1
|
Du Y, Zhang S, Qiu Q, Fang Y, Zhao L, Yue L, Wang J, Yan F, Li X. The mediating effect of the amygdala-frontal circuit on the association between depressive symptoms and cognitive function in Alzheimer's disease. Transl Psychiatry 2024; 14:301. [PMID: 39039061 PMCID: PMC11263372 DOI: 10.1038/s41398-024-03026-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024] Open
Abstract
Depressive symptoms occur commonly in Alzheimer's disease (AD). Although abnormalities in the amygdala-frontal circuit have been linked to emotional dysregulation and cognitive impairment, the neurological basis underlying these associations in AD patients with depressive symptoms (ADD) is unclear. We aimed to investigate the relationship between the amygdala-frontal circuit and depressive symptoms and cognitive function in ADD. We recruited 60 ADD, 60 AD patients without depressive symptoms (ADND), and 60 healthy controls (HC). Functional connectivity (FC) maps of the bilateral amygdala were compared. Fractional anisotropy (FA) of the amygdala-frontal circuit connected by the uncinate fasciculus (UF) was calculated using automated fiber quantification (AFQ). In addition, mediation analysis was performed to explore the effects of the amygdala-frontal circuit on the relationship between depressive symptoms and cognitive function. We found decreased bilateral amygdala FC with the inferior frontal gyrus (IFG) in the ADD group compared to the ADND and HC groups. Moreover, FA in the left frontal UF (nodes 64-97) was significantly lower in the ADD group than ADND group. Notably, amygdala-based FC with IFG and the left frontal UF FA mediated the relationship between depressive symptoms and cognitive function in ADD, with mediating effects ranging between 15 and 18%. Our study is the first to demonstrate the mediating effect of functional and microstructural abnormalities in the amygdala-frontal circuit in ADD. The findings suggest that the amygdala-frontal circuit may underlie emotional dysregulation in ADD, providing potential targets for treatment strategies.
Collapse
Affiliation(s)
- Yang Du
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shaowei Zhang
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Qiu
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Fang
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu Zhao
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Yue
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinghua Wang
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Yan
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xia Li
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Qu Y, Wang P, Yao H, Wang D, Song C, Yang H, Zhang Z, Chen P, Kang X, Du K, Fan L, Zhou B, Han T, Yu C, Zhang X, Zuo N, Jiang T, Zhou Y, Liu B, Han Y, Lu J, Liu Y. Reproducible Abnormalities and Diagnostic Generalizability of White Matter in Alzheimer's Disease. Neurosci Bull 2023; 39:1533-1543. [PMID: 37014553 PMCID: PMC10533766 DOI: 10.1007/s12264-023-01041-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/29/2022] [Indexed: 04/05/2023] Open
Abstract
Alzheimer's disease (AD) is associated with the impairment of white matter (WM) tracts. The current study aimed to verify the utility of WM as the neuroimaging marker of AD with multisite diffusion tensor imaging datasets [321 patients with AD, 265 patients with mild cognitive impairment (MCI), 279 normal controls (NC)], a unified pipeline, and independent site cross-validation. Automated fiber quantification was used to extract diffusion profiles along tracts. Random-effects meta-analyses showed a reproducible degeneration pattern in which fractional anisotropy significantly decreased in the AD and MCI groups compared with NC. Machine learning models using tract-based features showed good generalizability among independent site cross-validation. The diffusion metrics of the altered regions and the AD probability predicted by the models were highly correlated with cognitive ability in the AD and MCI groups. We highlighted the reproducibility and generalizability of the degeneration pattern of WM tracts in AD.
