristics and photophysical properties of macrocyclic porphyrins and the relatively long half-life of the copper isotope, in addition to the increased tumor-specific uptake of porphyrins compared to normal cells, make this complex an attractive option not only for diagnosis but also for therapeutic applications. Herein, we present an overview of the latest results on the development of PET agents based on porphyrins and 64Cu, including methods used to improve the selectivity of these macrocycles when conjugated with biological units such as monoclonal antibodies, peptides or proteins.
Collapse
Affiliation(s)
- Edgar Aguilar-Ortíz
- Unidad Radiofarmacia-Ciclotrón , División de Investigación , Facultad de Medicina , Universidad Nacional Autónoma de México , 04510 Cd. Mx. , Mexico . ;
| | - Amir R Jalilian
- Department of Nuclear Sciences and Applications , International Atomic Energy Agency (IAEA) , Vienna , Austria
| | - Miguel A Ávila-Rodríguez
- Unidad Radiofarmacia-Ciclotrón , División de Investigación , Facultad de Medicina , Universidad Nacional Autónoma de México , 04510 Cd. Mx. , Mexico . ;
| |
Collapse
|