Collapse
Affiliation(s)
- Yida Qu
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pan Wang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin University, Tianjin, 300222, China
| | - Hongxiang Yao
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin University, Tianjin, 300222, China
| | - Dawei Wang
- Department of Radiology, Department of Epidemiology and Health Statistics, School of Public Health, Qilu Hospital of Shandong University, Ji'nan, 250063, China
| | - Chengyuan Song
- Department of Neurology, Qilu Hospital of Shandong University, Ji'nan, 250063, China
| | - Hongwei Yang
- Department of Radiology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Zengqiang Zhang
- Branch of Chinese, PLA General Hospital, Sanya, 572022, China
| | - Pindong Chen
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaopeng Kang
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kai Du
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lingzhong Fan
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bo Zhou
- Department of Neurology, The Second Medical Centre, National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100089, China
| | - Tong Han
- Department of Radiology, Tianjin Huanhu Hospital, Tianjin, 300222, China
| | - Chunshui Yu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xi Zhang
- Department of Neurology, The Second Medical Centre, National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100089, China
| | - Nianming Zuo
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tianzi Jiang
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuying Zhou
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin University, Tianjin, 300222, China
| | - Bing Liu
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Lab of Cognition Neuroscience & Learning, Beijing Normal University, Beijing, 100091, China
| | - Ying Han
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
- Beijing Institute of Geriatrics, Beijing, 100053, China
- National Clinical Research Center for Geriatric Disorders, Beijing, 100053, China
- Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, 100053, China
| | - Jie Lu
- Department of Radiology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China.
| | - Yong Liu
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, 100876, China.
| |
Collapse
|
3
|
Miller JV, Andre Q, Timmers I, Simons L, Rasic N, Lebel C, Noel M. Subclinical post-traumatic stress symptomology and brain structure in youth with chronic headaches. NEUROIMAGE-CLINICAL 2021; 30:102627. [PMID: 33812302 PMCID: PMC8053811 DOI: 10.1016/j.nicl.2021.102627] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 03/01/2021] [Accepted: 03/05/2021] [Indexed: 01/17/2023]
Abstract
ACEs and PTSS did not significantly differ between patients and healthy controls. Patients demonstrated greater corticolimbic connectivity compared to controls. Greater PTSS and less corticolimbic connectivity increased headache frequency. Less corticolimbic connectivity may indicate greater disease progression. Patients may be more vulnerable to the effects of PTSS compared to controls.
Background/aims Post-traumatic stress symptoms (PTSS) and chronic pain often co-occur at high rates in youth. PTSS may alter brain structure thereby contributing to headache chronicity. This study examined whether PTSS and altered limbic circuitry were associated with headache frequency in youth. Methods Thirty youth aged 10–18 years with chronic headaches and 30 age- and sex-matched controls underwent a 3T MRI scan. Volumes of the hippocampus and amygdala were obtained from T1-weighted images. Mean fractional anisotropy (FA, an index of white matter structure) axial and radial diffusivity values of the cingulum and uncinate fasciculus were extracted from diffusion-weighted images. Youth reported on their headaches daily, for one-month, and self-reported pubertal status, emotion regulation, adverse childhood experiences (ACEs) and PTSS using validated measures. Volumes of the hippocampus and amygdala and diffusivity values of the cingulum and uncinate were compared between patients and controls. Hierarchical linear regressions were used to examine the association between PTSS, subcortical volumes and/or diffusivity values and headache frequency. Results Mean FA values of the cingulum were higher in patients compared to controls (P = 0.02, Cohen’s d = 0.69). Greater PTSS (P = 0.04), smaller amygdala volumes (P = 0.01) and lower FA of the cingulum (P = 0.04) were associated with greater headache frequency, after accounting for age, puberty, pain duration, emotion regulation, and ACEs (Adjusted R2 ≥ 0.15). Headache frequency was associated with increases in radial diffusivity (P = 0.002, Adjusted R2 = 0.59), as opposed to axial diffusivity (n.s.). Conclusions PTSS, smaller amygdalar volume, and poorer cingulum structural connectivity were associated with headache frequency in youth, and may underlie headache chronicity.
Collapse
Affiliation(s)
- Jillian Vinall Miller
- Anesthesiology, Perioperative & Pain Medicine, University of Calgary, Calgary, AB, Canada; Vi Riddell Children's Pain & Rehabilitation Centre, Alberta Children's Hospital, Calgary, AB, Canada; Behaviour & The Developing Brain, Alberta Children's Hospital Research Institute, Calgary, AB, Canada.
| | - Quinn Andre
- Medicine, University of Alberta, Edmonton, AB, Canada
| | - Inge Timmers
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, United States
| | - Laura Simons
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, United States
| | - Nivez Rasic
- Anesthesiology, Perioperative & Pain Medicine, University of Calgary, Calgary, AB, Canada; Vi Riddell Children's Pain & Rehabilitation Centre, Alberta Children's Hospital, Calgary, AB, Canada; Behaviour & The Developing Brain, Alberta Children's Hospital Research Institute, Calgary, AB, Canada
| | - Catherine Lebel
- Behaviour & The Developing Brain, Alberta Children's Hospital Research Institute, Calgary, AB, Canada; Radiology, University of Calgary, Calgary, AB, Canada
| | - Melanie Noel
- Vi Riddell Children's Pain & Rehabilitation Centre, Alberta Children's Hospital, Calgary, AB, Canada; Behaviour & The Developing Brain, Alberta Children's Hospital Research Institute, Calgary, AB, Canada; Psychology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
4
|
Tractography-Based Analysis of Morphological and Anatomical Characteristics of the Uncinate Fasciculus in Human Brains. Brain Sci 2020; 10:brainsci10100709. [PMID: 33036125 PMCID: PMC7601025 DOI: 10.3390/brainsci10100709] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 12/20/2022] Open
Abstract
(1) Background: The uncinate fasciculus (UF) is a white matter bundle connecting the prefrontal cortex and temporal lobe. The functional role of the uncinate fasciculus is still uncertain. The role of the UF is attributed to the emotional empathy network. The present study aimed to more accurately the describe anatomical variability of the UF by focusing on the volume of fibers and testing for correlations with sex and age. (2) Material and Methods: Magnetic resonance imaging of adult patients with diffusion tensor imaging (DTI) was performed on 34 patients. The total number of fibers, volume of UF, and number of tracts were processed using DSI studio software. The DSI studio allows for mapping of different nerve pathways and visualizing of the obtained results using spatial graphics. (3) Results: The total number of UF tracts was significantly higher in the right hemisphere compared to the left hemisphere (right M ± SD = 52 ± 24; left: 39 ± 25, p < 0.05). A hook-shaped UF was the most common variant (91.7%). The UF volumes were larger in men (1410 ± 150.7 mm3) as compared to women (1325 ± 133.2 mm3) (p < 0.05). The mean fractional anisotropy (FA) values of the UF were significantly larger on the left side 0.597, while the right UF had an average of 0.346 (p < 0.05). Patients older than 50 years old had a significantly higher value of mean diffusivity (MD) (p = 0.034). In 73.5% of patients, a greater number of fibers terminated in the inferior part of the inferior frontal gyrus. (4) Conclusions: The morphological characteristics of the UF, unlike the shape, are associated with sex and are characterized by hemispheric dominance. These findings confirm the results of the previous studies. Future research should examine the potential correlation among the UF volume, number of fibers, and total brain volume in both sexes and patient psychological state.
Collapse
|
5
|
Andre QR, McMorris CA, Kar P, Ritter C, Gibbard WB, Tortorelli C, Lebel C. Different brain profiles in children with prenatal alcohol exposure with or without early adverse exposures. Hum Brain Mapp 2020; 41:4375-4385. [PMID: 32659051 PMCID: PMC7502833 DOI: 10.1002/hbm.25130] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/05/2020] [Accepted: 06/24/2020] [Indexed: 12/29/2022] Open
Abstract
Prenatal alcohol exposure (PAE) can alter brain development and impact mental health outcomes, and often occurs in conjunction with postnatal adversity (e.g., maltreatment). However, it is unclear how postnatal adverse exposures may moderate mental health and brain outcomes in children with PAE. T1‐weighted and diffusion magnetic resonance imaging were obtained from 66 participants aged 7–16 years. Twenty‐one participants had PAE and adverse postnatal exposures (PAE+), 12 had PAE without adverse postnatal exposures (PAE−), and 33 were age‐ and gender‐matched controls unexposed to either prenatal alcohol or postnatal adversity. Internalizing and externalizing mental health symptoms were assessed using the Behavioral Assessment System for Children II, Parent‐Rating Scale. ANCOVAs were used to compare mental health symptoms, limbic and prefrontal cortical volumes, and diffusion parameters of cortico‐limbic white matter tracts between groups, and to assess brain‐mental health relationships. Both PAE groups had worse externalizing behavior (higher scores) than controls. The PAE− group had lower fractional anisotropy (FA) in the bilateral cingulum and left uncinate fasciculus, and smaller volumes in the left anterior cingulate cortex than controls and the PAE+ group. The PAE− group also had higher mean diffusivity (MD) in the left uncinate than the PAE+ group, and smaller right anterior cingulate and superior frontal gyrus volumes than controls. These findings show different brain structure and mental health symptom profiles in children with PAE with and without postnatal adversity, highlighting the need to consider adverse postnatal exposures in individuals with PAE.
Collapse
Affiliation(s)
- Quinn R Andre
- Medical Science, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Carly A McMorris
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,School & Applied Child Psychology, University of Calgary, Calgary, Alberta, Canada
| | - Preeti Kar
- Medical Science, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Chantel Ritter
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,School & Applied Child Psychology, University of Calgary, Calgary, Alberta, Canada
| | - W Ben Gibbard
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
| | - Christina Tortorelli
- Department of Child Studies and Social Work, Mount Royal University, Calgary, Alberta, Canada
| | - Catherine Lebel
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Calgary, Alberta, Canada.,Department of Radiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
6
|
Park CH, Kim SH, Jung HY. Characteristics of the Uncinate Fasciculus and Cingulum in Patients with Mild Cognitive Impairment: Diffusion Tensor Tractography Study. Brain Sci 2019; 9:brainsci9120377. [PMID: 31847329 PMCID: PMC6956104 DOI: 10.3390/brainsci9120377] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/08/2019] [Accepted: 12/12/2019] [Indexed: 12/22/2022] Open
Abstract
Many studies have examined the relationship between cognition, and the cingulum and uncinate fasciculus (UF). In this study, diffusion tensor tractography (DTT) was used to investigate the correlation between fractional-anisotropy (FA) values and the number of fibers in the cingulum and UF in patients with and without cognitive impairment. The correlation between cognitive function, and the cingulum and UF was also investigated. Thirty patients (14 males, age = 70.68 ± 7.99 years) were divided into a control group (n = 14) and mild-cognitive-impairment (MCI) group (n = 16). The Seoul Neuropsychological Screening Battery (SNSB) and DTT were performed to assess cognition and bilateral tracts of the cingulum and UF. The relationship between SNSB values and the cingulum and UF was analyzed. The number of fibers in the right cingulum and right UF were significantly different between the two groups. The MCI group showed thinner tracts in both the cingulum and UF compared to the control group. A significant relationship was found between the number of fibers in the right UF and delayed memory recall. In conclusion, memory loss in MCI was associated with a decreased number of fibers in the right UF, while language and visuospatial function were related to the number of fibers in the right cingulum.
Collapse
|
7
|
Andre QR, Geeraert BL, Lebel C. Brain structure and internalizing and externalizing behavior in typically developing children and adolescents. Brain Struct Funct 2019; 225:1369-1378. [PMID: 31701264 DOI: 10.1007/s00429-019-01973-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 10/17/2019] [Indexed: 01/09/2023]
Abstract
Mental health problems often emerge in adolescence and are associated with reduced gray matter thickness or volume in the prefrontal cortex (PFC) and limbic system and reduced fractional anisotropy (FA) and increased mean diffusivity (MD) of white matter linking these regions. However, few studies have investigated whether internalizing and externalizing behavior are associated with brain structure in children and adolescents without mental health disorders, which is important for understanding the progression of symptoms. 67 T1-weighted and diffusion tensor imaging datasets were obtained from 48 typically developing participants aged 6-16 years (37M/30F; 19 participants had two visits). Volume was calculated in the prefrontal and limbic structures, and diffusion parameters were assessed in limbic white matter. Linear mixed effects models were used to compute associations between brain structure and internalizing and externalizing behavior, assessed using the Behavioral Assessment System for Children (BASC-2) Parent Rating Scale. Internalizing behavior was positively associated with MD of the bilateral cingulum. Gender interactions were found in the cingulum, with stronger positive relationships between MD and internalizing behavior in females. Externalizing behavior was negatively associated with FA of the left cingulum, and the left uncinate fasciculus showed an age-behavior interaction. No relationships between behavior and brain volumes survived multiple comparison correction. These results show altered limbic white matter FA and MD related to sub-clinical internalizing and externalizing behavior and further our understanding of neurological markers that may underlie risk for future mental health disorders.
Collapse
Affiliation(s)
- Quinn R Andre
- Medical Science Graduate Program, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Bryce L Geeraert
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Catherine Lebel
- Department of Radiology, University of Calgary, Calgary, AB, Canada. .,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada. .,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada. .,Alberta Children's Hospital, 28 Oki Dr NW, Calgary, AB, T3B 6A8, Canada.
| |
Collapse
|
8
|
Son SJ, Park BY, Byeon K, Park H. Synthesizing diffusion tensor imaging from functional MRI using fully convolutional networks. Comput Biol Med 2019; 115:103528. [PMID: 31743880 DOI: 10.1016/j.compbiomed.2019.103528] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/15/2019] [Accepted: 10/28/2019] [Indexed: 12/27/2022]
Abstract
PURPOSE Medical image synthesis can simulate a target modality of interest based on existing modalities and has the potential to save scanning time while contributing to efficient data collection. This study proposed a three-dimensional (3D) deep learning architecture based on a fully convolutional network (FCN) to synthesize diffusion-tensor imaging (DTI) from resting-state functional magnetic resonance imaging (fMRI). METHODS fMRI signals derived from white matter (WM) exist and can be used for assessing WM alterations. We constructed an initial functional correlation tensor image using the correlation patterns of adjacent fMRI voxels as one input to the FCN. We considered T1-weighted images as an additional input to provide an algorithm with the structural information needed to synthesize DTI. Our architecture was trained and tested using a large-scale open database dataset (training n = 648; testing n = 293). RESULTS The average correlation value between synthesized and actual diffusion tensors for 38 WM regions was 0.808, which significantly improves upon an existing study (r = 0.480). We also validated our approach using two open databases. Our proposed method showed a higher correlation with the actual diffusion tensor than the conventional machine-learning method for many WM regions. CONCLUSIONS Our method synthesized DTI images from fMRI images using a 3D FCN architecture. We hope to expand our method of synthesizing various other imaging modalities from a single image source.
Collapse
Affiliation(s)
- Seong-Jin Son
- Department of Electronic and Computer Engineering, Sungkyunkwan University, South Korea; Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science, South Korea; NEUROPHET Inc., South Korea
| | - Bo-Yong Park
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Kyoungseob Byeon
- Department of Electronic and Computer Engineering, Sungkyunkwan University, South Korea; Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science, South Korea
| | - Hyunjin Park
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science, South Korea; School of Electronic Electrical Engineering, Sungkyunkwan University, South Korea.
| |
Collapse
|
9
|
Korthauer LE, Nowak NT, Moffat SD, An Y, Rowland LM, Barker PB, Resnick SM, Driscoll I. Correlates of virtual navigation performance in older adults. Neurobiol Aging 2016; 39:118-27. [PMID: 26923408 PMCID: PMC4773923 DOI: 10.1016/j.neurobiolaging.2015.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 11/08/2015] [Accepted: 12/09/2015] [Indexed: 10/22/2022]
Abstract
Despite considerable evidence for deleterious effects of aging on place learning and memory, less is known about the trajectory and the putative neural mechanisms of these decrements. The virtual Morris water task (vMWT) is a human analog of a nonhuman spatial navigation task. The present study investigated longitudinal changes in place learning in 51 healthy, nondemented adults (age 30-83 years) who completed the vMWT and a neuropsychological battery at 2 time-points (interval = ∼8 years). We also assessed cross-sectional associations between vMWT and brain structure, biochemical integrity, and standardized neuropsychological measures in a subset of 22 individuals who underwent magnetic resonance imaging at follow-up. Despite no longitudinal decrement in vMWT performance, there were cross-sectional age differences on the vMWT favoring younger adults. Negative associations were observed between vMWT latency and gray matter volumes in the right hippocampus, bilateral thalamus, and right medial orbitofrontal cortex and between vMWT latency and white matter fractional anisotropy in the bilateral uncinate fasciculus. Collectively, these results suggest a pattern of differences in the structural integrity of regions supporting successful navigation even in the absence of longitudinal performance decrements.
Collapse
Affiliation(s)
- Laura E Korthauer
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Nicole T Nowak
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Scott D Moffat
- School of Psychology, Georgia Institute of Technology, Atlanta, GA, USA
| | - Yang An
- National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Laura M Rowland
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland, Baltimore, MD, USA
| | - Peter B Barker
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins, University School of Medicine, Baltimore, MD, USA
| | - Susan M Resnick
- National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Ira Driscoll
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA; National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
10
|
The SORL1 gene and convergent neural risk for Alzheimer's disease across the human lifespan. Mol Psychiatry 2014; 19:1125-32. [PMID: 24166411 PMCID: PMC4004725 DOI: 10.1038/mp.2013.142] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 08/12/2013] [Accepted: 09/09/2013] [Indexed: 01/07/2023]
Abstract
Prior to intervention trials in individuals genetically at-risk for late-onset Alzheimer's disease, critical first steps are identifying where (neuroanatomic effects), when (timepoint in the lifespan) and how (gene expression and neuropathology) Alzheimer's risk genes impact the brain. We hypothesized that variants in the sortilin-like receptor (SORL1) gene would affect multiple Alzheimer's phenotypes before the clinical onset of symptoms. Four independent samples were analyzed to determine effects of SORL1 genetic risk variants across the lifespan at multiple phenotypic levels: (1) microstructural integrity of white matter using diffusion tensor imaging in two healthy control samples (n=118, age 18-86; n=68, age 8-40); (2) gene expression using the Braincloud postmortem healthy control sample (n=269, age 0-92) and (3) Alzheimer's neuropathology (amyloid plaques and tau tangles) using a postmortem sample of healthy, mild cognitive impairment (MCI) and Alzheimer's individuals (n=710, age 66-108). SORL1 risk variants predicted lower white matter fractional anisotropy in an age-independent manner in fronto-temporal white matter tracts in both samples at 5% family-wise error-corrected thresholds. SORL1 risk variants also predicted decreased SORL1 mRNA expression, most prominently during childhood and adolescence, and significantly predicted increases in amyloid pathology in postmortem brain. Importantly, the effects of SORL1 variation on both white matter microstructure and gene expression were observed during neurodevelopmental phases of the human lifespan. Further, the neuropathological mechanism of risk appears to primarily involve amyloidogenic pathways. Interventions targeted toward the SORL1 amyloid risk pathway may be of greatest value during early phases of the lifespan.
Collapse
|